高三数学一轮、二轮复习配套讲义:第2篇 第10讲 变化率与导数、导数的计算
- 格式:doc
- 大小:766.00 KB
- 文档页数:15
第十节变化率与导数、导数的计算[考纲传真] 1.了解导数概念的实际背景.2.理解导数的几何意义.3.能根据导数定义求函数y=C(C为常数),y=x,y=x2,y=x3,y=1 x,y=x的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数(仅限于形如f(ax+b)的复合函数)的导数.1.有关导数的基本概念(1)函数y=f(x)在x=x0处的导数称函数y=f(x)在x0点的瞬时变化率为函数y=f(x)在点x0处的导数,用f′(x0)表示,记作f′(x0)=limΔx→0f(x0+Δx)-f(x0)Δx.(2)导数的几何意义函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0)处的切线的斜率.相应地,切线方程为y-f(x0)=f′(x0)(x-x0).(3)函数f(x)的导函数如果一个函数f(x)在区间(a,b)上的每一点x处都有导数,导数值记为f′(x):f′(x)=limΔx→0f(x0+Δx)-f(x0)Δx,则f′(x)是关于x的函数,称f′(x)为f(x)的导函数,通常也简称为导数.2.导数公式表(其中三角函数的自变量单位是弧度)函数导函数函数导函数y=c(c是常数)y′=0y=sin x y′=cos_xy=xα(α是实数)y′=αxα-1y=cos x y′=-sin_xy=a x (a>0,a≠1)y′=a x ln_a特别地(e x)′=e xy=tan x y′=1cos2xy =log ax (a >0,a ≠1) y ′=1x ln a 特别地(ln x )′=1xy =cot xy ′=-1sin 2x(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )g 2(x )(g (x )≠0);(4)复合函数y =f (φ(x ))的导数为y ′x =[f (φ(x ))]′=f ′(u )·φ′(x ),其中y =f (u ),u =φ(x ).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同. ( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0). ( ) (3)曲线的切线与曲线不一定只有一个公共点. ( ) (4)若f (x )=e 2x ,则f ′(x )=e 2x .( )[答案] (1)× (2)× (3)√ (4)×2.(教材改编)有一机器人的运动方程为s (t )=t 2+3t (t 是时间,s 是位移),则该机器人在时刻t =2时的瞬时速度为( )A.194B.174C.154D.134D [由题意知,机器人的速度方程为v (t )=s ′(t )=2t -3t 2,故当t =2时,机器人的瞬时速度为v (2)=2×2-322=134.]3.(·天津高考)已知函数f (x )=(2x +1)e x ,f ′(x )为f (x )的导函数,则f ′(0)的值为________.3 [因为f (x )=(2x +1)e x ,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x , 所以f ′(0)=3e 0=3.]4.(·豫北名校期末联考)曲线f (x )=-5e x +3在点(0,-2)处的切线方程为________.【导学号:5796】5x +y +2=0 [∵f ′(x )=-5e x ,∴所求曲线的切线斜率k =f ′(0)=-5e 0=-5,∴切线方程为y -(-2)=-5(x -0),即5x +y +2=0.]5.(·全国卷Ⅰ)已知函数f (x )=ax 3+x +1的图像在点(1,f (1))处的切线过点(2,7),则a =________.1 [∵f ′(x )=3ax 2+1, ∴f ′(1)=3a +1. 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1).∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1.]导数的计算(1)y =e x ln x ; (2)y =x ⎝ ⎛⎭⎪⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2; (4)y =ln(2x -9).[解] (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ·1x =e x ⎝ ⎛⎭⎪⎫ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x . (4)令u =2x -9,y =ln u , 则y ′x =y ′u ·u ′x .因此y ′=12x -9·(2x -9)′=22x -9. [规律方法] 1.熟记基本初等函数的导数公式及运算法则是导数计算的前提,求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量提高运算速度,减少差错.2.如函数为根式形式,可先化为分数指数幂,再求导.3.复合函数求导,应先确定复合关系,由外向内逐层求导,必要时可换元处理.[变式训练1] (1)f (x )=x (2 017+ln x ),若f ′(x 0)=2 018,则x 0等于( )【导学号:5796】A .e 2B .1C .ln 2D .e(2)(·天津高考)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.(1)B (2)3 [(1)f ′(x )=2 017+ln x +x ×1x =2 018+ln x ,故由f ′(x 0)=2 018,得2 018+ln x 0=2 018,则ln x 0=0,解得x 0=1.