(word完整版)高中物理弹簧问题
- 格式:doc
- 大小:212.01 KB
- 文档页数:5
高中物理弹簧问题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中物理弹簧问题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中物理弹簧问题(word版可编辑修改)的全部内容。
弹簧问题轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。
无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。
图14 高中物理弹簧问题----瞬时问题、平衡问题、非平衡问题、功能问题专项突破典型的热点问题专题归纳:1、弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2、弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx 或△f=k •△x 来求解。
3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4、 弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
它有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起,以考察学生的综合应用能力。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
第一篇:弹簧中的力学问题1.如图,物块质量为M ,与甲、乙两弹簧相连接,乙弹簧下端与地面连接,甲、乙两弹簧质量不计,其劲度系数分别为k 1、k 2。
起初甲弹簧处于自由长度,现用手将甲弹簧的A 端缓慢上提,使乙弹簧产生的弹力大小变为原来的2/3,则A 端上移距离可能是( ) A .(k 1+k 2)Mg/3k 1k 2 B .2(k 1+k 2)Mg/3k 1k 2 C.4(k 1+k 2)Mg/3k 1k 2 D.5(k 1+k 2)Mg/3k 1k 22.(99全国)如右图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面弹簧上(但不拴接),整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为( ) A. m 1g/k 1 B. m 2g/ k 1 C. m 1g/k 2 D. m 2g/ k 23、如图14所示,A 、B 两滑环分别套在间距为1m 的光滑细杆上,A 和B 的质量之比为1∶3,用一自然长度为1m 的轻弹簧将两环相连,在 A 环上作用一沿杆方向的、大小为20N 的拉力F ,当两环都沿杆以相同的加速度a 运动时,弹簧与杆夹角为53°。
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
高中物理弹簧问题
(原创实用版)
目录
1.弹簧的定义与性质
2.高中物理中弹簧问题的种类
3.弹簧问题的解题方法与技巧
4.弹簧问题在实际生活中的应用
正文
高中物理弹簧问题涉及到对弹簧的理解、弹簧的性质、弹簧问题的种类以及弹簧问题的解题方法与技巧。
为了更好地理解和解决高中物理弹簧问题,我们首先要了解弹簧的定义与性质。
弹簧是一种具有弹性的零件,在外力作用下产生形变,外力去掉后能够恢复原状。
弹簧的主要性质有弹性、弹力、变形等。
在高中物理中,弹簧问题主要涉及到轻弹簧问题、质量不可忽略的弹簧问题、弹簧的弹力不能突变问题以及弹簧长度的变化问题等。
对于轻弹簧问题,我们需要掌握弹簧的伸长量或压缩量与所受的弹力成正比的胡克定律。
在解决质量不可忽略的弹簧问题时,我们需要考虑物体的质量对弹簧形变的影响,同时运用整体法和隔离法求解弹力。
对于弹簧的弹力不能突变问题,我们需要注意在弹簧的形变过程中,弹力是连续变化的,不会突然发生变化。
在解决弹簧长度的变化问题时,我们需要注意弹簧的长度变化与所受的弹力之间的关系。
在解决高中物理弹簧问题时,我们可以运用牛顿第二定律、胡克定律等物理定律,同时注意隔离法和整体法的运用。
此外,我们还需要具备分析问题、解决问题的能力,以便更好地解决高中物理弹簧问题。
高中物理弹簧问题不仅在学术研究中有重要意义,而且在实际生活中
也有广泛的应用。
例如,在机械设备中,弹簧被广泛用作弹性元件,能够对机械设备的运动起到缓冲和调节的作用。
高中物理弹簧问题(原创实用版)目录1.弹簧问题的背景和概述2.弹簧问题的解题思路和方法3.弹簧问题的典型例题解析4.弹簧问题的注意事项和误区点拨5.弹簧问题在中高考中的应用和意义正文高中物理弹簧问题是物理学科中的一个重要内容,涉及对弹簧的理解和应用。
