最新高考数学(理)一轮复习 命题及其关系、充分条件与必要条件
- 格式:pdf
- 大小:3.68 MB
- 文档页数:40
第二课时命题及其关系、充分条件与必要条件考纲要求:1.命题的四种形式(A) 2.充分条件、必要条件、充分必要条件(B)知识梳理:1.命题(1)命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.(2)四种命题及相互关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2p⇒q且q pp q且q⇒pp⇔qp q且q p 1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x2+2x-3<0”是命题.()(2)“sin 45°=1”是真命题.()(3)命题“若p,则q”的否命题是“若p,则非q”.()(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.()(5)当q是p的必要条件时,p是q的充分条件.()(6)当p是q的充要条件时,也可说成q成立当且仅当p成立.()(7)q不是p的必要条件时,成立.()答案:(1)×(2)×(3)×(4)√(5)√(6)√(7)√2.设p,r都是q的充分条件,s是q的充要条件,t是s的必要条件,t是r的充分条件,那么p是t的________条件,r是t的________条件.(用“充分”“必要”“充要”填空)提示:由题知p⇒q⇔s⇒t,又t⇒r,r⇒q,故p是t的充分条件,r是t的充要条件.答案:充分充要3.写出命题“若a,b,c成等比数列,则b2=ac”的逆命题、否命题和逆否命题,并判断其真假性.解:(1)逆命题:若b2=ac,则a,b,c成等比数列,假命题.(2)否命题:若a,b,c不成等比数列,则b2≠ac,假命题.(3)逆否命题:若b2≠ac,则a,b,c不成等比数列,真命题.4.在下列各题中,p是q的什么条件?(1)p:x2=3x+4,q:x=3x+4;(2)p:x-3=0,q:(x-3)(x-4)=0;(3)p:b2-4ac≥0(a≠0),q:ax2+bx+c=0(a≠0)有实根.答案:(1)必要(2)充分(3)充要例题讲解:[典题1](1)命题“若a>b则a-1>b-1”的否命题是________.(2)命题“若x2+y2=0,x,y∈R,则x=y=0”的逆否命题是________.(3)下列命题中为真命题的是________.(填序号)①命题“若x>1,则x2>1”的否命题;②命题“若x>y,则x>|y|”的逆命题;③命题“若x=1,则x2+x-2=0”的否命题;④命题“若x2>1,则x>1”的逆否命题.(4)已知:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是________.(填序号)①否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题;②逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题;③逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题;④逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”,是真命题.解析:(1)根据否命题的定义可知,命题“若a>b,则a-1>b-1”的否命题应为“若a≤b,则a-1≤b-1”.(2)将原命题的条件和结论否定,并互换位置即可.由x=y=0知x=0且y=0,其否定是x≠0或y≠0.(3)对于①,命题“若x>1,则x2>1”的否命题为“若x≤1,则x2≤1”,易知当x=-2时,x2=4>1,故①为假命题;对于②,命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,分析可知②为真命题;对于③,命题“若x=1,则x2+x-2=0”的否命题为“若x≠1,则x2+x-2≠0”,易知当x=-2时,x2+x-2=0,故③为假命题;对于④,命题“若x2>1,则x>1”的逆否命题为“若x≤1,则x2≤1”,易知当x=-2时,x2=4>1,故④为假命题.(4)由f(x)=e x-mx在(0,+∞)上是增函数,则f′(x)=e x-m≥0恒成立,∴m≤1.∴命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案:(1)若a≤b,则a-1≤b-1(2)若x≠0或y≠0,x,y∈R,则x2+y2≠0(3)②(4)④小结:(1)写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.[典题2](1)设x∈R,则“1<x<2”是“|x-2|<1”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)(2)设a,b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)(3)“a =2” 是“函数f (x )=x 2-2ax -3在区间[2,+∞)上为增函数”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:(1)|x -2|<1⇔1<x <3.由于{x |1<x <2}是{x |1<x <3}的真子集,所以“1<x <2”是“|x -2|<1”的充分不必要条件.(2)∵3a >3b >3,∴a >b >1,此时log a 3<log b 3正确;反之,若log a 3<log b 3,则不一定得到3a >3b >3,例如当a =12,b =13时,log a 3<log b 3成立,但推不出a >b >1.故“3a >3b >3”是“log a 3<log b 3”的充分不必要条件.(3)“a =2”⇒“函数f (x )=x 2-2ax -3在区间[2,+∞)上为增函数”,但反之不成立. 