人教版八年级数学20.2 数据的波动
- 格式:docx
- 大小:119.59 KB
- 文档页数:17
《数据的波动程度》教学设计方案(第一课时)一、教学目标本节课的教学目标是让学生掌握数据的波动程度的基本概念,包括平均数、方差和标准差等统计量。
通过学习,学生能够理解这些统计量在描述数据分布和变化规律中的作用,并能够运用这些概念解决实际问题。
同时,培养学生分析数据、处理数据的能力,提高学生的数学素养。
二、教学重难点本课的教学重点是让学生理解方差和标准差的概念及其计算方法,并能够正确运用这些概念描述数据的波动程度。
教学难点在于如何引导学生理解方差和标准差的实际意义,以及如何将理论知识与实际问题相结合。
三、教学准备为确保本课教学的顺利进行,教师需要准备相关的教材、教案、多媒体课件等教学资料。
同时,为帮助学生更好地理解概念,准备一些实际数据案例或模拟数据,以便学生进行实践操作和练习。
此外,还需准备一些评估工具,如小测验、作业等,以检验学生的学习效果。
在接下来的实践操作和练习中,应鼓励学生将理论知识与实际操作相结合,以加深对知识的理解和掌握。
对于不同学科的学习,可以根据学科特点设计具体的实践操作和练习活动。
例如,在科学实验中,学生可以进行实验操作以验证理论知识;在数学学习中,可以通过解决实际问题来锻炼学生的计算能力和逻辑思维能力。
同时,准备评估工具是检验学生学习效果的重要环节。
小测验和作业的目的是检查学生在课堂学习中的理解程度和应用能力。
设计小测验时,应注意其针对性和实效性,使其能准确地反映出学生对知识的掌握程度。
而作业的设计则要注重实际性和创新性,鼓励学生运用所学知识解决实际问题。
通过实践操作和练习,以及有效的评估工具,学生不仅可以巩固所学知识,还能提高自己的实际操作能力和解决问题的能力,为将来的学习和工作打下坚实的基础。
四、教学过程:一、导入与热身本节课我们将开启一段有关“数据的波动程度”的数学之旅。
首先,我们会从大家熟悉的生活场景入手,让大家初步感受到“波动”这个概念的重要性。
比如,老师可以先引用一段股票走势图的分析,展示不同日期的股票价格波动情况,并询问学生:“你们觉得这些价格波动大还是小?为什么会有这样的波动?”通过这样的情境引入,激发学生的好奇心和探究欲望。
20.2 数据的波动第一课时极差、方差(一)教学内容与背景材料本节课主要学习极差.极差是反映数据的变化范围,生活中经常用到.(课本P151~P152).教学目标知识与技能:了解刻画数据离散程度的两个量度:极差、方差,能借住计算器求相应的数值.过程与方法:经历表示数据离散程度的探索过程,应用两个量(极差、方差)解决实际问题.情感态度与价值观:培养学生熟悉统计的基本思想,形成统计观察,进行形成尊重事实、用数据说话的态度,体会数据处理在现实中的应用价值.重难点、关键重点:运用极差、方差解决实际问题.难点:理解极差、方差的概念,并会运用它们解决数据的波动问题的判断.关键:把握极差、方差的离散程度来判断样本的波动状况,从而估计总体的波动状况.教学准备教师准备:投影仪、计算器、制作投影片.学生准备:预习本节课内容;计算器.学法解析1.认识起点:已经积累了描述一组数据的集中趋势的特征数──平均数、•众数、中位数的知识的基础上学习另一种反映数据波动大小(即离散趋势)的特征数──极差、方差. 2.知识线索:总体─样本─波动大小(数字特征)3.学习方式:采取问题解决、合作交流的学习方式.教学过程一、创设情境,引入新知【问题牵引】为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分,其外贸公司要出口一批规格为75g的鸡腿,现有2个厂家提供货源,它们的价格相同;鸡腿的品质也相近.质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:75 74 74 76 73 76 75 77 77 74 74 75 75 76 73 76 73 78 77 72乙厂:75 78 72 77 74 75 73 79 72 75 80 71 76 77 73 78 71 76 73 75把这些数据表示成下图:(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量吗?(2)求甲、乙两厂被抽取鸡腿的平均质量,•并在图中画出表示平均质量的直线.(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值是多少?•它们相差几克?乙厂呢?(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪个厂的鸡腿?思路点拨:(1)答案75g左右,通过两种方法引导,①观察上图中75g•上下的点数.②运用求平均值的公式计算;可让学生分析并提出看法.(2)•让学生画出表示平均质量的直线,直观地体会一组数据平均数的内涵,同时发现各数相对于平均数的偏差,感悟数据离散状况.(3)78g,72g,6g;80g,71g,9g,由学生自己计算得出结论;(4)通常外贸公司应购买甲厂的鸡腿,可由学生讨论得出结论.【活动方略】教师活动:操作投影仪,组织学生讨论.学生活动:分四人小组进行讨论,而后再进行全班汇报指导阅读:(课本P151内容)概念导入:一组数据中的最大数据与最小数据的差叫做这组数据的极差.