(2)f ′(x )=a ⎝ ⎛⎭⎪⎫ln x +x ·1x =a (1+ln x ). 由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.]导数的几何意义已知曲线f (x )=13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.[解] (1)根据已知得点P (2,4)是切点且f ′(x )=x 2, ∴在点P (2,4)处的切线的斜率为f ′(2)=4,3分∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.5分 (2)设曲线f (x )=13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎪⎫x 0,13x 30+43, 则切线的斜率为f ′(x 0)=x 20,∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43. 7分∵点P (2,4)在切线上,∴4=2x 20-23x 30+43, 即x 30-3x 20+4=0, 9分∴x 30+x 20-4x 20+4=0,∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为x -y +2=0或4x -y -4=0. 12分☞角度2 求切点坐标若曲线y =x ln x 上点P 处的切线平行于直线2x -y +1=0,则点P的坐标是________.【导学号:57962100】(e ,e) [由题意得y ′=ln x +x ·1x =1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e ,所以n =eln e =e ,即点P 的坐标为(e ,e).]☞角度3 求参数的值(1)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( )A .1B .2C .-1D .-2(2)(·西宁复习检测(一))已知曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a =( )A .-2B .2C .-12 D.12(1)B (2)A [(1)设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=1+x 0,y 0=ln(x 0+a ).又y ′=1x +a ,所以y ′|x =x 0=1x 0+a=1,即x 0+a =1. 又y 0=ln(x 0+a ),所以y 0=0,则x 0=-1,所以a =2.(2)由y′=-2(x-1)2得曲线在点(3,2)处的切线斜率为-12,又切线与直线ax+y+1=0垂直,则a=-2,故选A.][规律方法] 1.导数f′(x0)的几何意义就是函数y=f(x)在点P(x0,y0)处的切线的斜率,切点既在曲线上,又在切线上,切线有可能和曲线还有其他的公共点.2.曲线在点P处的切线是以点P为切点,曲线过点P的切线则点P不一定是切点,此时应先设出切点坐标.易错警示:当曲线y=f(x)在点(x0,f(x0))处的切线垂直于x轴时,函数在该点处的导数不存在,切线方程是x=x0.[思想与方法]1.f′(x0)是函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,而函数值f(x0)是一个常数,其导数一定为0,即(f(x0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,必须注意变换的等价性.[易错与防范]1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.复合函数的导数要正确分解函数的结构,由外向内逐层求导.2.曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,而后者P(x0,y0)不一定为切点.3.曲线的切线与二次曲线的切线的区别:曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.。
第十讲 函数模型及其应用知识梳理·双基自测ZHI SHI SHU LI SHUANG JI ZI CE 知识梳理知识点 函数模型及其应用 1.几类常见的函数模型函数模型 函数解析式一次函数模型f(x)=ax +b(a ,b 为常数,a≠0)反比例函数模型 f(x)=kx +b(k ,b 为常数且k≠0)二次函数模型 f(x)=ax 2+bx +c(a ,b ,c 为常数,a≠0)指数函数模型 f(x)=ba x+c(a ,b ,c 为常数,b≠0,a >0且a≠1) 对数函数模型 f(x)=blog a x +c(a ,b ,c 为常数,b≠0,a >0且a≠1) 幂函数模型f(x)=ax n +b(a ,b 为常数,a≠0)2.三种函数模型的性质函数性质y =a x(a>1)y =log a x(a>1) y =x n(n>0)在(0,+∞) 上的增减性 单调递增 单调递增 单调递增 增长速度 越来越快越来越慢相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x>x 0时,有log a x<x n<a x3.解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的数学模型;(3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题. 以上过程用框图表示如下:重要结论1.函数f(x)=x a +bx (a>0,b>0,x>0)在区间(0,ab]内单调递减,在区间[ab ,+∞)内单调递增.2.直线上升、对数缓慢、指数爆炸双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =2x的函数值比y =x 2的函数值大.