答案:(1)充分不必要 (2)充分不必要 (3)充分不必要小结:充要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断.(2)集合法:根据p ,q 成立的对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,常用的是逆否等价法.①非q 是非p 的充分不必要条件⇔p 是q 的充分不必要条件;②非q 是非p 的必要不充分条件⇔p 是q 的必要不充分条件;③非q 是非p 的充要条件⇔p 是q 的充要条件.练习1.设p :1<x <2,q :2x >1,则p 是q 成立的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:由2x >1,得x >0,所以p ⇒q ,但q ⇒/p ,所以p 是q 的充分不必要条件. 答案:充分不必要2.设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:当数列{a n }的首项a 1<0时,若q >1,则数列{a n }是递减数列;当数列{a n }的首项a 1<0时,要使数列{a n }为递增数列,则0<q <1,所以“q >1”是“数列{a n }为递增数列”的既不充分也不必要条件.答案:既不充分也不必要[典题3](1)记不等式x 2+x -6<0的解集为集合A ,函数y =lg(x -a )的定义域为集合B .若“x ∈A ”是“x ∈B ”的充分条件,则实数a 的取值范围为________.(2)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围为________.解析:(1)由x 2+x -6<0,得-3<x <2,即A =(-3,2),由x -a >0,得x >a ,即B =(a ,+∞), 若“x ∈A ”是“x ∈B ”的充分条件,则A ⊆B ,即a ≤-3.(2)由x 2-8x -20≤0得-2≤x ≤10,∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2,∴0≤m ≤3.1+m ≤10,所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].答案:(1)(-∞,-3] (2)[0,3][探究1] 本例(2)条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件.解:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧ m =3,m =9, 即不存在实数m ,使x ∈P 是x ∈S 的充要条件.[探究2] 本例(2)条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围. 解:由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件,∴P ⇒S 且S P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧ 1-m <-2,1+m ≥10. ∴m ≥9,即m 的取值范围是[9,+∞).注意:由充分条件、必要条件求参数.解决此类问题常将充分、必要条件问题转化为集合间的子集关系求解.但是,在求解参数的取值范围时,一定要注意区间端点值的验证,不等式中的等号是否能够取得,决定着端点的取值.练习:已知p :x >1或x <-3,q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是________. 解析:设P ={x |x >1或x <-3},Q ={x |x >a },因为q 是p 的充分不必要条件,所以Q P ,,因此a ≥1.答案:[1,+∞)总结:1.判断四种命题间关系的方法写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充分、必要条件的判断方法(1)定义法:直接判断“若p 则q ”,“若q 则p ”的真假即可.(2)利用集合间的包含关系判断:设A ={x |p (x )},B ={x |q (x )}:若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若AB ,则p 是q 的充分不必要条件,若A =B ,则p 是q的充要条件.注意: 1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p 则q ”的形式.3.要注意“A 是B 的充分不必要条件”与“A 的充分不必要条件是B ”的区别. 课后作业:1.设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是________. 解析:根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.答案:若方程x 2+x -m =0没有实根,则m ≤02.设a ,b 是实数,则“a +b >0”是“ab >0”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:特值法:当a =10,b =-1时,a +b >0,ab <0,故a +b >0ab >0;当a = -2,b =-1时,ab >0,但a +b <0,所以ab >0a +b >0.故“a +b >0”是“ab >0”的既不充分也不必要条件.答案:既不充分也不必要 3.已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是________. 解析:由|x -m |<1得m -1<x <1+m ,又因为|x -m |<1的充分不必要条件是13<x <13,借助数轴,所以⎩⎨⎧m -1≤13,m +1≥12,解得-12≤m ≤43. 