最新第三章规则波导和空腔谐振器
- 格式:ppt
- 大小:1.42 MB
- 文档页数:7
第3章 规则波导和空腔谐振器3.1什么是规则波导?它对实际的波导有哪些简化?答 规则波导是对实际波导的简化。
简化条件是:(1)波导壁为理想导体表面(∞=σ);从而可以利用理想导体边界条件;(2)波导被均匀填充(ε、μ为常量);从而可利用最简单的波动方程;(3)波导内无自由电荷(0=ρ)和传导电流(0=J );从而可利用最简单的齐次波动方程;(4)波导沿纵向无限长,且截面形状不变。
从而可利用纵向场法。
3.2纵向场法的主要步骤是什么?以矩形波导为例说明它对问题的分析过程有哪些简化?答 纵向场法的主要步骤是:(1)写出纵向场方程和边界条件(边值问题),(2)运用分离变量法求纵向场方程的通解,(3)利用边界条件求纵向场方程的特解,(4)导出横向场与纵向场的关系,从而写出波导的一般解,(5)讨论波导中场的特性。
运用纵向场法只需解1个标量波动方程,从而避免了解5个标量波动方程。
3.3什么是波导内的波型(模式)?它们是怎样分类和表示的?各符号代表什么物理意义? 答 运用纵向场法得到的解称为波导内的波型(模式)。
分为横电模和横磁模两大类,表示为TEmn 模和TMmn 模,其中TE 表示横电模,即0=z E ,TM 表示横磁模,即0=z H 。
m 表示场沿波导截面宽边分布的半波数;n 表示场沿波导截面窄边分布的半波数。
3.4矩形波导存在哪三种状态?其导行条件是什么?答 矩形波导存在三种状态,见表3-1-1。
导行条件是222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛<b n a m λ3.5从方程H E ωμj -=⨯∇和E H ωεj =⨯∇出发,推导矩形波导中TE 波的横向分量与纵向分量的关系式(3-1-25)。
解 对TE 波,有0=z E 。
由H E ωμj -=⨯∇和E H ωεj =⨯∇、 βj z-=∂∂得 ()x y z E H j yH ωεβj =--∂∂ ⑴ ()y zx E x H H j ωεβj =∂∂-- ⑵0=∂∂-∂∂yH x H x y⑶()x y H E j ωμβj -=-- ⑷()y x H E j ωμβj -=- ⑸z x y H yE x E ωμj -=∂∂-∂∂ ⑹ 由式⑴、⑸y H k E zcx ∂∂-=2j ωμ⑺ 由式⑵、⑷xH k E zc y ∂∂=2j ωμ⑻ 由式⑷得xH k H zc x ∂∂-=2j β⑼ 由式⑸得y H k H zc y ∂∂-=2j β⑽ 3.6用尺寸为2mm 04.3414.72⨯的JB-32矩形波导作馈线,问:(1)当cm 6=λ时波导中能传输哪些波型?(2)写出该波导的单模工作条件。