弹簧是一种具有弹性的物体,在外力作用下能产生形变,当外力去除后能恢复原状。
弹簧问题在中高考中频繁出现,对学生的综合能力和思维能力有较高的要求。
在解决弹簧问题时,通常需要遵循以下步骤和方法:1.确定研究对象和受力分析:在解决弹簧问题时,首先要明确研究对象,分析物体受到的各种外力,如重力、弹力、推力等。
2.运用胡克定律:胡克定律是弹簧问题的核心,它描述了弹簧的伸长量与所受拉力成正比。
在解题过程中,要充分运用胡克定律,根据弹簧的伸长量或压缩量求出弹力。
3.利用牛顿第二定律:在求解弹簧问题时,常常需要运用牛顿第二定律,通过列方程求解物体的加速度。
4.注意临界情况:在弹簧问题中,有时会出现临界情况,如物体的分离、弹簧的断裂等。
在解题过程中,要特别注意这些临界情况,避免出现不合理的答案。
5.灵活运用整体法和隔离法:在解决弹簧问题时,可以根据问题的具体情况,灵活运用整体法和隔离法进行求解。
在解决弹簧问题时,还需注意以下事项和误区:1.弹力与弹簧长度的关系:弹力与弹簧的伸长量或压缩量成正比,而不是与弹簧的长度成正比。
2.注意弹簧的压缩和拉伸:在解题过程中,要分清弹簧是处于压缩状态还是拉伸状态,避免出现错误的答案。
3.弹簧问题的功能关系:在解决弹簧问题时,要注意功与能的关系,根据能量守恒原理进行求解。
通过以上分析,我们可以得出高中物理弹簧问题的解题思路和方法。
在实际应用中,弹簧问题可以出现在各种题型中,如选择题、填空题、计算题等。
精心整理高中物理弹簧模型问题一、物理模型:轻弹簧是不计自身质量,能产生沿轴线的拉伸或压缩形变,故产生向内或向外的弹力。
二、模型力学特征:轻弹簧既可以发生拉伸形变,又可发生压缩形变,其弹力方向一定沿弹簧方向,弹簧两端弹力的大小相等,方向相反。
三、弹簧物理问题:1.弹簧平衡问题:抓住弹簧形变量、运动和力、促平衡、列方程。
2.弹簧模型应用牛顿第二定律的解题技巧问题:(1) 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。
而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。
(2) 弹簧长度不变,弹力不变问题:当物体除受弹簧本身的弹力外,还受到其它外力时,当弹簧长度不发生变化时,弹簧的弹力是不变的,出就是形变量不变,抓住这一状态分析物体的另外问题。
(3) 弹簧中的临界问题:当弹簧的长度发生改变导致弹力发生变化的过程中,往往会出现临界问题:如“两物体分离”、“离开地面”、“恰好”、“刚好”……这类问题找出隐含条件是求解本类题型的关键。
3.弹簧双振子问题:它的构造是:一根弹簧两端各连接一个小球(物体),这样的装置称为“弹簧双振子”。
本模型它涉及到力和运动、动量和能量等问题。
本问题对过程分析尤为重要。
1.弹簧称水平放置、牵连物体弹簧示数确定【例1】物块1、2放在光滑水平面上用轻弹簧相连,如图1所示。
今对物块1、2分别施以相反的水平力F1、F2,且F1>F2,则:A .弹簧秤示数不可能为F1B .若撤去F1,则物体1的加速度一定减小C .若撤去F2,弹簧称的示数一定增大D .若撤去F2,弹簧称的示数一定减小即正确答案为A 、D【点评】对于轻弹簧处于加速状态时要运用整体和隔离分析,再用牛顿第二定律列方程推出表达式进行比较讨论得出答案。
若是平衡时弹簧产生的弹力和外力大小相等。
主要看能使弹簧发生形变的力就能分析出弹簧的弹力。
专题弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
高中物理教案:弹簧的力学特性与应用弹簧是一种常见的力学元件,广泛应用于各个领域,包括机械、建筑、汽车等。
在高中物理课程中,学生需要掌握弹簧的力学特性和应用。
本文将从力学特性和应用两个方面进行介绍和讨论。
一、弹簧的力学特性1. 弹性恢复力:弹簧的主要特性之一是其具有弹性恢复力。
当外力作用于弹簧上,弹簧会变形,产生恢复力,试图恢复到原来的形状。
该恢复力与弹簧的形变程度成正比,符合胡克定律。
胡克定律可以用公式表示为F = -kx,其中F是弹簧的恢复力,k是弹簧的弹性系数,x是弹簧的形变量。
2. 弹簧振动:弹簧在受力作用下会发生振动。
振动的频率与弹簧的弹性系数和质量有关。
当弹簧和质量固定时,振动的频率与质量无关,只与弹簧的弹性系数有关。
而当质量改变时,振动的频率与质量成反比。
这一特性常用于制造振动仪器和测量设备。
3. 弹簧的耐久性:弹簧在长期使用中需要具备一定的耐久性。
当外力作用在弹簧上时,会产生应力和应变。
如果应力大于弹簧的材料极限,弹簧就会发生破裂。
因此,设计和制造弹簧时需要考虑弹簧的材料和尺寸,以确保其耐久性能。
二、弹簧的应用1. 弹簧秤:弹簧秤是一种利用弹簧的力学特性来测量物体质量的仪器。