答案:⎣⎡⎦⎤-12,43 4.已知a ,b ,c ∈R ,命题“如果a +b +c =3,则a 2+b 2+c 2≥3”的否命题是________. 解析:“a +b +c =3”的否定是“a +b +c ≠3”,“a 2+b 2+c 2≥3”的否定是“a 2+b 2+c 2<3”,故该命题的否命题是:如果a +b +c ≠3,则a 2+b 2+c 2<3.答案:如果a +b +c ≠3,则a 2+b 2+c 2<35.“sin α=cos α”是“cos 2α=0”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:cos 2α=0等价于cos 2α-sin 2α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立.答案:充分不必要6.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是________.(填序号)解析:只有一个平面内的两条相交直线与另一个平面都平行时,这两个平面才相互平行,所以①为假命题;②符合两个平面相互垂直的判定定理,所以②为真命题;垂直于同一直线的两条直线可能平行,也可能相交或异面,所以③为假命题;根据两个平面垂直的性质定理易知④为真命题.答案:②④7.已知α,β的终边在第一象限,则“α>β ”是“sin α>sin β ”的________条件.解析:∵角α,β的终边在第一象限,∴当α=π3+2π,β=π3时,满足α>β,但sin α= sin β,故sin α>sin β不成立,即充分性不成立;当α=π3,β=π6+2π时,满足sin α>sin β,但α>β不成立,即必要性不成立,故“α>β ”是“sin α>sin β ”的既不充分也不必要条件.答案:既不充分也不必要8.在斜三角形ABC 中,命题甲:A =π6,命题乙:cos B ≠12,则甲是乙的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:因为△ABC 为斜三角形,所以若A =π6,则B ≠π3且B ≠π2,所以cos B ≠12且 cos B ≠0;反之,若cos B ≠12,则B ≠π3,不妨取B =π6,A =π4,C =7π12,满足△ABC 为斜三角形.答案:充分不必要9.“a ≥3”是“∀x ∈[1,2],x 2-a ≤0”为真命题的________条件(在“充分不必要”、“必要不充分”、“既不充分也不必要”、“充要”中选择填空).解析:若“∀x ∈[1,2],x 2-a ≤0”为真命题,等价于∀x ∈[1,2],x 2≤a 为真命题,则a ≥4.则“a ≥3”是“a ≥4”的必要不充分条件.答案:必要不充分10.在下列三个结论中,正确的是________.(写出所有正确结论的序号)①若A 是B 的必要不充分条件,则綈B 也是綈A 的必要不充分条件;②“⎩⎪⎨⎪⎧ a >0,Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件; ③“x ≠1”是“x 2≠1”的充分不必要条件.解析:易知①②正确.对于③,若x =-1,则x 2=1,充分性不成立,故③错误. 答案:①②11.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是[3,8).答案:[3,8)12.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题.其中真命题的序号是________.解析:①原命题的否命题为“若a ≤b ,则a 2≤b 2”,假命题.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”,真命题.③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”,真命题.答案:②③13.设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:若函数f (x )=cos(x +φ)(x ∈R )为偶函数,则φ=k π,k ∈Z ,所以由“φ=0”,可以得到“f (x )=cos(x +φ)(x ∈R )为偶函数”,但由“f (x )=cos(x +φ)(x ∈R )为偶函数”,可以得到φ=k π,k ∈Z ,因此“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的充分不必要条件.答案:充分不必要14.使函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x ≤1,log a x ,x >1在(-∞,+∞)上是减函数的一个充分不必要条件是________.(填序号)①17≤a <13;②0<a <13;③17<a <13;④0<a <17. 解析:由f (x )在(-∞,+∞)上是减函数可得3a -1<0,0<a <1,7a -1≥0,即17≤a <13,所求应该是⎣⎡⎭⎫17,13的真子集,故③正确.答案:③ 15.在四边形ABCD 中,“存在λ∈R ,使得,”是“四边形ABCD 为平行四边形”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:若存在λ∈R ,使得,,则AB ∥CD ,AD ∥BC ,故四边形ABCD 为平行四边形.反之,若四边形ABCD 为平行四边形,则存在λ=1满足题意.答案:充要16.已知函数f (x )=13x -1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的________条件.(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填写)解析:若f (x )=13x -1+a 是奇函数,则f (-x )=-f (x ),即f (-x )+f (x )=0,∴13-x -1+a +13x -1+a =2a +3x 1-3x +13x -1=0,即2a +3x -11-3x =0,∴2a -1=0,即a =12,f (1)=12+12=1.