教师解释:在生活中,我们常常用到极差这个概念来反映数据的波动大小,如班级中某科成绩最高分与最低分的差,一个单位最高工龄与最低工龄的差等就是极差的例子.极差是最简单的一种度量数据波动情况的量,但它容易受极端值的影响.【设计意图】应用两个实际事例导入极差概念,自然而又有探索性,学习感兴趣.二、随堂练习,巩固深化课本P152 “练习”三、继续探究,学习新知【问题牵引】上例中,如果丙厂也参与了竞赛,从该厂抽样调查了20只鸡腿,数据如下图所示.(1)丙厂这20只鸡腿质量的平均数和极差分别是多少?(2)如何刻画丙厂这20只鸡腿的质量与其平均数的差距?分别求出甲、•丙两厂的20只鸡腿质量与相应平均数的差距.(3)在甲、丙两个厂中,你认为哪个厂的鸡腿质量更符合要求?•说说你的理由.思路点拨:(1)平均数为75.1g,极差为7g,由学生自己得出结论;(2)•可分别用这20只鸡腿的质量与其平均数差的绝对值来刻画,甲厂这20只鸡腿的质量与其平均数的差距(单位:g)依次为:0,1,1,1,2,1,0,2,2,1,1,0,0,1,2,1,2,3,2,3.而丙厂相应的数据为:0,11,12,12,93,10,91,10,91,10,11,13,12,13,12,90,91,91,91,93,9.这里要向学生讲明使用绝对值的目的是不考虑符号,使之能够归结到正数范围之内,另一个原因是能够更好地表示数据的波动状况,不受符号的干扰.(3)•可以由图中直观地判断,也可以引导学生用差距和来说明选甲厂好.【活动方略】教师活动:操作投影仪,提出问题,启发学生.学生活动:先独立思考再小组交流,然后举手发言指导阅读:(课本P152~P154)教师活动:参与学生的讨论,引导学生认图,从图中判断、处理数据,由于这两队的平均数相同,都是26.9,但从图中可以看出甲队选手的年龄与其平均年龄的偏差较大,而乙队选手的年龄集中地分布在平均年龄上下.学生活动:分四人小组阅读理解,从分析中感受到这两组数据的波动状况,发现乙队数据在平均数左右的多,甲队数据偏差较大,因此判断出乙队年龄波动较小.教师活动:导入公式.方差定义:各个数据与平均数之差的平方的平均数叫做方差.方差公式:设n个数据:x1,x2…x n,各数据与它们的平均数的差的平方是(x1-x)2,(x2-x)2…(x n-x)2,则:S2=1 n评析:当数据分布比较分散时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小,方差就较小,方差越大,数据的波动越大;方差越小,数据的波动越小.学生活动:计算甲、乙两队方差如下:S甲2=2.29,S乙2=0.89,因为S甲2>S乙2,可以推断乙队选手年龄波动较小,这与上面图形认识的直观趋势完全一致.【设计意图】通过问题情境的分析以及阅读指导的再认识,让学生认识到方差是衡量一组数据的离散程度的常用方法.四、随堂练习,巩固深化1.课本P155 “练习”12.【探研时空】甲、乙两组都生产同一种零件,从两组产品中各抽出4个,•量得它们的长度(cm)如下:甲组:99.8 100.0 100.2 100.0乙组:100.0 99.7 100.3 100.0(1)分别计算每个样本的平均数和极差.(2)分别求出每个样本的方差,•并判断出哪组的产品样本尺寸要求控制的比较稳定.(甲组产品较稳定)五、课堂总结,发展潜能1.什么叫做极差?2.什么叫做方差?3.极差、方差是衡量一组数据波动大小的特征数,对于一组数据,除需了解它们的平均水平外,还需要了解它们的波动大小,你是怎么看的?六、布置作业,专题突破1.课本P158 习题20.2 1.2,3.2.选用课时作业优化设计七、课后反思略第一课时作业优化设计【驻足“双基”】1.数据3,5,4,2,5,1,3,1的方差是_________.2.甲、乙两个样本,甲样本方差是2.15,乙样本方差是2.31,•则甲样本和乙样本的离散程度().A.甲、乙离散程度一样 B.甲比乙的离散程度大C.乙比甲的离散程度大 D.无法比较3.下面说法中正确的个数为().(1)样本的方差越小,波动越小,说明样本稳定性就越好;(2)一组数据的众数只有一个;(3)一组数据的中位数一定是这组数据中的某一个数据;(4)数据3,3,3,3,2,5中的众数为4;(5)一组数据的方差一定是正数.A.0 B.1 C.2 D.44.为了考察甲、乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下(单位:cm)甲:15、9、16、18、14、8、12、10、17、11乙:12、15、14、16、15、13、13、10、12、10(1)分别计算两种小麦的平均苗高和极差;(2)分别计算两种小麦的方差,比较哪种小麦长得比较整齐.【聚焦“中考”】5.小张和小李去练习射击,第一轮10•枪打完后两人的成绩如图所示,通常新手成绩不太稳定,那么根据图中的信息,•估计小张和小李两人中新手是谁?第一课时作业优化设计答案:1.略 2.C 3.B4.(1)13cm,13cm,6,3,2,S甲2=11cm2,S22=3.8cm2,乙种较齐5.小李。