( × )(2)“指数爆炸”是指数型函数y =a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.( × ) (3)幂函数增长比直线增长更快.( × ) (4)不存在x 0,使ax 0<x a0<log a x 0.( × ) [解析] (1)当x =-1时,2-1<(-1)2.(2)“指数爆炸”是针对b>1,a>0的指数型函数g(x)=a ·b x+c.(3)幂函数增长速度是逐渐加快的,当变量较小时,其增长很缓慢,题目说的太绝对,也没有任何条件限制.(4)当a∈(0,1)时存在x 0,使ax 0<x a0<log a x 0. 题组二 走进教材2.(必修1P 107BT1改编)某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( D )A .收入最高值与收入最低值的比是3∶1B .结余最高的月份是7月C .1至2月份的收入的变化率与4至5月份的收入的变化率相同D .前6个月的平均收入为40万元3.(必修1P 107A 组T1改编)在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表:x 0.50 0.99 2.01 3.98 y-0.990.010.982.00则对x ,y 最适合的拟合函数是( D ) A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x[解析] 根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B 、C ;将各数据代入函数y =log 2x ,可知满足题意,故选D .4.(必修1P 104例5改编)某种动物繁殖量y 只与时间x 年的关系为y =alog 3(x +1),设这种动物第2年有100只,到第8年它们将发展到( A )A .200只B .300只C .400只D .500只[解析] ∵繁殖数量y 只与时间x 年的关系为y =alog 3(x +1),这种动物第2年有100只, ∴100=alog 3(2+1),∴a=100,∴y=100log 3(x +1), ∴当x =8时,y =100log 3(8+1)=100×2=200.故选A .5.(必修1P 107AT2改编)生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C(x)=12x 2+2x +20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为18万件.[解析] 利润L(x)=20x -C(x)=-12(x -18)2+142,当x =18时,L(x)有最大值. 题组三 走向高考6.(2020·全国Ⅲ,4)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:I(t)=K1+e -0.23(t -53),其中K 为最大确诊病例数.当I(t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( C )A .60B .63C .66D .69[解析] 本题以Logistic 模型和新冠肺炎为背景考查指数、对数的运算.由题意可得I(t *)=K 1+e -0.23(t *-53)=0.95K ,化简得e -0.23(t *-53)=119,即0.23(t *-53)=ln 19,所以t *=ln 190.23+53≈30.23+53≈66.故选C .考点突破·互动探究KAO DIAN TU PO HU DONG TAN JIU 考点 函数模型及应用考向1 利用函数图象刻画实际问题的变化过程——自主练透例1 (1)(2017·全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( A )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳(2)(多选题)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15 ℃,B点表示四月的平均最低气温约为5 ℃.下面叙述正确的是( ABC )A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个(3)有一个盛水的容器,由悬在它的上空的一条水管均匀地注水,最后把容器注满,在注水过程中时间t与水面高度y之间的关系如图所示.若图中PQ为一线段,则与之对应的容器的形状是( B )[解析] (1)通过题图可知A 不正确,并不是逐月增加,但是每一年是递增的,所以B 正确.从图观察C 是正确的,D 也正确,1月至6月比较平稳,7月至12月波动比较大.故选A .(2)由图形可得各月的平均最低气温都在0 ℃以上,A 正确;七月的平均温差约为10 ℃,而一月的平均温差约为5 ℃,故B 正确;三月和十一月的平均最高气温都在10 ℃左右,基本相同,C 正确;平均最高气温高于20 ℃的月份只有2个,D 错误.故选A 、B 、C .(3)由函数图象可判断出该容器必定有不同规则的形状,且函数图象的变化先慢后快,所以容器下边粗,上边细.再由PQ 为线段,知这一段是均匀变化的,所以容器上端必是直的一段,故排除A 、C 、D ,选B .名师点拨 MING SHI DIAN BO 1.用函数图象刻画实际问题的解题思路将实际问题中两个变量间变化的规律(如增长的快慢、最大、最小等)与函数的性质(如单调性、最值等)、图象(增加、减少的缓急等)相吻合即可.2.判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象. (2)验证法:当根据题意不易建立函数模型时,则根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.考向2 已知函数模型解决实际问题——师生共研例2 (2020·北京十一中月考)已知14C 的半衰期为5 730年(是指经过5 730年后,14C 的残余量占原始量的一半).