蜗杆传动设计2
- 格式:doc
- 大小:35.00 KB
- 文档页数:8
蜗轮蜗杆设计LT第一章 蜗杆传动的类型和特点蜗杆传动由蜗杆、蜗轮和机架组成,用来传递空间两交错轴的运动和动力。
如图1-1所示。
通常两轴交错角为90°,蜗杆为主动件。
1.1 蜗杆传动的类型如图1-2所示,根据蜗杆的形状,蜗杆传动可分为圆柱蜗杆传动(图a ),环面蜗杆传动(图b ),和锥面蜗杆传动(图c)。
圆柱蜗杆传动,按蜗杆轴面齿型又可分为普通蜗杆传动和圆弧齿圆柱蜗杆传动。
普通蜗杆传动多用直母线刀刃的车刀在车床上切制,可分为阿基米德蜗杆(ZA 型)、渐开蜗杆(ZI 型)和法面直齿廓蜗杆(ZH 型)等几种。
如图1-3所示,车制阿基米德蜗杆时刀刃顶平面通过蜗杆轴线。
该蜗杆轴向齿廓为直线,端面齿廓为阿基米德螺旋线。
阿基米德蜗杆易车削难磨削,通常在无需磨削加工情况下被采用,广泛用于转速较低的场合。
如图1-4所示,车制渐开线蜗杆时,刀刃顶平面与基圆柱相切,两把刀具分别切出左、右侧螺旋面。
该蜗杆轴向齿廓为外凸曲线,端面齿廓为渐开线。
渐开线蜗杆可在专用机床上磨削,制造精度较高,可用于转速较高功率较大的传动。
蜗杆传动类型很多,本章仅讨论目前应用最为广泛的阿基米德蜗杆传动。
a) b) c)图1-2蜗杆传动的类型图1-1蜗杆传动1.2 蜗杆传动的特点(1)传动比大,结构紧凑。
单级传动比一般为10~40(<80),只传动运动时(如分度机构),传动比可达1000。
(2)传动平稳,噪声小。
由于蜗杆上的齿是连续的螺旋齿,蜗轮轮齿和蜗杆是逐渐进入啮合又逐渐退出啮合的,故传动平稳,噪声小。
(3) 有自锁性。
当蜗杆导程角小于当量摩擦角时,蜗轮不能带动蜗杆转动,呈自锁状态。
手动葫芦和浇铸机械常采用蜗杆传动满足自锁要求。
(4)传动效率低。
蜗杆蜗轮啮合处有较大的相对滑动,摩擦剧烈、发热量大,故效率低。
一般η=0.7~0.9,具有自锁性能的蜗杆效率仅0.4。
(5)蜗轮造价较高。
为了减摩和耐磨,蜗轮常用青铜制造,材料成本较高。
蜗轮蜗杆设计步骤第一步:确定传动比蜗轮蜗杆传动是一种非常特殊的传动方式,它的传动比取决于蜗杆的头数、蜗轮的齿数、蜗杆的导程角以及蜗轮与蜗杆轴线的交角等因素。
设计蜗轮蜗杆传动时,要根据传动要求和传动动力参数来计算传动比。
第二步:选择材料在选择蜗轮和蜗杆的材料时,考虑到它们的载荷、传动功率和工作环境温度等因素。
通常,蜗轮和蜗杆都可以采用高强度的合金钢材料。
第三步:确定齿轮参数蜗轮的齿数和模数都是通过计算得到。
注意,蜗轮的轴向厚度越小,蜗杆的导程角越小,那么蜗轮和蜗杆的接触线就会越靠近齿面根部。
在选择齿轮参数时需要进行综合考虑,以保证蜗轮蜗杆传动的良好性能。
第四步:计算蜗杆的导程和展角根据蜗杆轴线与垂直轴线的夹角以及螺旋线的参数,可以计算出蜗杆的导程和展角。
展角的计算对于蜗轮蜗杆传动来说非常重要,因为它直接影响到传动效率和噪声。
一般来说,展角越大,传动效率越高,但噪声也会增加。
第五步:计算蜗轮蜗杆的几何参数根据蜗杆的导程、蜗轮的模数和齿数,可以计算出蜗轮和蜗杆的几何参数,包括齿顶直径、节圆直径、齿根直径、齿顶高度、齿根高度和重要齿廓参数。
这些参数决定了蜗轮蜗杆传动的传动效率、运行平稳性和噪声等关键性能指标。
第六步:进行蜗轮蜗杆的装配在进行蜗轮蜗杆的装配之前,需要对蜗轮齿形进行测量,以保证齿形质量。
然后,将蜗轮和蜗杆进行配合,精确控制配合间隙大小。
还要注意蜗轮和蜗杆的对中度和平行度等装配要求,以保证传动系统的稳定性和性能。