人教版义务教育课程标准实验教科书八年级下册20.2.2方差(第2课时)教学设计一、教学内容:八年级下册课本第127页至第129页.二、教材分析:1、地位作用本节课是方差一节的第二课时,为了更好理解方差刻画数据的波动大小而安排的一节习题课,以更好理解方差的公式这一难点,而且用样本估计总体的思想,考察总体方差时,如果包含多个个体或者考察本身带有破坏性,实际中常常用样本的方差来估计总体的方差。
因此本节课是既是对前面的巩固又是对以后学习的发展。
在方差公式应用过程中举了大量的生活实例,也让学生举了一些身边的实例,主要是为了让学生感受到生活中有很多问题都要了解一组数据的稳定性,需要用到方差公式去分析、判断。
学生体会数学知识是服务于生活、生产的;实际问题是经常可以转化为数学问题的,关键是选择恰当的数学工具去研究。
2、学情分析:学生已有的知识基础上进一步学习方差的应用,学生结合具体的例子理解统计量的统计意义和体会统计的思想。
会应用方差公式计算分析数据的波动解决实际问题,通过样本估计总体进一步体会统计的意义。
由问题到探究规律到应用到解决实际问题。
3、教学目标(1)、能熟练计算样本的方差,会应用方差公式解决实际问题;(2)、掌握用样本方差估计总体方差的思想;4、教学重难点重点:方差产生的必要性和应用方差公式解决实际问题。
难点:理解方差公式。
突破重、难点的方法:通过实例感受统计知识在实际生活中的应用,依据学生已有的知识背景和活动经验,提供大量思考和交流的机会,经历方差分析数据、描述信息、做出判断的过程,使学生在自主探究的过程中建立符合个体认知特点的知识结构,发展学生统计观念,培养学生用统计知识描述、分析数据,解决实际问题的能力。
三、教学准备:多媒体课件四、教学过程:可知,两家加工厂的鸡腿质量大可知,甲加工厂的鸡腿质量更稳定,大小更均匀.因此,快餐公司应该选2757215++)(2757++)(2()-747515答:甲加工厂的鸡腿质量更稳定,大小更均匀.因此,快餐公司应该选购甲加。
20.2数据的波动20.2.1极差一、教学目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量2、会求一组数据的极差二、重点、难点和难点的突破方法1、重点:会求一组数据的极差2、难点:本节课内容较容易接受,不存在难点。
三、例习题的意图分析教材P151引例的意图(1)、主要目的是用来引入极差概念的(2)、可以说明极差在统计学家族的角色——反映数据波动范围的量(3)、交待了求一组数据极差的方法。
四、课堂引入:引入问题可以仍然采用教材上的“乌鲁木齐和广州的气温情”为了更加形象直观一些的反映极差的意义,可以画出温度折线图,这样极差之所以用来反映数据波动范围就不言而喻了。
五、例习题分析本节课在教材中没有相应的例题,教材P152习题分析问题1 可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大。
问题2 涉及前一个学期统计知识首先应回忆复习已学知识。
问题3答案并不唯一,合理即可。
六、随堂练习:1、一组数据:473、865、368、774、539、474的极差是,一组数据1736、1350、-2114、-1736的极差是 .2、一组数据3、-1、0、2、X的极差是5,且X为自然数,则X= .3、下列几个常见统计量中能够反映一组数据波动范围的是()A.平均数B.中位数C.众数D.极差4、一组数据X1、X2…Xn的极差是8,则另一组数据2X1+1、2X2+1…,2Xn+1的极差是()A. 8B.16C.9D.17答案:1. 497、3850 2. 4 3. D 4.B七、课后练习:1、已知样本9.9、10.3、10.3、9.9、10.1,则样本极差是()A. 0.4B.16C.0.2D.无法确定在一次数学考试中,第一小组14名学生的成绩与全组平均分的差是2、3、-5、10、12、8、2、-1、4、-10、-2、5、5、-5,那么这个小组的平均成绩是()A. 87B. 83C. 85 D无法确定3、已知一组数据2.1、1.9、1.8、X、2.2的平均数为2,则极差是。
人教版数学八年级下册20.2《数据的波动程度》说课稿3一. 教材分析人教版数学八年级下册20.2《数据的波动程度》是本册的一个重要内容,它主要介绍了方差和标准差的概念,以及它们在描述数据波动程度方面的应用。
通过本节内容的学习,使学生能理解方差和标准差的概念,掌握它们的计算方法,并能够运用它们来判断数据的波动程度,从而提高学生分析问题和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了平均数、中位数、众数等描述数据集中趋势的统计量,对于数据的整理和分析已经有了一定的基础。
但是,学生对于数据的波动程度的认识还比较模糊,对于方差和标准差的概念以及计算方法还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握方差和标准差的概念和计算方法。
三. 说教学目标1.知识与技能目标:让学生理解方差和标准差的概念,掌握它们的计算方法,能够运用它们来判断数据的波动程度。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生的探究能力和合作意识。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的数学思维能力。