设14C 的原始量为a ,经过x 年后的残余量为b ,残余量b 与原始量a 的关系为b =ae-kx,其中x 表示经过的时间,k 为一个常数.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.请你推断一下马王堆汉墓修建距今约2_292年.(参考数据:log 20.767≈-0.4).[解析] 由题意可知,当x =5 730时,ae -5 730k=12a ,解得k =ln 25 730.现测得湖南长沙马王堆汉墓女尸出土时14C 的残余量约占原始量的76.7%.所以76.7%=e -ln 25 730x ,得ln 0.767=-ln 25 730x ,x =-5 730×ln 0.767ln 2=-5 730×log 2 0.767≈2 292.〔变式训练1〕(2020·山西太原模拟)某公司为了业务发展,制定了一项激励销售人员的奖励方案:销售额为8万元时,奖励1万元;销售额为64万元时,奖励4万元,若公司拟定的奖励模型为y =alog 4x +b(其中x 为销售额,y 为相应的奖金).某业务员要得到8万元奖励,则他的销售额应为1_024万元.[解析] 依题意得⎩⎪⎨⎪⎧alog 48+b =1,alog 464+b =4,即⎩⎪⎨⎪⎧32a +b =1,3a +b =4,解得⎩⎪⎨⎪⎧a =2,b =-2.所以y =2log 4x -2,当y =8时,有2log 4x -2=8,解得x =1 024. 考向3 构建函数模型解决实际问题——多维探究 角度1 一次函数、二次函数分段函数模型例3 某校学生研究学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散,设f(t)表示学生注意力指标.该小组发现f(t)随时间t(分钟)的变化规律(f(t)越大,表明学生的注意力越集中)如下: f(t)=⎩⎪⎨⎪⎧100a t10-60(0≤t≤10),340(10<t≤20),-15t +640(20<t≤40)(a>0且a≠1).若上课后第5分钟时的注意力指标为140,回答下列问题: (1)求a 的值;(2)上课后第5分钟和下课前第5分钟比较,哪个时间注意力更集中?并请说明理由; (3)在一节课中,学生的注意力指标至少达到140的时间能保持多长? [解析] (1)由题意得,当t =5时,f(t) =140, 即100·a 510-60=140,解得a =4.(2)因为f(5)=140,f(35)=-15×35+640=115,所以f(5)>f(35),故上课后第5分钟时比下课前第5分钟时注意力更集中.(3)①当0<t≤10时,由(1)知,f(t)=100·4t10-60≥140,解得5≤t≤10; ②当10<t≤20时,f(t) =340>140恒成立;③当20<t≤40时,f(t)=-15t +640≥140,解得20<t≤1003.综上所述,5≤t≤1003.故学生的注意力指标至少达到140的时间能保持1003-5=853分钟.名师点拨 MING SHI DIAN BO (1)分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.(2)构造分段函数时,要力求准确、简洁,做到分段合理,不重不漏. (3)分段函数的最大(小)值是各段最大(小)值中的最大(小)值. 角度2 指数函数与对数函数模型例4 候鸟每年都要随季节的变化进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q 之间的关系为:v =a +blog 3Q10(其中a ,b 是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1 m/s.(1)求出a ,b 的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要多少个单位? [分析](1)根据已知列出方程组→解方程组求a ,b 的值 (2)由(1)列出不等式→解不等式求Q 的最小值[解析] (1)由题意可知,当这种鸟类静止时,它的速度为0 m/s ,此时耗氧量为30个单位,则a +blog 33010=0,即a +b =0;当耗氧量为90个单位时,速度为1 m/s , 则a +blog 39010=1,整理得a +2b =1.解方程组⎩⎪⎨⎪⎧a +b =0,a +2b =1,得⎩⎪⎨⎪⎧a =-1,b =1. (2)由(1)知,v =a +blog 3Q 10=-1+log 3Q10.所以要使飞行速度不低于2 m/s ,则v ≥2,所以-1+log 3Q 10≥2,即log 3Q 10≥3,解得Q10≥27,即Q ≥270.所以若这种鸟类为赶路程,飞行的速度不能低于2 m/s ,则其耗氧量至少要270个单位.名师点拨 MING SHI DIAN BO指数函数与对数函数模型的应用技巧(1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型.(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题.〔变式训练2〕(1)(角度1)某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R 元),若每年销售量为⎝⎛⎭⎪⎫30-52R 万件,要使附加税不少于128万元,则R 的取值范围是( A )A .[4,8]B .[6.10]C .[4%,8%]D .[6%,10%](2)(角度2)一个容器装有细沙a cm 3,细沙从容器底部一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =ae-bt(cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过16min ,容器中的沙子只有开始时的八分之一.[解析] (1)根据题意,要使附加税不少于128万元,需⎝ ⎛⎭⎪⎫30-52R ×160×R%≥128,整理得R 2-12R +32≤0,解得4≤R≤8,即R∈[4,8]. (2)当t =0时,y =a ,当t =8时,y =ae -8b=12a ,∴e -8b =12.