总结:1. 传动效率的优化:传动效率是蜗轮蜗杆传动系统的重要性能指标,也是设计过程中需要优化的关键因素之一。
通常情况下,使用高质量的蜗轮和蜗杆、采用适当的润滑方式、控制装配精度、优化齿轮参数以及合理设计蜗杆展角等方法,可以大大提高传动效率。
2. 噪声的控制:蜗轮蜗杆传动在工作时容易产生噪声,主要是由于蜗轮和蜗杆的接触面积较小,表面接触压力较大,同时还会在传动过程中产生震动和共振。
为了降低噪声,可以优化设计参数、采用低噪声等级的蜗轮和蜗杆材料、选用合适的蜗杆展角、进行制造精度控制以及采用降噪材料等方式。
霾山犬哮机械设计课程设计报告题目:蜗杆一齿轮二级减速器学院(系九吉人他手年级专业:吉人他手学号:吉人他手学生姓名:吉人他手指导教师:吉人他手带式运输机传动装置设计过程中的主要内容为传动方案的分析与拟定:选择电动机:计算传动装置的运动参数和动力参数:传动零件、轴的设计计算:轴承、联接件、润滑密封和联轴器的选择计算:减速器箱体结构设计及其附件的设计、绘制装配图和零件工作图、编写设计计算说明书以及设计总结和答辩。
主要依据《机械设计》和其他学科所学的知识,《机械设计课程设计指导手册》相关的规定和设计要求,《机械设计课程设计图册》相关部分的参考以及其他设计手册和参考文献的查阅,最后还有老师在整个课设过程中的指导和不断的纠正,来完成本次的课程设计。
通过这次课程设计,培养了我们独立机械设计的能力,对机械总体的设计有了一个宏观的认识,对具体的结构及其作用和各部分之间的关系有了更加深刻的了解,考虑问题更加全而,不仅要考虑工艺性,标准化,还要考虑到经济性,环境保护等。
综合各种因素得到一个相对合理的方案。
本次设计过程涉及到机械装置的实体设计,涉及零件的应力、强度的分析计算,材料的选择、结构设计等,涉及到以前学过的工程制图、工程材料、机械设计制适、公差配合与技术测量、理论力学、材料力学、机械原理等方面的知识,是对以前所学知识的一次实践应用,考验学生的综合能力,是一次十分难得的机会。
摘要:根据任务说明书要求,针对工作机所需工作条件,设计减速器用以满足使用需求。
根据工作要求选定电动机类型、结构以及工作转速和额定功率,确定电动机型号。
依据《机械原理》课程所学习的知识,合理设计传动方案,分析选定最适宜的方案并设计传动零件。
在多种传动方案的对比中选用二级展开式圆柱齿轮减速器,满足经济性,实用性,工艺性等多方面的要求。
根据所设计减速器中的结构来设计所需要的齿轮结构及轴结构,通过对所使用材料的受力强度分析,按照齿轮齿面接触疲劳强度计算得到齿轮直径,确定齿轮传动中心距:高速级蜗轮蜗杆传动中心距为100mm,低速级齿轮传动中心距为160mm。
蜗轮蜗杆设计(2)设计原则:根据给定的中心距及传动比(或按照结构及设计的要求自定中心距和传动比)然后从蜗杆传动中心距标准值系列表中选取中心距的标准系列值,然后从经验公式先估算相关参数值,估算后在参考标准值系列表,确定标准值。
1计算传动比上式中:δp 为脉冲当量,β为步距角,L 为滚珠丝杠导程。
2初选几何参数参照蜗轮蜗杆参数推荐值表[1],i =4时,选z 1=6;则z 2= i z 1=24; 3蜗轮输出转矩T 21955021i P T n η=[2]123ηηηη=[3] tan =1tan +γηγρ()[3] =arctan ρμ[4]=μμ[5]式中:P 1, n 1分别为蜗杆轴输入功率,转速。
η1为螺旋副啮合效率;η2为轴承效率,滚动轴承时取0.990.9952η≈;η3为搅油及溅油效率,0.960.993η≈;μ为啮合摩擦系数;η0为标准圆盘滚子试件摩擦系数;R z 为设计蜗杆的齿面粗糙度;R z0为标准圆盘试件的表面粗糙度;代入数据得η=0。