四. 说教学重难点1.教学重点:方差和标准差的概念,它们的计算方法,以及如何运用它们来判断数据的波动程度。
2.教学难点:方差和标准差的计算方法,以及如何根据它们来判断数据的波动程度。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流的教学方法,让学生在探究中发现问题、解决问题。
2.教学手段:利用多媒体课件,直观地展示数据的波动情况,帮助学生理解和掌握方差和标准差的概念和计算方法。
六. 说教学过程1.导入新课:通过展示一组数据的波动情况,引导学生思考如何描述这种波动程度,从而引出方差和标准差的概念。
2.自主学习:让学生自主阅读教材,理解方差和标准差的概念,掌握它们的计算方法。
3.合作交流:学生分组讨论,交流对方差和标准差的理解和计算方法,互相学习,共同进步。
4.教师讲解:教师针对学生的讨论情况,进行讲解,解答学生的疑问,重点讲解方差和标准差的计算方法。
20.2 数据的波动程度1.两名同学各进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对2.在某次射击训练中,甲、乙、丙、丁4人各射击10次,平均成绩相同,方差分别是=0.35,=0.15,=0.25,=0.27,这4人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁3.若一组数据1,2,x,4的众数是1,则这组数据的方差为.4.今年我市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错的是() A.平均数为160 B.中位数为158C.众数为158D.方差为20.35.如果一组数据x1,x2,…,x n的方差是4,则另一组数据x1+3,x2+3,…,x n+3的方差是()A.4B.7C.8D.196.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8乙:7,9,6,9,9则下列说法中错误的是()A.甲、乙得分的平均数是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小7.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①>;②<;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是()A.①③B.①④C.②③D.②④8.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如下表所示,丁的成绩如图所示.根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁9.甲、乙两班各有8名学生参加数学竞赛,成绩(单位:分)如下:请比较两个班学生成绩的优劣.10.某校要从九年级一班和二班中各选取10名女同学组成礼仪队,选取的两班女生的身高(单位:厘米)如下:一班:168167170165168166171168167170二班:165167169170165168170171168167(1)根据上面两组数据补充完成下面的统计分析表:(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.11.要从甲、乙两名同学中选出一名,代表班级参加射击比赛.如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩.(2)观察统计图,直接写出甲、乙这10次射击成绩的方差,哪个大.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选参赛更适合;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选参赛更适合.12.甲、乙两名队员参加射击训练,成绩分别被制成如下两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值.(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?13.甲、乙两名射击运动员进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.根据图中信息,回答下列问题:(1)甲的平均数是,乙的中位数是;(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认哪位运动员的射击成绩更稳定?14.某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及如图所示的不完整的折线图:A,B产品单价变化统计表并求得了A产品三次单价这组数据的平均数和方差:=5.9;=×[(6-5.9)2+(5.2-5.9)2+(6.5-5.9)2]=.(1)补全图中B产品单价变化的折线图,B产品第三次的单价比上一次的单价降低了%;(2)求B产品三次单价这组数据的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.15.