弹簧秤的工作原理是根据弹簧振动的频率与质量成反比的特性,通过测量振动频率的变化来计算物体的质量。
它广泛应用于家庭、商业和工业领域。
2. 弹簧减震器:在机械和汽车行业中,弹簧被广泛应用于减震器中。
弹簧的弹性恢复力可以起到缓冲和减震的作用,减少物体在受到外力冲击时的震动和振动。
这对于提高机械设备的稳定性和安全性至关重要。
3. 弹簧悬挂系统:弹簧还常被用于汽车的悬挂系统中。
汽车悬挂系统依靠弹簧的弹力来支撑车身负荷,并吸收道路震动。
弹簧的刚度和弹性系数需要根据汽车的重量和设计要求进行调整,以确保驾驶舒适性和悬挂系统的稳定性。
4. 弹簧电池接触片:在电子产品中,弹簧广泛用于连接电池和电子设备的接触片中。
由于弹簧的弹性特性,它可以提供稳定的电力传递,确保设备正常工作。
-v 甲 高中物理弹簧类问题专题练习1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。
现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。
( )A .若M = m ,则d = d 0B .若M >m ,则d >d 0C .若M <m ,则d <d 0D .d = d 0,与M 、m 无关2. 如图a 所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连接,整个系统处于平衡状态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬间这个过程,并且选定这个过程中木块A列图象中可以表示力F 和木块A 的位移x 之间关系的是(3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( )A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长C .两物体的质量之比为m 1∶m 2 = 1∶2D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。
现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( )A.小球P 的速度是先增大后减小B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变D.小球P 合力的冲量为零5、如图所示,A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2).A B C D b(1)使木块A竖直做匀加速运动的过程中,力F的最大值;(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功.6、如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。
高中物理弹簧问题分类全解析一、有关弹簧题目类型 1、平衡类问题 2、突变类问题3、简谐运动型弹簧问题4、功能关系型弹簧问题5、碰撞型弹簧问题6、综合类弹簧问题 二、分类解析 1、平衡类问题例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k 1B.m2g/k 2C.m1g/k 2D.m2g/k 2解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即当上面木块离开弹簧时,受重力和弹力,则【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。
细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。
物体静止在斜面上,弹簧秤的示数为4.9N 。
关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。
则1m 所受支持力N 和摩擦力f 正确的是ACA .12sin N m g m g F θ=+-B .12cos N m g m g F θ=+-C .cos f F θ=D .sin f F θ=2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。