76 根据所选电机得P 1=8kW,n 1=800r/min所以30.7649550290.322300T Nm ⨯⨯==4载荷系数123456K K K K K K K =[6]上式中:K 为载荷系数;K 1为动载荷系数,当蜗轮圆周速度23m /s v ≤时K 1取1。
0;K 2为啮合质量系数,查表得0.95;K 3为小时载荷率系数,查表得0。
78;K 4为环境温度系数,查表得1.09;K 5为工作情况系数,查表得1。
0;K 6为风扇系数,查表得0.92。
代入数据得:10.950.78 1.0910.920.74K =⨯⨯⨯⨯⨯=5计算m 和q7]代入数据:14.65≥==查表取16.443= m =6。
3 q =186主要几何尺寸18 6.3113.41d qm ==⨯= 6.324151.222m d z ==⨯=7蜗杆传动强度及刚度验算 确定许用接触应力σHp采用锡青铜蜗轮:Hp Hbp z z s n σσ=[8]分别查滑动速度曲线表,滑动速度影响系数表及寿命系数得2220/Hbp N mm σ= 0.96z s =0.78z n =所以22200.960.78165/Hp N mm σ=⨯⨯=3603600.00511.264p i L δβ⨯===⨯0.5(2)0.5 6.3(18240)132.322a m q x z =++=⨯⨯++=确定许用接触应力σHH σ=9]代入数据得:2134.57/H mm N σ=== 可见134.57165HHP σσ=<=,所以接触强度足够。
蜗杆传动蜗杆传动由蜗杆和蜗轮组成,一般蜗杆为主动件。
蜗杆和螺纹一样有右旋和左旋之分蜗杆传动,分别称为右旋蜗杆和左旋蜗杆。
蜗杆上只有一条螺旋线的称为单头蜗杆,即蜗杆转一周,蜗轮转过一齿,若蜗杆上有两条螺旋线,就称为双头蜗杆,即蜗杆转一周,蜗轮转过两个齿。
由蜗杆与蜗轮互相啮合组成的交错轴间的齿轮传动(图1)。
通常两轴的交错角为90°。
一般蜗杆为主动件,蜗轮为从动件。
蜗杆传动的传动比大,工作平稳,噪声小,结构紧凑,可以实现自锁。
但一般的蜗杆传动效率较低,蜗轮常须用较贵的有色金属(如青铜)制造。
蜗杆传动广泛用于分度机构和中小功率的传动系统。
单级蜗杆传动的传动比常用 8~80。
在分度机构或手动机构中蜗杆传动的传动比可达300,用于传递运动时可达到1500。
蜗杆传动-类型蜗杆传动有多种类型,如表所示。
蜗杆传动圆柱蜗杆传动是蜗杆分度曲面为圆柱面的蜗杆传动。
其中常用的有阿基米德圆柱蜗杆传动和圆弧齿圆柱蜗杆传动(图2)。
①阿基米德蜗杆的端面齿廓为阿基米德螺旋线,其轴面齿廓为直线。
阿基米德蜗杆可以在车床上用梯形车刀加工,所以制造简单,但难以磨削,故精度不高。
在阿基米德圆柱蜗杆传动中,蜗杆与蜗轮齿面的接触线与相对滑动速度之间的夹角很小,不易形成润滑油膜,故承载能力较低。
②弧齿圆柱蜗杆传动是一种蜗杆轴面(或法面)齿廓为凹圆弧和蜗轮齿廓为凸圆弧的蜗杆传动。
在这种传动中,接触线与相对滑动速度之间的夹角较大,故易于形成润滑油膜,而且凸凹齿廓相啮合,接触线上齿廓当量曲率半径较大,接触应力较低,因而其承载能力和效率均较其他圆柱蜗杆传动为高。
蜗杆传动-主要参数各类圆柱蜗杆传动的参数和几何尺寸基本相同。
图3为阿基米德圆柱蜗杆传动的主要参数。
通过蜗杆轴线并垂直于蜗轮轴线的平面,称为中间平面。