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分为10分,学生得分均为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包括9分)为优秀.这次竞赛中甲、乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表.(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生(填“甲”或“乙”).(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.参考答案1.【答案】C2.【答案】B3【答案】解:∵众数是1,∴x=1,则==2,∴s2=×[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=.4.【答案】D解:平均数为(158+160+154+158+170)÷5=160,A正确,不符合题意;将这组数据按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,B正确,不符合题意;数据158出现了2次,次数最多,故众数为158,C正确,不符合题意;这组数据的方差是s2=[(154-160)2+2×(158-160)2+(160-160)2+(170-160)2]=28.8,D错误,符合题意.故选D.5.【答案】A解:设一组数据x1,x2,…,x n的平均数是,则方差为s2=[(x1-)2+(x2-)2+…+(x n-)2]=4;而另一组数据x1+3,x2+3,…,x n+3的平均数是+3,此时方差为s2={[(x1+3)-(+3)]2+[(x2+3)-(+3)]2+…+[(x n+3)-(+3)]2}=[(x1-)2+(x2-)2+…+( x n-)2]=4,故选A.6.【答案】C7.【答案】C解:方法一:从折线统计图可知甲和乙射击10发子弹成绩的数据,根据方差的公式可计算出甲和乙射击成绩的方差,从而进行比较即可得出结果.方法二:根据统计图判断甲、乙成绩的波动情况,根据方差越大,数据的波动越大,越不稳定;方差越小,数据的波动越小,越稳定即可得出结果.8.【答案】D解:由图可知丁射击10次的成绩为:8,8,9,7,8,8,9,7,8,8,则丁的成绩的平均数为×(8+8+9+7+8+8+9+7+8+8)=8(环),丁的成绩的方差为×[6×(8-8)2+2×(7-8)2+2×(9-8)2]=0.4.∵丁的成绩的平均数最大,方差最小,∴参赛选手应选丁.9.解:首先计算这两组数据平均数和方差:=×(65+74+…+71)=70,=×[(65-70)2+(74-70)2+…+(71-70)2]=23;=×(60+75+…+79)=70,=×[(60-70)2+(75-70)2+…+(79-70)2]=67.5.通过计算可知,=,<,甲班的成绩比乙班的成绩稳定.再比较高分情况或优秀率(不妨设75分及以上为优秀):高分情况:得80分的都只有1人,持平;得75分以上(含75分)的甲班有1人,乙班有4人,乙班优于甲班.优秀率:甲班为12.5%,乙班为50%,乙班优于甲班.易错点拨:把方差大小作为评判成绩好坏的唯一标准,这是对方差概念的误解,方差只是反映一组数据的波动情况,至于方差大好还是方差小好,则要看这组数据所反映的实际问题.就这个实际问题而言,方差不应作为评判成绩优劣的唯一标准.从优秀率这个角度来评价两班成绩的优劣才是客观的、准确的,所以并不能说方差小了就好,而是要具体问题具体分析,主要是看从什么角度去比较.10.解:(1)3.2;168(2)选方差作为选择标准,∵一班的方差<二班的方差,∴一班能被选取.11.解:(1)==8(环).(2)大.(3)乙;甲12.解:(1)a=7,b=7.5,c=4.2.(2)从平均成绩看甲、乙二人的平均成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定.综合以上各因素,若选派一名队员参赛,可选择乙参赛,因为乙获得较好成绩的可能更大.13.解:(1)8环;7.5环(2)=[(6-8)2+(10-8)2+…+(7-8)2]=1.6.∵=(7+10+…+7)=8(环),∴=[(7-8)2+(10-8)2+…+(7-8)2]=1.2.∵<,∴乙运动员的射击成绩更稳定. 14.解:(1)如图所示.25(2)=×(3.5+4+3)=3.5,==.因为<,所以B产品的单价波动小.(3)第四次调价后,对于A产品,四次单价这组数据的中位数为=;对于B产品,因为m>0,所以第四次单价大于3元/件.又因为×2-1=>,所以第四次单价小于4元/件.所以×2-1=.所以m=25.15.解:(1)填表如下:组别平均数中位数方差合格率优秀率甲组 6.76 3.4190%20%乙组7.17.5 1.6980%10%(2)甲(3)①乙组的平均数高于甲组,②乙组的成绩比甲组稳定,故乙组成绩好于甲组.(答案不唯一)20.3__课题学习__体质健康测试中的数据分析_1.[2018·嘉兴秀洲中学月考]期中考试后,班里有两位同学议论他们小组的数学成绩.小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是(D)A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数2.