若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功),W 弹=-mgx -W F =-4.5J所以弹性势能增加4.5焦耳点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功2、突变类问题例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求(1)烧断细绳瞬间,小球的加速度(2)在C处弹簧与小球脱开瞬间,小球的加速度解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2,解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得F AC =mgsinθ2/sin(θ1+θ2)则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。
弹簧存储或释放的弹性势能要转化为其他形式的能,反过来其他形式的能也可转化为弹性势能。
例、在原子核物理中,研究核子与核子关系的最有效途径是“双电荷交换反应”这类反应的前半部分过程和下述力学模型类似:两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。
在它们左边有一垂直于轨道的固定档板P,右边有一小球C沿轨道以速度射向B球,如上图所示,C与B发生碰撞并立即结成一个整体D。
在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变。
然后,A球与档板P发生碰撞,碰后A、D静止不动,A与P接触而不粘连。
过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。
(l)求弹簧长度刚被锁定后A球的速度。
(2)求在A球离开档板P之后的运动过程中,弹簧的最大弹性势能。
解析:试题只是给出初始状态的示意图,而后的运动过程可分为五个阶段,分别如下图中(a)至(e)所示。
图(a)表示C、B发生碰撞结成D的瞬间;图(b)表示D、A向左运动,弹簧长度变为最短且被锁定;图(。
)表示A球和挡板P碰撞后,A、D都不动;图(d)表示解除锁定后,弹簧恢复原长瞬间;图(e)表示,A球离开挡板P后,弹簧具有最大弹性势能瞬间。
(1)设C球与B球翻结成D时,D的速度为,由动量守恒得:当弹簧压至最短时,D与A的速度相等,设此速度为由动量守恒定律得:联立①②得:。
此间也可以用动量守恒一次求出(从接触相对静止)。
(2)设弹簧长度被锁定后,贮存在弹簧中的势能为,由能量守恒得:撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,弹性势能全部转变成D的动能,设D的速度为,则有:以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长。
设此时的速度为,由动量守恒得:当弹簧伸到最长时,其弹性势能最大,设此势能为,由能量守恒得:紧紧抓住弹性势能的存储和释放,在头脑中建立起非常清晰的物理图景和过程,充分运用动量和动能两个守恒定律,从而解决问题。
弹簧类问题的研究一、命题趋向与考点轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,引起足够重视。
二、知识概要与方法㈠弹簧问题的处理办法1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k = —(21kx 22 —21kx 12),弹力的功等于弹性势能增量的负值。
弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
㈡弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f =kx 或△f =k △x 来求解。
3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
高中物理弹簧模型问题一、物理模型:轻弹簧是不计自身质量,能产生沿轴线的拉伸或压缩形变,故产生向内或向外的弹力。
二、模型力学特征:轻弹簧既可以发生拉伸形变,又可发生压缩形变,其弹力方向一定沿弹簧方向,弹簧两端弹力的大小相等,方向相反。
三、弹簧物理问题:1.弹簧平衡问题:抓住弹簧形变量、运动和力、促平衡、列方程。
2.弹簧模型应用牛顿第二定律的解题技巧问题:(1) 弹簧长度改变,弹力发生变化问题:要从牛顿第二定律入手先分析加速度,从而分析物体运动规律。
而物体的运动又导致弹力的变化,变化的规律又会影响新的运动,由此画出弹簧的几个特殊状态(原长、平衡位置、最大长度)尤其重要。
(2) 弹簧长度不变,弹力不变问题:当物体除受弹簧本身的弹力外,还受到其它外力时,当弹簧长度不发生变化时,弹簧的弹力是不变的,出就是形变量不变,抓住这一状态分析物体的另外问题。
(3) 弹簧中的临界问题:当弹簧的长度发生改变导致弹力发生变化的过程中,往往会出现临界问题:如“两物体分离”、“离开地面”、“恰好”、“刚好”……这类问题找出隐含条件是求解本类题型的关键。