在中间平面上,蜗杆的齿廓为直线,蜗轮的齿廓为渐开线,蜗杆和蜗轮的啮合相当于齿条和渐开线齿轮的啮合。
因此,蜗杆传动的参数和几何尺寸计算大致与齿轮传动相同,并且在设计和制造中皆以中间平面上的参数和尺寸为基准。
蜗杆传动设计蜗杆传动是在空间交错的两轴间传递运动和动力的一种传动,两轴线间的夹角可为任意值,常用的为90°。
这种传动由于具有结构紧凑、传动比大、传动平稳以及在一定的条件下具有可靠的自锁性等优点,它广泛应用在机床、汽车、仪器、起重运输机械、冶金机械及其它机器或设备中。
基本要求1.熟练掌握蜗杆的传动特点、失效形式和计算准则;2.熟练掌握蜗杆和蜗轮的结构特点;3.掌握蜗杆传动的受力分析、滑动速度和效率;4.掌握蜗杆传动的热平衡计算;5.了解蜗杆传动的强度计算特点;6.了解蜗杆的传动类型;8.1.1 蜗轮蜗杆的形成蜗杆蜗轮传动是由交错轴斜齿圆柱齿轮传动演变而来的。
小齿轮的轮齿分度圆柱面上缠绕一周以上,这样的小齿轮外形像一根螺杆,称为蜗杆。
大齿轮称为蜗轮。
为了改善啮合状况,将蜗轮分度圆柱面的母线改为圆弧形,使之将蜗杆部分地包住,并用与蜗杆形状和参数相同的滚刀范成加工蜗轮,这样齿廓间为线接触,可传递较大的动力。
蜗杆蜗轮传动的特征:其一,它是一种特殊的交错轴斜齿轮传动,交错角为∑=90°,z1很少,一般z1=1~4;其二,它具有螺旋传动的某些特点,蜗杆相当于螺杆,蜗轮相当于螺母,蜗轮部分地包容蜗杆。
8.1.2 蜗杆传动的类型按蜗杆形状的不同可分:1.圆柱蜗杆传动-普通圆柱蜗杆(阿基米德蜗杆、渐开线蜗杆、法向直廓蜗杆、锥面包络蜗杆)和圆弧蜗杆2.环面蜗杆传动3.锥蜗杆传动8.1.3 蜗杆传动的特点传动比大,结构紧凑传动平稳,无噪声具有自锁性传动效率较低,磨损较严重蜗杆轴向力较大,致使轴承摩擦损失较大。
8.1.4 蜗杆传动的应用由于蜗杆蜗轮传动具有以上特点,故常用于两轴交错、传动比较大、传递功率不太大或间歇工作的场合。
当要求传递较大功率时,为提高传动效率,常取z1=2-4。
此外,由于当γ1较小时传动具有自锁性,故常用在卷扬机等起重机械中,起安全保护作用。
它还广泛应用在机床、汽车、仪器、冶金机械及其它机器或设备中;蜗杆传动由蜗杆相对于蜗轮的位置不同分为上置蜗杆和下置蜗杆传动。
8.2.1 普通圆柱蜗杆传动的基本参数及其选择1.基本参数:(1)模数m和压力角α:在中间平面中,为保证蜗杆蜗轮传动的正确啮合,蜗杆的轴向模数ma1和压力角αa1应分别相等于蜗轮的法面模数mt2和压力角αt2,即ma1=mt2=mαa1=αt2蜗杆轴向压力角与法向压力角的关系为:tgαa=tgαn/cosγ式中:γ-导程角。
(2)蜗杆的分度圆直径d1和直径系数q为了保证蜗杆与蜗轮的正确啮合,要用与蜗杆尺寸相同的蜗杆滚刀来加工蜗轮。
由于相同的模数,可以有许多不同的蜗杆直径,这样就造成要配备很多的蜗轮滚刀,以适应不同的蜗杆直径。
显然,这样很不经济。
为了减少蜗轮滚刀的个数和便于滚刀的标准化,就对每一标准的模数规定了一定数量的蜗杆分度圆直径d1,而把及分度圆直径和模数的比称为蜗杆直径系数q,即:q =d1/m常用的标准模数m和蜗杆分度圆直径d1及直径系数q,见匹配表。
(3)蜗杆头数z1和蜗轮齿数z2蜗杆头数可根据要求的传动比和效率来选择,一般取z1=1-10,推荐z1=1,2,4,6。
选择的原则是:当要求传动比较大,或要求传递大的转矩时,则z1取小值;要求传动自锁时取z1=1;要求具有高的传动效率,或高速传动时,则z1取较大值。