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的(A)A.方差B.中位数C.众数D.平均数3.[2018·慈溪模拟]一名射击运动员连续打靶8次,命中的环数如图20-3-1所示,则命中环数的众数与中位数分别为(C)图20-3-1A.9环与8环B.8环与9环C.8环与8.5环D.8.5环与9环4.下面是某一天永州市11个旅游景区最高气温(单位:℃)的统计表:A.该组数据的方差为0B.该组数据的平均数为27C.该组数据的中位数为28D.该组数据的众数为285.小明的爸爸是个“健步走”运动爱好者,他用手机软件记录了某个月(30天)每天健步走的步数,并将记录结果绘制成了如下统计表:__1.4,1.35__.6.[2019·鄞州区一模]港珠澳大桥是目前桥梁设计中广泛采用的斜拉桥,它用粗大的钢索将桥面拉住,为检测钢索的抗拉强度,桥梁建设方从甲、乙两家生产钢索的厂方各随机选取5根钢索进行抗拉强度的检测,数据统计如下(单位:百吨):甲、乙两厂钢索抗拉强度检测统计表(1));(2)桥梁建设方决定从抗拉强度的总体水平和稳定性来决定钢索的质量,问哪一家的钢索质量更优?解:(1)a=(10+8+12+7+13)÷5=10(百吨);把这些数从小到大排列为7,8,10,12,13,最中间的数是10,则中位数b=10百吨;方差为c=15[(10-10)2+(8-10)2+(12-10)2+(7-10)2+(13-10)2]=5.2(平方百吨);(2)甲厂的钢索质量更优,从平均数来看,甲厂的平均数是10.4百吨,而乙厂的平均数是10百吨,所以甲厂高于乙厂;从中位数来看甲厂和乙厂一样;从方差来看,甲厂的方差是1.04平方百吨,而乙厂的方差是5.2平方百吨,所以甲厂的方差小于乙厂的方差,所以甲厂更稳定;所以从总体来看甲厂的钢索质量更优.7.为了了解某学校高一年级学生每周平均课外阅读时间的情况,随机抽查了该学校高一年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图20-3-2①)和扇形统计图(图②):图20-3-2(1)根据以上信息回答下列问题:①求m的值;②求扇形统计图中阅读时间为5 h的扇形圆心角的度数;③补全条形统计图.(2)直接写出这组数据的众数、中位数,求出这组数据的平均数.解:(1)①∵课外阅读时间为2 h的所在扇形的圆心角的度数为90°,∴其所占的百分比为90°360°=14,∵课外阅读时间为2 h的有15人,∴m=15÷14=60;第7题答图②根据题意,得560×360°=30°;③第三小组的频数为60-10-15-10-5=20, 补全条形统计图见答图.(2)∵课外阅读时间为3 h 的有20人,最多,∴众数为3 h ;∵共60人,中位数应该是第30和第31人的平均数,且第30和第31人阅读时间均为3 h ,∴中位数为3 h ;平均数为10×1+15×2+20×3+10×4+5×560=2.75(h).8.[2019·慈溪期末]我市某中学举行“中国梦·校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图20-3-3所示.图20-3-3(1)根据图示填写表;(2)(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.解:(1)由条形统计图可得,初中5名选手的平均分是75+80+85+85+1005=85,众数是85,高中五名选手的成绩是70,75,80,100,100,故中位数是80;(2)由表格可知,初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)由题意可得,s2初中=15[(75-85)2+(80-85)2+(85-85)2+(85-85)2+(100-85)2]=70,s2高中=15[(70-85)2+(75-85)2+(80-85)2+(100-85)2+(100-85)2]=160,∵70<160,故初中部代表队选手成绩较为稳定.9.太阳山中学九年级举行团体跳绳比赛,要求每班选出5名学生参加,在规定时间内每人跳绳不低于150次为优秀,冠、亚军会在甲、乙两班中产生,下表是这两个班的5名学生的比赛数据(单位:次).(1)求出表中a的值和甲、乙两班比赛学生的优秀率;(2)求出两班的跳绳比赛数据的中位数;(3)请你结合表格和自己所算出的数据判断冠军应发给哪个班?简要说明理由.解:(1)a=(139+150+145+169+147)÷5=150,甲的优秀率为3÷5×100%=60%,乙的优秀率为2÷5×100%=40%;(2)把甲班的数据从小到大排列为:139,148,150,153,160,则甲的中位数是150次;把乙班的数据从小到大排列为:139,145,147,150,169,则乙的中位数是147次;(3)冠军奖应发给甲班,因为甲的优秀率高于乙,说明甲的优秀人数多;甲的中位数大于乙的中位数,说明甲的一般水平高;甲的方差小于乙的方差,说明甲比较稳定.(答案不唯一)。