3.弹簧双振子问题:它的构造是:一根弹簧两端各连接一个小球(物体),这样的装置称为“弹簧双振子”。
本模型它涉及到力和运动、动量和能量等问题。
本问题对过程分析尤为重要。
1.弹簧称水平放置、牵连物体弹簧示数确定【例1】物块1、2放在光滑水平面上用轻弹簧相连,如图1所示。
今对物块1、2分别施以相反的水平力F1、F2,且F1>F2,则:A .弹簧秤示数不可能为F1B .若撤去F1,则物体1的加速度一定减小C .若撤去F2,弹簧称的示数一定增大D .若撤去F2,弹簧称的示数一定减小即正确答案为A 、D【点评】对于轻弹簧处于加速状态时要运用整体和隔离分析,再用牛顿第二定律列方程推出表达式进行比较讨论得出答案。
若是平衡时弹簧产生的弹力和外力大小相等。
主要看能使弹簧发生形变的力就能分析出弹簧的弹力。
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F . 【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 . 【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-= 1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m得弹簧上的弹力为:,xx F x Tma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a = 【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0 说明:区别于不可伸长的轻质绳中张力瞬间可以突图 图 3-7-1 图 3-7-3变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( )A.0B.大小为23g ,方向竖直向下C.大小为23g ,方向垂直于木板向下 D. 大小为23g , 方向水平向右 【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos Nmg F θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos N F g a g m θ=== 【答案】 C. 四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移 弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,图图图图系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--= 解得:()sin A B AF m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程. 【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内). (1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少【解析】 由题意可知,弹簧开始的压缩量0mg x k=,物体B 刚要离开地面时弹簧的伸长量也是0mg x k=.(1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得:022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖图 3-7-8直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则:002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mg F =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg kF +=,解得: 032mg F =.]【答案】022gx 32mg说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
弹簧“串联”和“并联”问题解答方法略谈1.弹簧“串联”例1 已知弹簧A 的劲度系数为1k ,弹簧B 的劲度系数为2k ,如果把两弹簧相串使用,在弹簧末端挂一个重为G 的物体,求弹簧相串后的等效劲度系数。
解析 如图,两弹簧相串使用,当挂上重物,弹簧A 、 B 所受的拉力均为G 。