令y =18a ,即ae -bt =18a ,e -bt =18=(e -8b )3=e-24b,则t =24,∴再经过16 min ,容器中的沙子只有开始时的八分之一.名师讲坛·素养提升MING SHI JIANG TAN SU YANG TI SHENG函数y =x +ax(a>0)模型及应用例5 (2021·烟台模拟)小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为3万元,每生产x 万件,需另投入流动成本为W(x)万元.在年产量不足8万件时,W(x)=13x 2+x(万元);在年产量不小于8万件时,W(x)=6x +100x -38(万元).每件产品售价为5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少? [解析] (1)因为每件产品售价为5元,则x 万件产品的销售收入为5x 万元,依题意得: 当0<x<8时,L(x)=5x -⎝ ⎛⎭⎪⎫13x 2+x -3=-13x 2+4x -3.当x≥8时,L(x)=5x -⎝ ⎛⎭⎪⎫6x +100x -38-3=35-⎝ ⎛⎭⎪⎫x +100x .所以L(x)=⎩⎪⎨⎪⎧-13x 2+4x -3,0<x<8,35-⎝ ⎛⎭⎪⎫x +100x ,x≥8.(2)当0<x<8时,L(x)=-13(x -6)2+9,此时,当x =6时,L(x)取得最大值L(6)=9(万元).当x≥8时,L(x)=35-⎝⎛⎭⎪⎫x +100x ≤35-2x ·100x=35-20=15(万元).此时,当且仅当x =100x,即x =10时,L(x)取得最大值15万元.因为9<15,所以当年产量为10万件时,小王在这一商品的生产中所获利润最大,最大利润为15万元. 名师点拨 MING SHI DIAN BO (1)解决此类问题时一定要关注函数的定义域.(2)利用模型f(x)=ax +bx 求解最值时,注意取得最值时等号成立的条件.〔变式训练3〕某村计划建造一个室内面积为800 m 2的矩形蔬菜温室、在矩形温室内,沿左、右两侧与后侧内墙各保留1 m 宽的通道,沿前侧内墙保留3 m 宽的空地.当矩形温室的边长各为40_m ,20_m 时,蔬菜的种植面积最大?最大面积是648_m 2.[解析] 设矩形温室的左侧边长为x m ,则后侧边长为800x m ,所以蔬菜种植面积y =(x -4)·⎝ ⎛⎭⎪⎫800x -2=808-2⎝⎛⎭⎪⎫x +1 600x (4<x<400). 因为x +1 600x≥2x ·1 600x=80,所以y≤808-2×80=648.当且仅当x =1 600x ,即x =40时取等号,此时800x=20,y max =648.即当矩形温室的相邻边长分别为40 m ,20 m 时,蔬菜的种植面积最大,最大面积是648 m 2.。
第10讲变化率与导数、导数的计算[最新考纲]1.了解导数概念的实际背景;2.通过函数图象直观理解导数的几何意义;3.能根据导数的定义求函数y=c(c为常数),y=x,y=1x,y=x2,y=x3,y=x的导数;4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单复合函数[仅限于形如y=f(ax+b)的复合函数]的导数.知识梳理1.导数的概念(1)函数y=f(x)在x=x0处的导数①定义:称函数y=f(x)在x=x0处的瞬时变化率ΔyΔx=f(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或.②几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-f(x0)=f′(x0)(x-x0).(2)称函数f′(x)=f(x+Δx)-f(x)Δx为f(x)的导函数.2.基本初等函数的导数公式3.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ). (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).4.复合函数的导数设u =v (x )在点x 处可导,y =f (u )在点u 处可导,则复合函数f [v (x )]在点x 处可导,且f ′(x )=f ′(u )·v ′(x ).辨 析 感 悟1.对导数概念的理解(1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.(×) (2)f ′(x 0)与[f (x 0)]′表示的意义相同.(×) (3)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.(√) 2.导数的几何意义与物理意义(4)曲线的切线不一定与曲线只有一个公共点.(√)(5)物体的运动方程是s =-4t 2+16t ,在某一时刻的速度为0,则相应时刻t =0.(×) (6)(·广东卷改编)曲线y =x 3-x +3在点(1,3)处的切线方程为2x -y +1=0.(√) 3.导数的计算(7)若f (x )=a 3+2ax -x 2,则f ′(x )=3a 2+2x .(×)(8)(教材习题改编)函数y =x cos x -sin x 的导函数是y ′=-x sin x .(√) (9)[f (ax +b )]′=f ′(ax +b ).(×) [感悟·提升]1.“过某点”与“在某点”的区别曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,如(6)中点(1,3)为切点,而后者P (x 0,y 0)不一定为切点. 2.导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点,如(4).三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积,如(9).