1、下列说法中,正确的是A.对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.第一枚硬币,正面朝上的概率为D.若甲组数据的方差=0.1,乙组数据的方差=0.01,则甲组数据比乙组数据稳定【答案】C【解析】试题分析::A、对载人航天器“神舟十号”的零部件的检查,因为意义重大,适合采用全面调查的方式,故此选项错误;B、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故此选项错误;C、一枚硬币,正面朝上的概率为,故此选项正确;D、若甲组数据的方差=0.1,乙组数据的方差=0.01,则乙组数据比甲组数据稳定,故此选项错误。
故选C。
2、一组数据:3,2,1,2,2的众数,中位数,方差分别是()A.2,1,0.4B.2,2,0.4C.3,1,2D.2,1,0.2B找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均)数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.利用方差公式计算方差.解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3﹣2)2+3×(2﹣2)2+(1﹣2)2]=0.4,即中位数是2,众数是2,方差为0.4.故选B.3、在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A.方差 B.平均数 C.中位数 D.众数D儿童福利院最值得关注的应该是哪种粽子爱吃的人数最多,即众数.解:由于众数是数据中出现次数最多的数,故儿童福利院最值得关注的应该是统计调查数据的众数.故选D.4、某特警部队为了选拔“神枪手”,举行了1000米射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人成绩的稳定性相同D.无法确定谁的成绩更稳定B根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解:∵甲的方差是0.28,乙的方差是0.21,∴S甲2>S乙2,∴乙的成绩比甲的成绩稳定;故选B.5、要判断小明同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的A.方差B.众数C.平均数D.中位数【答案】A.【解析】试题分析:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.故选A.考点:统计量的选择.6、七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知A.(1)班比(2)班的成绩稳定B.(2)班比(1)班的成绩稳定C.两个班的成绩一样稳定D.无法确定哪班的成绩更稳定【答案】B【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定。
因此,∵15<17.5,∴(2)班比(1)班的成绩稳定。
故选B。
7、某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S2甲=36,S2乙=30,则两组成绩的稳定性:A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定【答案】B【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定。
因此,∵30<36,∴乙组比甲组的成绩稳定。
故选B。
8、乐山大佛景区2013年5月份某周的最高气温(单位:0C)分别为:29,31,23,26,29,29。
这组数据的极差为【】A.29 B.28 C.8 D.6【解析】根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差为:31-23=8。
故选C。
9、已知:甲乙两组数据的平均数都是5,甲组数据的方差,乙组数据的方差,下列结论中正确的是A.甲组数据比乙组数据的波动大B.乙组数据的比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲组数据与乙组数据的波动不能比较【答案】B【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定。
因此,∵,∴乙组数据的比甲组数据的波动大。
故选B。
10、下列说法正确的是A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是,那么D.一组数据的方差是这组数据的极差的平方【答案】C【解析】试题分析:根据中位数、众数、平均数、极差、方差的定义分别判断得出即可:A.当数据是奇数个时,按大小排列后,中位数就是一组数据中最中间的一个数,数据个数为偶数个时,按大小排列后,最中间的两个的平均数是中位数,故此选项错误;B.8,9,9,10,10,11这组数据的众数是9和10,故此选项错误;C.如果x1,x2,x3,…,x n的平均数是,那么,故此选项正确;D.一组数据的方差与极差没有关系,故此选项错误。
故选C。