设弹簧A 的伸长量为1x ∆,弹簧B 的伸长量2x ∆,则有 mg x k =∆1111k mg x =∆(1) mg x k =∆2222k mg x =∆(2) 由上面两式得相串弹簧的伸长量为)11(2121k k mg x x x +=∆+∆=∆(3) 由(3)式得mg x k k k k =∆+2121,设k k k k k '=+2121,则mg x k =∆' 由胡克定律得,弹簧A 、B相串构成新弹簧的劲度系数为2121k k k k k +=',我们把弹簧相串使用叫弹簧“串联”。
习题:一根轻质弹簧下面挂一重物,弹簧伸长为1l ∆,若将该弹簧剪去43,在剩下的41部分下端仍然挂原重物,弹簧伸长了2l ∆,则1l ∆∶2l ∆为:A、3∶4 B、4∶3 C、4∶1 D、1∶4解析 设轻质弹簧原长为0l ,则该弹簧等效于4个原长为40l 的轻质弹簧的“串联”,设原轻质弹簧的劲度系数为0k ,则由前面的推导知,小弹簧的劲度系数04k k ='。
所以,在弹簧剪断前后挂同一重物,应有210l k l k ∆'=∆,把04k k ='代入上式得答案为C 。
易混淆题:如图2 所示,已知物块A 、B 的质量均为m ,两轻质弹簧劲度系数分别为1k 和2k ,已知两弹簧原长之和为0l ,不计两物体的厚度,求现在图中两弹 簧的总长度为_____。
错解 两弹簧是“串联”,由推导知,弹簧串后的劲度系数为2121k k k k k +=',设两弹簧压缩量为x ∆,由胡克定律得mg x k 2=∆',把k '代入得21)21(2k k k k mg x +=∆,所以两弹簧的长度为21210)(2k k k k mg l x l +-=∆-。
高中物理:与弹簧相连接的物理问题一、用胡克定律来分析弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即或。
显然,弹簧的长度发生变化的时候,必用胡克定律。
例1、劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。
解析:物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。
由匀变速直线运动公式及牛顿定律得:①②③解以上三式得:。
二、用弹簧的伸缩性质来分析弹簧能承受拉伸的力,也能承受压缩的力。
在分析有关弹簧问题时,要分析弹簧承受的是拉力还是压力。
例2、如图1所示,小圆环重固定的大环半径为R,轻弹簧原长为L(L<2R),其劲度系数为k,接触光滑,求小环静止时。
弹簧与竖直方向的夹角。
解析:以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。
若弹簧处于压缩状态,小球受到斜向下的弹力,则N的方向无论是指向大环的圆心还是背向大环的圆心,小环都不能平衡。
因此,弹簧对小环的弹力F一定斜向上,大环施加的弹力刀必须背向圆心,受力情况如图2所示。
根据几何知识,“同弧所对的圆心角是圆周角的二倍”,即弹簧拉力N的作用线在重力mg和大环弹力N的角分线上。
所以另外,根据胡可定律:解以上式得:即三、用弹簧隐含的临界条件来分析很多由弹簧设计的物理问题,在其运动的过程中隐含着临界状态等已知条件,只有充分利用这一隐含的条件才能解决问题。
例3、已知弹簧劲度系数为k,物块重为m,弹簧立在水平桌面上,下端固定,上端固定一轻质盘,物块放于盘中,如图3所示。
现给物块一向下的压力F,当物块静止时,撤去外力。
在运动过程中,物块正好不离开盘,求:(1)给物块所受的向下的压力F。
(2)在运动过程中盘对物块的最大作用力。
解析、(1)由于物块正好不离开盘,可知物块振动到最高点时,弹簧正好处在原长位置,所以有:由对称性,物块在最低点时的加速度也为a,因为盘的质量不计,由牛顿第二定律得:物块被压到最低点静止时有:由以上三式得:(2)在最低点时盘对物块的支持力最大,此时有:,解得。
高中物理弹性力问题详解弹性力是高中物理中一个重要的概念,涉及到弹簧、弹力系数等内容。
在解决弹性力问题时,我们需要理解弹性力的定义、计算方法以及应用,以便能够熟练地解决各种相关题目。
一、弹性力的定义和计算方法弹性力是指物体在受到形变时产生的恢复力。
根据胡克定律,弹性力与形变之间成正比。
胡克定律的数学表达式为F = -kx,其中F表示弹性力,k表示弹簧的弹力系数,x表示形变量。
举个例子来说明弹性力的计算方法。
假设有一根弹簧,其弹力系数为k = 10N/m,当受到一个形变量为x = 0.2 m的力时,求弹簧的弹性力。
根据胡克定律,弹性力可以通过F = -kx计算得出,代入k和x的值,可得F = -10 × 0.2 = -2 N。
由于弹性力是恢复力,所以其方向与形变方向相反,即弹性力的方向为向上。
二、应用举例:弹簧振子弹簧振子是弹性力的一个常见应用。
假设有一个质量为m的物体,通过一根弹簧与一个支架相连。
当物体受到外力作用而发生形变时,弹簧会产生弹性力,使物体回复到平衡位置。
我们可以通过弹性力的计算来解决弹簧振子的问题。