考点一 导数的计算【例1】 分别求下列函数的导数: (1)y =e x ·cos x ; (2)y =x -sin x 2cos x 2; (3)y =ln (2x +1)x.解 (1)y ′=(e x )′cos x +e x (cos x )′=e x cos x -e x sin x . (2)∵y =x -sin x 2cos x 2=x -12sin x , ∴y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=1-12cos x .(3)y ′=⎣⎢⎡⎦⎥⎤ln (2x +1)x ′=[ln (2x +1)]′x -x ′ln (2x +1)x 2=(2x +1)′2x +1·x -ln (2x +1)x 2=2x2x +1-ln (2x +1)x 2=2x -(2x +1)ln (2x +1)(2x +1)x 2.规律方法 (1)本题在解答过程中常见的错误有:①商的求导中,符号判定错误;②不能正确运用求导公式和求导法则,在第(3)小题中,忘记对内层函数2x +1进行求导.(2)求函数的导数应注意:①求导之前利用代数或三角变换先进行化简,减少运算量; ②根式形式,先化为分数指数幂,再求导.③复合函数求导先确定复合关系,由外向内逐层求导,必要时可换元处理.【训练1】 (1)(·江西卷改编)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________.(2)若f (x )=3-x+e 2x ,则f ′(x )=________. 解析 (1)令e x =t ,则x =ln t , ∴f (t )=ln t +t ,即f (x )=ln x +x .因此f ′(x )=(ln x +x )′=1x +1,于是f ′(1)=1+1=2.考点二 导数的几何意义【例2】 (1)(·广东卷)若曲线y =kx +ln x 在点(1,k )处的切线平行于x 轴,则k =________.(2)设f (x )=x ln x +1,若f ′(x 0)=2,则f (x )在点(x 0,y 0)处的切线方程为____________________.解析 (1)函数y =kx +ln x 的导函数y ′=k +1x , 由导数y ′|x =1=0,得k +1=0,则k =-1. (2)因为f (x )=x ln x +1, 所以f ′(x )=ln x +x ·1x =ln x +1. 因为f ′(x 0)=2,所以ln x 0+1=2, 解得x 0=e ,所以y 0=e +1.由点斜式得,f (x )在点(e ,e +1)处的切线方程为y -(e +1)=2(x -e),即2x -y -e +1=0.答案 (1)-1 (2)2x -y -e +1=0规律方法 (1)导数f ′(x 0)的几何意义就是函数y =f (x )在点P (x 0,y 0)处的切线的斜率.第(1)题要能从“切线平行于x 轴”提炼出切线的斜率为0,进而构建方程,这是求解的关键,考查了分析问题和解决问题的能力.(2)在求切线方程时,应先判断已知点Q (a ,b )是否为切点,若已知点Q (a ,b )不是切点,则应求出切点的坐标,利用切点坐标求出切线斜率,进而用切点坐标表示出切线方程.【训练2】 (1)(·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为____________________.(2)若函数f (x )=e x cos x ,则此函数图象在点(1,f (1))处的切线的倾斜角为( ). A .0 B .锐角 C .直角 D .钝角解析 (1)∵y =x (3ln x +1),∴y ′=3ln x +1+x ·3x =3ln x +4,∴k =y ′|x =1=4,∴所求切线的方程为y -1=4(x -1),即4x -y -3=0. (2)f ′(x )=e x cos x -e x sin x =e x (cos x -sin x ), ∴f ′(1)=e(cos 1-sin 1).∵π2>1>π4.而由正余弦函数性质可得cos 1<sin 1. ∴f ′(1)<0,即f (x )在(1,f (1))处的切线的斜率k <0, ∴切线的倾斜角是钝角. 答案 (1)4x -y -3=0 (2)D考点三 导数运算与导数几何意义的应用【例3】 (·北京卷)设l 为曲线C :y =ln xx 在点(1,0)处的切线. (1)求l 的方程;(2)试证明:除切点(1,0)之外,曲线C 在直线l 的下方. 审题路线 (1)求f ′(1)――→导数几何意义点斜式求直线l 的方程(2)构建g (x )=x -1-f (x )――→转化g (x )>0对x >0且x ≠1恒成立――→运用导数研究函数y =g (x )的性质―→获得结论解 (1)设f (x )=ln xx ,则f ′(x )=1-ln x x 2.∴f ′(1)=1-ln 11=1,即切线l 的斜率k =1.由l 过点(1,0),得l 的方程为y =x -1.(2)令g (x )=x -1-f (x ),则除切点之外,曲线C 在直线l 的下方等价于g (x )>0(∀x >0,x ≠1).g (x )满足g (1)=0,且g ′(x )=1-f ′(x )=x 2-1+ln xx 2.当0<x <1时,x 2-1<0,ln x <0, ∴g ′(x )<0,故g (x )在(0,1)上单调递减;当x >1时,x 2-1>0,ln x >0,g ′(x )>0,g (x )单调递增. 所以,g (x )>g (1)=0(∀x >0,x ≠1). 所以除切点之外,曲线C 在直线l 的下方.规律方法 (1)准确求切线l 的方程是本题求解的关键;第(2)题将曲线与切线l 的位置关系转化为函数g (x )=x -1-f (x )在区间(0,+∞)上大于0恒成立的问题,进而运用导数研究,体现了函数思想与转化思想的应用.(2)当曲线y =f (x )在点P (x 0,f (x 0))处的切线平行于y 轴(此时导数不存在)时,切线方程为x =x 0;当切点坐标不知道时,应首先设出切点坐标,再求解.