若f (1)=1,即f (1)=12+a =1,解得a =12,代入得,f (-x )=-f (x ),f (x )是奇函数.∴“f (1)=1”是“函数f (x )为奇函数”的充要条件.答案:充要17.若方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是________. 解析:方程x 2-mx +2m =0对应二次函数f (x )=x 2-mx +2m ,若方程x 2-mx +2m =0有两根,其中一根大于3一根小于3,则f (3)<0,解得m >9,即方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是m >9.答案:m >918.已知p :|x -a |<4;q :(x -2)(3-x )>0,若綈p 是綈q 的充分不必要条件,则a 的取值范围为________.解析:∵綈p 是綈q 的充分不必要条件,∴q 是p 的充分不必要条件.对于p ,|x -a |<4,∴a -4<x <a +4,对于q,2<x <3,∴(2,3)(a -4,a +4),∴⎩⎪⎨⎪⎧ a -4≤2,a +4≥3(等号不能同时取到), ∴-1≤a ≤6.答案:[-1,6]。
其次节命题及其关系、充分条件与必要条件1.命题p:“若x2<1,则x<1”的逆命题为q,则p与q的真假性为( )A.p真q真B.p真q假C.p假q真D.p假q假答案 D q:若x<1,则x2<1.由x2<1,解得-1<x<1,∴p假,当x<1时,x2<1不肯定成立,∴q假.故选D.2.“x<0”是“ln(x+1)<0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B ln(x+1)<0⇔0<x+1<1⇔-1<x<0⇒x<0;而x<0⇒/-1<x<0.故选B.3.“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 B 直线ax+y+1=0与直线(a+2)x-3y-2=0垂直,所以a(a+2)+1×(-3)=0,解得a=1或a=-3,故“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的充分不必要条件.4.(2024辽宁沈阳质检)命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为( )A.“若x=4,则x2+3x-4=0”,真命题B.“若x≠4,则x2+3x-4≠0”,真命题C.“若x≠4,则x2+3x-4≠0”,假命题D.“若x=4,则x2+3x-4=0”,假命题答案 C 依据逆否命题的定义可以解除A、D,因为x2+3x-4=0,所以x=-4或1,故原命题为假命题,即逆否命题为假命题.5.(2024江西南昌摸底调研)已知m,n为两个非零向量,则“m·n<0”是“m与n的夹角为钝角”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件<θ<π,则cosθ<0,则m·n<0成立;当θ=π答案 B 设m,n的夹角为θ,若m,n的夹角为钝角,则π2时,m·n=-|m|·|n|<0成立,但m,n的夹角不为钝角.故“m·n<0”是“m与n的夹角为钝角”的必要不充分条件,故选B.6.下列有关命题的说法正确的是( )A.命题“若xy=0,则x=0”的否命题为“若xy=0,则x ≠0”B.命题“若cosx=cosy,则x=y ”的逆否命题为真命题C.命题“a,b 都是有理数”的否定是“a,b 都不是有理数”D.“若x+y=0,则x,y 互为相反数”的逆命题为真命题答案 D A 中,命题的否命题为“若xy ≠0,则x ≠0”,选项A 不正确;B 中,命题“若cosx=cosy,则x=y ”为假命题,因此其逆否命题为假命题;对于C,命题“a,b 都是有理数”的否定是“a,b 不都是有理数”,所以C 错误;D 中命题为真命题.故选D.7.已知命题α:假如x<3,那么x<5;命题β:假如x ≥3,那么x ≥5;命题γ:假如x ≥5,那么x ≥3.关于这三个命题之间的关系,下列说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③B.②C.②③D.①②③答案 A 本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换,故①正确,②错误,③正确.8.已知等差数列{a n }的公差为d,前n 项和为S n ,则“d>0”是“S 4+S 6>2S 5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 C 解法一:S 4+S 6>2S 5等价于(S 6-S 5)+(S 4-S 5)>0,等价于a 6-a 5>0,等价于d>0.故选C.解法二:∵S n =na 1+12n(n-1)d,∴S 4+S 6-2S 5=4a 1+6d+6a 1+15d-2(5a 1+10d)=d,则S 4+S 6>2S 5等价于d>0.故选C. 9.设a,b ∈R,则“a>b ”是“a|a|>b|b|”的 条件.答案 充要解析 设f(x)=x|x|,则f(x)={x 2,x ≥0,-x 2,x <0,所以f(x)是R 上的增函数,所以“a>b ”是“a|a|>b|b|”的充要条件.10.原命题“设a 、b 、c ∈R,若a>b,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为 .答案 2解析 由题意可知原命题是假命题,所以其逆否命题是假命题;逆命题为“设a 、b 、c ∈R,若ac 2>bc 2,则a>b ”,该命题是真命题,所以否命题也是真命题.故真命题有2个11.