11、某校举行健美操比赛,甲、乙两班个班选20名学生参加比赛,两个班参赛学生的平均身高都是1.65米,其方差分别是,则参赛学生身高比较整齐的班级是A.甲班B.乙班C.同样整齐D.无法确定【考点】方差【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定。
因此,∵,∴参赛学生身高比较整齐的班级是甲班。
故选A。
12、下列说法正确的是【】A.若甲组数据的方差,乙组数据的方差,则甲组数据比乙组数据大B.从1,2,3,4,5,中随机抽取一个数,是偶数的可能性比较大C.数据3,5,4,1,﹣2的中位数是3D.若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖【答案】C。
【解析】根据方差的意义,可能性的大小,中位数的定义及概率的意义,结合各选项进行判断即可:A、方差越大说明数据越不稳定,与数据大小无关,故本选项错误;B、从1,2,3,4,5,中随机抽取一个数,是奇数的可能性比较大,故本选项错误;C、数据3,5,4,1,﹣2的中位数是3,说法正确,故本选项正确;D、若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖,故本选项错误。
故选C。
13、一组数据1,2,2,3.下列说法正确的是【】A.众数是3 B.中位数是2 C.极差是3 D.平均数是3【答案】B。
【解析】根据众数,中位数,极差,平均数的定义,结合各选项进行判断即可:A、众数为2,故本选项错误;B、中位数是2,故本选项正确;C、极差为2,故本选项错误;D、平均数为2,故本选项错误。
故选B。
14、有一组数据:2,5,7,2,3,3,6,下列结论错误的是【】A.平均数为4 B.中位数为3 C.众数为2 D.极差是5【答案】C。
【解析】根据平均数,中位数,众数,3718684极差的定义,结合选项进行判断即可:A、平均数=(2+2+3+3+5+6+7)÷7=4,结论正确,故本选项错误;B、将数据从小到大排列为:2,2,3,3,5,6,7,∴中位数为3,结论正确,故本选项错误;C、众数为2和3,结论错误,故本选项正确;D、极差为7﹣2=5,结论正确,故本选项错误。
故选C。
15、某校八年级二班的10名团员在“情系芦山”的献爱心捐款活动中,捐款清况如下(单位:元):10, 8,12,15,10,12,11,9,13,10,则这组数据的A.众数是10.5 B.方差是3.8 C.极差是8 D.中位数是10【答案】B【解析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是10,故这组数据的众数为10。
根据方差的计算公式求得方差:平均数是,则方差=。
根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差为15-8=7。
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
由此将这组数据重新排序为8,9,10,10,10,11,12,12,13,15,∴中位数是按从小到大排列后第5,6个数的平均数,为:10.5。
综上所述,选项A、C、D都错误,选项B正确。
故选B。
16、(2013年四川眉山3分)王明同学随机抽查某市10个小区所得到的绿化率情况,结果如下表:A.极差是13% B.众数是25% C.中位数是25% D.平均数是26.2%【答案】A。
【解析】根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,极差为:32%﹣20%=12%。
众数是在一组数据中,出现次数最多的数据,这组数据中25%出现4次,出现的次数最多,故这组数据的众数为25%。
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
由此将这组数据重新排序为20%,20%,25%,25%,25%,25%,30%,30%,30%,31%,∴中位数是按从小到大排列后第5,6个数的平均数,为:25%。
平均数是指在一组数据中所有数据之和再除以数据的个数,平均数为:。
故选A。
考点:极差,众数,中位数,平均数。
17、为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7.关于这组数据,下列结论错误的是A.极差是7 B.众数是8 C.中位数是8.5 D.平均数是9【答案】B【解析】试题分析:根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断:A、极差=14﹣7=7,结论正确,故本选项错误;B、众数为7,结论错误,故本选项正确;C、中位数为8.5,结论正确,故本选项错误;D、平均数是8,结论正确,故本选项错误。
故选B。
18、甲、乙、丙三个旅游团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2=1.4,S乙2=18.8,S丙2=25,导游小方最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选A.甲队B.乙队C.丙队D.哪一个都可以【答案】A【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定。