【训练3】 (·济南质检)设函数f (x )=a e x +1a e x +b (0<a <1). (1)求f (x )在[0,+∞)内的最小值;(2)设曲线y =f (x )在点(2,f (2))处的切线方程为y =32x ,求a 和b 的值. 解 (1)f ′(x )=a e x-1a e x =(a e x-1)(a e x+1)a e x .令f ′(x )=0,得x =ln 1a >0. 当0≤x <ln 1a 时,f ′(x )<0; 当x >ln 1a ,f ′(x )>0.∴f (x )在⎣⎢⎡⎦⎥⎤0,ln 1a 上递减,在⎣⎢⎡⎭⎪⎫ln 1a ,+∞上递增.从而f (x )在[0,+∞)上的最小值f ⎝ ⎛⎭⎪⎫ln 1a =2+b .(2)∵y =f (x )在点(2,f (2))处的切线为y =32x , ∴f (2)=3,且f ′(2)=32, ∴⎩⎪⎨⎪⎧a e 2+1a e 2+b =3a e 2-1a e 2=32①②解之得b =12且a =2e 2.1.理解导数的概念时,要注意f ′(x 0),(f (x 0))′与f ′(x )的区别:f ′(x )是函数y =f (x )的导函数,f ′(x 0)是f (x )在x =x 0处的导数值,是常量但不一定为0,(f (x 0))′是常数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.求曲线的切线时,要分清在点P 处的切线与过点P 的切线的区别.易错辨析3——求曲线切线方程考虑不周【典例】 (·杭州质检)若存在过点O (0,0)的直线l 与曲线f (x )=x 3-3x 2+2x 和y =x 2+a 都相切,则a 的值是( ). A .1 B.164C .1或164D .1或-164[错解] ∵点O (0,0)在曲线f (x )=x 3-3x 2+2x 上, ∴直线l 与曲线y =f (x )相切于点O . 则k =f ′(0)=2,直线l 的方程为y =2x . 又直线l 与曲线y =x 2+a 相切,∴x 2+a -2x =0满足Δ=4-4a =0,a =1,选A. [答案] A[错因] (1)片面理解“过点O (0,0)的直线与曲线f (x )=x 3-3x 2+2x 相切”.这里有两种可能:一是点O 是切点;二是点O 不是切点,但曲线经过点O ,解析中忽视后面情况.(2)本题还易出现以下错误:一是当点O (0,0)不是切点,无法与导数的几何意义沟通起来;二是盲目设直线l 的方程,导致解题复杂化,求解受阻. [正解] 易知点O (0,0)在曲线f (x )=x 3-3x 2+2x 上, (1)当O (0,0)是切点时,同上面解法.(2)当O (0,0)不是切点时,设切点为P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =f ′(x 0)=3x 20-6x 0+2.又k =y 0x 0=x 20-3x 0+2,由①,②联立,得x 0=32(x 0=0舍),所以k =-14, ∴所求切线l 的方程为y =-14x . 由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0.依题意,Δ=116-4a =0,∴a =164.综上,a =1或a =164. [答案] C[防范措施] (1)求曲线的切线方程应首先确定已知点是否为切点是求解的关键,分清过点P 的切线与在点P 处的切线的差异.(2)熟练掌握基本初等函数的导数,导数的运算法则,正确进行求导运算. 【自主体验】函数y =ln x (x >0)的图象与直线y =12x +a 相切,则a 等于( ).A .2ln 2B .ln 2+1C .ln 2D .ln 2-1解析设切点为(x0,y0),且y′=1x,∴=1x0=12,则x0=2,y0=ln 2.又点(2,ln 2)在直线y=12x+a上,∴ln 2=12×2+a,∴a=ln 2-1.答案 D对应学生用书P247基础巩固题组(建议用时:40分钟)一、选择题1.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)等于().A.-1 B.-2 C.2 D.0解析f′(x)=4ax3+2bx,∵f′(x)为奇函数且f′(1)=2,∴f′(-1)=-2.答案 B2.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=().A.2 B.6C.-2 D.4解析如图可知,f(5)=3,f′(5)=-1,因此f(5)+f′(5)=2.答案 A3.(·济南质检)设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a=( ). A .2 B .-2 C .-12 D.12 解析 ∵y ′=x -1-(x +1)(x -1)2=-2(x -1)2,∴y ′|x =3=-2(3-1)2=-12,∴-a =2,即a =-2. 答案 B4.已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点横坐标为( ). A .-2 B .3 C .2或-3 D .2解析 设切点坐标为(x 0,y 0),∵y ′=12x -3x ,∴=12x 0-3x 0=-12,即x 20+x 0-6=0,解得x 0=2或-3(舍). 答案 D5.(·湛江调研)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为( ). A.13 B.12 C.23 D .1解析 y ′|x =0=(-2e -2x )|x =0=-2,故曲线y =e -2x +1在点(0,2)处的切线方程为y =-2x +2,易得切线与直线y =0和y =x 的交点分别为(1,0),⎝ ⎛⎭⎪⎫23,23,故围成的三角形的面积为12×1×23=13. 答案 A 二、填空题6.已知函数f (x )=f ′⎝ ⎛⎭⎪⎫π4cos x +sin x ,则f ⎝ ⎛⎭⎪⎫π4的值为________.