例如,给定一个弹簧振子,弹簧的弹力系数为k = 20 N/m,物体的质量为m = 0.5 kg。
当物体受到外力作用形变量为x = 0.1 m时,求物体在振动过程中的频率。
根据胡克定律,弹性力可以通过F = -kx计算得出,代入k和x的值,可得F = -20 × 0.1 = -2 N。
根据牛顿第二定律F = ma,可得-2 = 0.5a,解得a = -4 m/s²。
由于振动是一个周期性的过程,所以可以利用振动的基本公式f = 1/T来计算频率。
而周期T可以通过T = 2π√(m/k)计算得出,代入m和k的值,可得T = 2π√(0.5/20) ≈ 0.628 s。
将周期代入振动的基本公式,可得f = 1/0.628 ≈ 1.59 Hz。
因此,物体在振动过程中的频率为1.59 Hz。
弹簧问题轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。
无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。
一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。
(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。
(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。
(压缩——拉伸变化)参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。
抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。
合力恒等于零的特点求解。
注:如果a相同,先整体后隔离。
隔离法求内力,优先对受力少的物体进行隔离分析。
2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:水平型:明确有无推力,有无摩擦力。
物体是否系在弹簧上。
小结:弹簧作用下的变加速运动,速度增减不能只看弹力,而是看合外力。
(比较合外力方向和速度方向判断)加速度等于零常常是出现速度极值的临界点。
速度等于零往往加速度达到最大值。
4、临界极值问题题型1:求弹簧连接体物体的分离临界条件。
(竖直型、水平型)采用隔离法对分离瞬间进行分析, 分离瞬间(T=0,有相同的速度、加速度)在该处弹簧不一定处于原长,需要根据条件具体分析。
题型2:求弹簧连接体物体最大最小速度,加速度物体做变加速运动:加速度等于零,速度达到最大值;速度等于零,加速度达到最大值。
外力F 为变力,物体匀变速运动:结合受力和运动综合分析。
类型一:关于弹簧的伸长量和弹力的计算分析出弹簧处于原长的位置,判断在弹力作用下物体运动情况是解题的关键。
例1:如图,两个弹簧的质量不计,劲度系数分别为k 1、k 2,它们一端固定在质量为m 的物体上,另一端分别固定在Q 、P 上,当物体平衡时上面的弹簧处于原长状态。
若把固定的物体换为质量为2m 的物体(弹簧的长度不变,且弹簧均在弹性限度内),当物体再次平衡时,物体比第一次平衡时的位置下降了x ,则x 为 ( ) A.12mg k k + B.1212()k k mg k k + C.122mg k k + D.12122()k k mg k k +例2:如图所示,放在水平面上的斜面体B 始终静止,物块A 放在斜面体上,一轻质弹簧,两端分别与物块A 及固定在斜面体底端的挡板拴接,初始时A 、B 静止,弹簧处于压缩状态。
现用力F 沿斜面向上拉A ,但并未运动。
下列说法正确的是( )A. 弹簧对挡板的作用力减小B. A 、B 之间的摩擦力可能大小不变C. B 对地面的压力增加D. 水平面对B 的摩擦力不变类型二:关于弹簧瞬时性问题例3:(多选) 如图所示,将两相同的木块a 、b 置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳系于墙壁。
开始时a 、b 均静止,弹簧处于伸长状态,两细绳均有拉力,a 所受摩擦力F fa ≠0,b 所受摩擦力F fb =0。
现将右侧细绳剪断,则剪断瞬间( )A .F fa 大小不变B .F fa 方向改变C .F fb 仍然为零D .F fb 方向向右例4:如图所示,竖直放置在水平面上的轻质弹簧上放着质量为2 kg的物体A,处于静止状态。
若将一个质量为3 kg的物体B竖直向下轻放在A上的一瞬间,则B对A的压力大小为(g取10 m/s2)() A.30 N B.0C.15 N D.12 N例5:如图所示,A、B两滑环分别套在间距为1m的光滑细杆上,A和B的质量之比为1∶3,用一自然长度为1m的轻弹簧将两环相连,在A环上作用一沿杆方向的、大小为20N的拉力F,当两环都沿杆以相同的加速度a运动时,弹簧与杆夹角为53°。