蜗轮齿数的多少,影响运转的平稳性,并受到两个限制:最少齿数应避免发生根切与干涉,理论上应使z2min≥17,但z2<26时,啮合区显著减小,影响平稳性,而在z2≥30时,则可始终保持有两对齿以上啮合,因之通常规定z2>28。
另一方面z2也不能过多,当z2>80时(对于动力传动),蜗轮直径将增大过多,在结构上相应就须增大蜗杆两支承点间的跨距,影响蜗杆轴的刚度和啮合精度;对一定直径的蜗轮,如z2取得过多,模数m就减小甚多,将影响轮齿的弯曲强度;故对于动力传动,常用的范围为z2≈28-70。
对于传递运动的传动,z2可达200、300,甚至可到1000。
z1和z2的推荐值见下表i=z2/z1 z1 z2≈5 6 29-317-15 4 29-6114-30 2 29-6129-82 1 29-82(4)导程角γ蜗杆的形成原理与螺旋相同,所以蜗杆轴向齿距pa与蜗杆导程pz的关系为pz=z1pa 由下图可知:tanγ= pz/πd1=z1 pa/πd1=z1m/d1=z1/q导程角γ的范围为 3.5°一33°。
导程角的大小与效率有关。
导程角大时,效率高,通常γ=15°-30°。
并多采用多头蜗杆。
但导程角过大,蜗杆车削困难。
导程角小时,效率低,但可以自锁,通常γ=3.5°一4.5°(5)传动比I传动比i=n主动1/n从动2蜗杆为主动的减速运动中i=n1/n2=z2/z1 =u式中:n1 -蜗杆转速;n2-蜗轮转速。
减速运动的动力蜗杆传动,通常取5≤u≤70,优先采用15≤u≤50;增速传动5≤u≤15。
普通圆柱蜗杆基本尺寸和参数及其与蜗轮参数的匹配表。
8.2.2 蜗杆传动变位的特点蜗杆传动变位变位蜗杆传动根据使用场合的不同,可在下述两种变位方式中选取一种。
1)变位前后,蜗轮的齿数不变(z2 '=z2),蜗杆传动的中心距改变(a '≠a),如图9-8a、c所示,其中心距的计算式如下:a '=a+x2m=(d1+d2+2x2m)/22)变位前后,蜗杆传动的中心距不变(a '=a),蜗轮齿数发生变化(z2'≠z2),如图9-8d、e所示,z2' 计算如下:因a'=a则z2' =z2-2x2蜗杆传动变位:8.2.3 普通圆柱蜗杆传动的几何尺寸计算普通圆柱蜗杆传动基本几何尺寸计算关系式:名称代号计算关系式说明中心距 a a=(d1+d2+2x2m)/2 按规定选取蜗杆头数z1 按规定选取蜗轮齿数z2 按传动比确定齿形角 a aa=20。
或an=20。
按蜗杆类型确定模数m m=ma=mn/cosr 按规定选取传动比i i=n1/n2 蜗杆为主动,按规定选取齿数比u u=Z2/Z1当蜗杆主动时,i=u蜗轮变位系数x2 x2=a/m-(d1+d2)/2m蜗杆直径系数q q=d1/m蜗杆轴向齿距pa pa=πm蜗杆导程pz pz=πmz1蜗杆分度圆直径d1 d1=mq 按规定选取蜗杆齿顶圆直径da1 da1=d1+2ha1=d1+2ha*m蜗杆齿根圆直径df1 df1=d1-2hf1=da-2(ha*m+c)顶隙 c c=c*m 按规定渐开线蜗杆齿根圆直径db1 db1=d1.tgr/tgrb=mz1/tgrb蜗杆齿顶高ha1 ha1=ha*m=1/2(da1-d1) 按规定蜗杆齿根高hf1 hf1=(ha*+c*)m=1/2(da1-df1)蜗杆齿高h1 h1=hf1+ha1=1/2(da1+df1)蜗杆导程角r tgr=mz1/d1=z1/q渐开线蜗杆基圆导程角rb cosrb=cosr.cosan蜗杆齿宽b1 见表11-4 由设计确定蜗轮分度圆直径d2 d2=mz2=2a-d1-2x2.m蜗轮喉圆直径da2 da2=d2+2ha2蜗轮齿根圆直径df2 