解析 ∵f ′(x )=-f ′⎝ ⎛⎭⎪⎫π4sin x +cos x ,∴f ′⎝ ⎛⎭⎪⎫π4=-f ′⎝ ⎛⎭⎪⎫π4sin π4+cos π4,∴f ′⎝ ⎛⎭⎪⎫π4=2-1,∴f ⎝ ⎛⎭⎪⎫π4=(2-1)cos π4+sin π4=1. 答案 17.(·南通一调)曲线f (x )=f ′(1)e e x -f (0)x +12x 2在点(1,f (1))处的切线方程为________.解析 f ′(x )=f ′(1)e e x -f (0)+x ⇒f ′(1)=f ′(1)e e 1-f (0)+1⇒f (0)=1.在函数f (x )=f ′(1)e e x -f (0)x +12x 2中,令x =0,则得f ′(1)=e.所以f (1)=e -12,所以f (x )在(1,f (1))处的切线方程为y =e(x -1)+f (1)=e x -12,即y =e x -12.答案 y =e x -128.若以曲线y =13x 3+bx 2+4x +c (c 为常数)上任意一点为切点的切线的斜率恒为非负数,则实数b 的取值范围是________.解析 y ′=x 2+2bx +4,∵y ′≥0恒成立,∴Δ=4b 2-16≤0,∴-2≤b ≤2. 答案 [-2,2]三、解答题9.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.解 f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎨⎧f (0)=b =0,f ′(0)=-a (a +2)=-3, 解得b =0,a =-3或1.(2)∵曲线y =f (x )存在两条垂直于y 轴的切线,∴关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, ∴Δ=4(1-a )2+12a (a +2)>0,即4a 2+4a +1>0,∴a ≠-12.∴a 的取值范围是⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫-12,+∞. 10.已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围. 解 (1)当a =1时,f ′(x )=3x 2-2x ,f (2)=14,曲线y =f (x )在点(2,f (2))处的切线斜率k =f ′(2)=8,∴曲线y =f (x )在点(2,f (2))处的切线方程为y -14=8(x -2),即8x -y -2=0.(2)由已知得a >x 3+10x 2=x +10x 2,设g (x )=x +10x 2(1≤x ≤2),g ′(x )=1-20x 3,∵1≤x ≤2,∴g ′(x )<0,∴g (x )在[1,2]上是减函数.g (x )min =g (2)=92,∴a >92,即实数a 的取值范围是⎝ ⎛⎭⎪⎫92,+∞. 能力提升题组(建议用时:25分钟)一、选择题1.(·北京西城质检)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为( ).A .1B .3C .-4D .-8解析 依题意,得P (4,8),Q (-2,2).由y =x 22,得y ′=x .∴在点P 处的切线方程为y -8=4(x -4),即y =4x -8.①在点Q 处的切线方程为y -2=-2(x +2),即y =-2x -2.②联立①,②得点A (1,-4).答案 C2.已知f (x )=log a x (a >1)的导函数是f ′(x ),记A =f ′(a ),B =f (a +1)-f (a ),C =f ′(a +1),则( ).A .A >B >C B .A >C >BC .B >A >CD .C >B >A解析 记M (a ,f (a )),N (a +1,f (a +1)),则由于B =f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a ,表示直线MN 的斜率,A =f ′(a )表示函数f (x )=log a x 在点M 处的切线斜率;C =f ′(a +1)表示函数f (x )=log a x 在点N 处的切线斜率.由图象得,A >B >C . 答案 A二、填空题3.(·武汉中学月考)已知曲线f (x )=x n +1(n ∈N *)与直线x =1交于点P ,设曲线y =f (x )在点P 处的切线与x 轴交点的横坐标为x n ,则log 2 013x 1+log 2 013x 2+…+log 2 013x 2 012的值为________.解析 f ′(x )=(n +1)x n ,k =f ′(1)=n +1,点P (1,1)处的切线方程为y -1=(n +1)(x -1),令y =0,得x =1-1n +1=n n +1,即x n =n n +1, ∴x 1·x 2·…·x 2 012=12×23×34×…×2 0112 012×2 0122 013=12 013,则log 2 013x 1+log 2 013x 2+…+log 2 013x 2 012=log 2 013(x 1x 2…x 2 012)=-1.答案 -1三、解答题4.(·福建卷改编)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程;(2)当实数a >0时,求函数f (x )的极值.解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),因而f (1)=1,f ′(1)=-1,所以曲线y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1),即x+y-2=0.(2)由f′(x)=1-ax=x-ax,x>0.令f′(x)=0,得x=a>0.当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0.从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a-a ln a,无极大值.。