(cos53°=0.6)求:(1)弹簧的劲度系数为多少?(2)若突然撤去拉力F,在撤去拉力F的瞬间,A的加速度为a/,a/ 与a之间比为多少?例6:如图所示,弹簧秤外壳质量为m 0,弹簧及挂钩的质量忽略不计,挂钩吊着一重物质量为m,现用一方向竖直向上的外力F拉着弹簧秤,使其向上做匀加速运动,则弹簧秤的读数为()A.mg;B. ;C.;D.类型三:动态过程分析例7:如图,水平面上一个物体向右运动,将弹簧压缩,随后又被弹回直到离开弹簧,则该物体从接触弹簧到离开弹簧的这个过程中,下列说法中正确的是()A.若接触面光滑,则物体加速度的大小是先减小后增大B.若接触面光滑,则物体加速度的大小是先增大后减小再增大C.若接触面粗糙,则物体加速度的大小是先减小后增大D.若接触面粗糙,则物体加速度的大小是先增大后减小再增大例8:如图所示,一个弹簧台秤的秤盘质量和弹簧质量都可以不计,盘内放一个物体P处于静止.P 的质量为12 kg,弹簧的劲度系数k=800 N/m.现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速运动.已知在前0.2 s内F是变化的,在0.2 s以后F是恒力,g=10 m/s2,则求:(1)未施加力F时,弹簧的压缩量.(2)物体做匀加速直线运动的加速度大小.(3)F的最小值是多少,最大值是多少?例9:如图所示,质量相同的木块A、B用轻弹簧连接置于光滑的水平面上,开始时两木块静止且弹簧处于原长状态.现用水平恒力F推木块A,在从开始到弹簧第一次被压缩到最短的过程中,则()A.两木块速度相同时,加速度a A<a BB.两木块加速度相同时,速度v A>v BC.A的加速度先减小后增大D.B 的加速度一直在增大类型四:临界极值问题例10:A、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B质量分别为m A和m B,弹簧的劲度系数k,若在木块B上作用一个竖直向上的力,使AB由静止开始以加速度a一起竖直向上做匀加速运动,运动一段时间后AB分离。
求A、B分离时B物体速度大小。
例11:如图所示,一轻质弹簧两端分别与竖直墙壁和物块连接,弹簧、地面水平。
A、B是物块能保持静止的位置中离墙壁最近和最远的点,A、B两点离墙壁的距离分别是x1、x2.物块与地面的最大静摩擦力为f. 则弹簧的劲度系数为()A.B.C. D.例12:如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为m A、m B,弹簧的劲度系数为k,C为一固定挡板,系统处于静止状态.现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d.重力加速度为g.【答案】(1)()sinA BAF m m gamθ-+=()sinA Bm m gdkθ+=课后作业1. 如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0 kg的物体。
细绳的一端与物体相连,另一端经摩擦不计的定滑轮与固定的弹簧秤相连。
物体静止在斜面上,弹簧秤的示数为4.9 N。
关于物体受力的判断(取g=9.8 m/s2),下列说法正确的是()A.斜面对物体的摩擦力大小为零B.斜面对物体的摩擦力大小为4.9 N,方向沿斜面向上C.斜面对物体的支持力大小为4.9 3 N,方向竖直向上D.斜面对物体的支持力大小为4.9 N,方向垂直斜面向上2. 如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为( )A.3∶4 B.4∶ 3C.1∶2 D.2∶13.(多选)如图所示,重力为G的质点M与三根相同的轻质弹簧相连,静止时,相邻两弹簧间的夹角均为120。
,已知弹簧A、B对质点的作用力均为2G,则弹簧C对质点的作用力大小可能为()A. 2GB. GC. 0D. 3G4. 如图,水平面上一个物体向右运动,将弹簧压缩,随后又被弹回直到离开弹簧,则该物体从接触弹簧到离开弹簧的这个过程中,下列说法中正确的是()A.若接触面光滑,则物体加速度的大小是先减小后增大B.若接触面光滑,则物体加速度的大小是先增大后减小再增大C.若接触面粗糙,则物体加速度的大小是先减小后增大D.若接触面粗糙,则物体加速度的大小是先增大后减小再增大5. 一弹簧秤秤盘的质量M=1.5 kg,秤盘内放一个质量m=10.5 kg的物体P,弹簧质量忽略不计,弹簧的劲度系数k=800 N/m,系统原来处于静止状态,如图所示.现给P施加一竖直向上的拉力F,使P由静止开始向上做匀加速直线运动.已知在前0.2 s时间内F是变力,在0.2 s以后是恒力.求力F的最小值和最大值.(g取10 m/s2)。