df2=d2-2ha2蜗轮齿顶高ha2 ha2=1/2(da2-d2)=m(ha*+x2)蜗轮齿根高hf2 hf2=1/2(d2-df2)=m(ha*-x2+c*)蜗轮齿高h2 h2=ha2+hf2=1/2(da2-df2)蜗轮咽喉母圆半径rg2 rg2=a-1/2(da2)蜗轮齿宽b2 由设计确定蜗轮齿宽角θθ=2arcsin(b2/d1)蜗杆轴向齿厚sa sa=1/2(πm)蜗杆法向齿厚sn sn=sa.cosr蜗轮齿厚st 按蜗杆节圆处轴向齿槽宽ea'确定蜗杆节圆直径d1' d1'=d1+2x2m=m(q+2x2)蜗杆节圆直径d2' d2'=d28.3.1 蜗杆传动的失效形式、计算准则及常用材料失效形式:点蚀、齿面胶合及过度磨损由于蜗杆传动类似于螺旋传动啮合效率较低、相对滑动速度较大,点蚀、磨损和胶合最易发生,尤其当润滑不良时出现的可能性更大。
又由于材料和结构上的原因,蜗杆螺旋齿部分的强度总是高于蜗轮轮齿的强度,蜗轮是该传动的薄弱环节。
因此,一般只对蜗轮轮齿进行承载能力计算和蜗杆传动的抗胶合能力计算计算准则:开式传动中主要失效形式是齿面磨损和轮齿折断,要按齿根弯曲疲劳强度进行设计。
闭式传动中主要失效形式是齿面胶合或点蚀而。
要按齿面接触疲劳强度进行设计,而按齿根弯曲疲劳强度进行校核。
此外,闭式蜗杆传动,由于散热较为困难,还应作热平衡核算。
常用材料:蜗杆材料、蜗轮材料不仅要求具有足够的强度,更重要的是要具有良好的跑合性能、耐磨性能和抗胶合性能。
蜗轮传动常采用青铜或铸铁作蜗轮的齿圈,与淬硬并磨制的钢制蜗杆相匹配。
8.3.2 蜗杆传动的载荷和应力分析受力分析以右旋蜗杆为主动件,并沿图示的方向旋转时,蜗杆螺旋面上的受力情况。
设Fn为集中作用于节点P处的法向载荷,它作用于法向截面Pabc内。
Fn可分解为三个互相垂直的分力,即圆周力Ft、径向力Fr和轴向力Fa。
显然,在蜗杆与蜗轮间,载荷Ft1与Fa2、Fr1与Fr2和Fa1与Ft2对大小相等、方向相反的力。
各力的大小可按下式计算:Ft1=Fa2=2T1/d1Ft2=Fa1=2T1/d2Fr1=Fr2=Fa1tanαFn= Fa1/cosαncosγ=Fa2/cosαncosγ=2T2/d2cosαncosγ式中:T1、T2-蜗杆与蜗轮上的转矩N.mm。
确定各力的方向:蜗杆为主动件,蜗杆的圆周力方向与蜗杆上啮合点的速度方向相反;蜗杆为从动件,蜗轮的圆周力方向与蜗轮的啮合点的速度方向相同;蜗杆和蜗轮的轴向力方向分别与蜗轮和蜗杆的周向力方向相反;蜗杆和蜗轮的径向力方向分别指向各自的圆心。
计算载荷Fca=KFn K=KAKβKv式中:K-载荷系数;KA-使用系数;Kβ-齿向载荷分布系数Kv-动载系数。
使用系数(KA)动力机工作机均匀中等冲击严重冲击电动机,汽轮机0.8-1.25 0.9-1.5 1-1.75多缸内燃机0.9-1.50 1-1.75 1.25-2单缸内燃机1-1.75 1.25-2 1.5-2.25注:小值用于每日偶而工作,大值用于长期连续工作。
应力分析由于蜗杆传动中,蜗轮比蜗杆的强度低。
因此,在应力分析中只要了解蜗轮的情况就可以了。
普通圆柱蜗杆传动在中间平面相当于齿条和齿轮的传动,故可以仿照圆柱斜齿轮推倒蜗轮的应力计算公式。
蜗轮齿面接触应力蜗轮齿面接触应力仍来源于赫兹公式。
接触应力Mpa式中:K-载荷系数;Fn-啮合面的法向载荷,N;ZE-材料的弹性影响系数,,对于青铜或铸铁蜗轮与钢蜗杆配对时,取ZE=160();ρ∑-综合曲率;L0-接触线总长,mm。