已知p(x):x2+2x-m>0,若p(1)是假命题,p(2)是真命题,则实数m的取值范围是.答案[3,8)解析因为p(1)是假命题,所以1+2-m≤0,解得m≥3,又p(2)是真命题,所以4+4-m>0,解得m<8.故实数m 的取值范围是[3,8).12.(2024安徽合肥模拟)已知条件p:x∈A,且A={x|a-1<x<a+1},条件q:x∈B,且B={x|y=√x2-3x+2}.若p是q的充分条件,则实数a的取值范围是.答案{a|a≤0或a≥3}解析易得B={x|x≤1或x≥2},且A={x|a-1<x<a+1},因为p是q的充分条件,所以A⊆B,所以a+1≤1或a-1≥2,所以a≤0或a≥3.所以实数a的取值范围是{a|a≤0或a≥3}.13.写出命题“已知a,b∈R,若关于x的不等式x2+ax+b≤0有非空解集,则a2≥4b”的逆命题、否命题、逆否命题,并推断它们的真假.解析(1)逆命题:已知a,b∈R,若a2≥4b,则关于x的不等式x2+ax+b≤0有非空解集,为真命题.(2)否命题:已知a,b∈R,若关于x的不等式x2+ax+b≤0无实数解,则a2<4b,为真命题.(3)逆否命题:已知a,b∈R,若a2<4b,则关于x的不等式x2+ax+b≤0无实数解,为真命题.。
第二节命题及其关系、充分条件与必要条件1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否\要命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.突破点一命题及其关系抓牢双基自学回扣[基本知识]1. 命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题•其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2. 四种命题及相互关系3. 四种命题的真假关系⑴若两个命题互为逆否命题,则它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.[基本能力]一、判断题(对的打,错的打“X” )⑴“x2+ 2x—8V0” 是命题.()(2) 一个命题非真即假.()(3) 四种形式的命题中,真命题的个数为0或2或4.( )⑷命题“若p,则q”的否命题是“若p,则綈q”.( )答案:(1)X (2)V (3) V (4) X二、填空题1•命题“若x2<4,则—2vx<2”的否命题为____________________ ,为________ (填“真”或“假”)命题.答案:若x2》4,贝U x> 2或x<—2真2. 设m € R,命题“若m>0,则方程x2+ x —m = 0有实根”的逆否命题是答案:若方程x2+ x—m= 0没有实根,贝U m w 03. 有下列几个命题:1 1⑴“若a>b,则a>b”的否命题;(2) “若x+ y= 0,则x, y互为相反数”的逆命题;(3) “若|x|<4,则—4VXV4”的逆否命题.其中真命题的序号是 __________ .1 1解析:⑴原命题的否命题为“若a< b,则-w二”,假命题;⑵原命题的逆命题为 a bx, y互为相反数,则x + y= 0”,真命题;(3)原命题为真命题,故逆否命题为真命题.答案:⑵(3)研透高考•深化提能[全析考法]考法一命题真假的判断•[例1]下面的命题中是真命题的是()2A. y= sin x的最小正周期为2 nB. 若方程ax2+ bx+ c= 0(a^ 0)的两根同号,则->0aC .如果M ? N,那么M U N = M—> —>D .在△ ABC中,若AB -BC >0,贝U B为锐角[解析]y= sin2x = 1 —;S 2, T =今=n,故A为假命题;当M ? N时,M U N 故C为假命题;在三角形ABC中,当瓦I BC >0时,向量云S与百?的夹角为锐角,为钝角,故D为假命题,故选 B.[答案]B[方法技巧]判断命题真假的思路方法(1) 判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2) 当一个命题改写成“若p,则q”的形式之后,判断这个命题真假的方法:①若由p”经过逻辑推理,得出q”,则可判定“若P,则q”是真命题;②判定“若P,则q”是假命题,只需举一反例即可.考法二四种命题的关系•[例2](1)(2019长春质监)命题“若x2<1,则—1VXV1 ”的逆否命题是()A .若x2> 1,则x> 1 或x w—12B.若—1<x<1,贝V x <12C .若x>1 或x< —1,贝U x >12D .若x > 1 或x<—1,贝U x》1(2)(2019广•东中山一中第一次统测)下列命题中为真命题的是()A .命题"若x>y,则x>|y|”的逆命题B. 命题“若x>1,则x2>1 ”的否命题C. 命题“若x= 1,则x2+ x —2= 0”的否命题D .命题“若x2>0 ,则x>1 ”的逆否命题[解析](1)命题的形式是“若p,则q”,由逆否命题的知识,可知其逆否命题为“若綈q,则綈p”的形式,所以“若x2<1,则—1vxv1 ”的逆否命题是“若x> 1或x w —1, 则x2> 1”.故选D.⑵命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,是真命题,故A正确;命题“若x>1,则x2>1”的否命题为“若x w 1,则x2< 1”,是假命题,故B错误;命题“若x= 1,则x2+ x—2 = 0”的否命题为“若x工1,则x2+ x—2工0”,是假命题,故C错误;命题“若x2>0,则x>1”的逆否命题为“若x w 1,则x2w 0”,是假命题,故D错误.选A.[答案](1)D (2)A[方法技巧]四种命题的关系及真假判断(1) 判断关系时,先分清命题的条件与结论,再分析每个命题的条件与结论之间的关系,注意四种命题间关系的相对性.(2) 命题真假的判断方法①直接判断法:若判断一个命题为真,需经过严格的推理证明;若说明为假,只需举一反例.②间接判断法:转化成等价命题,再判断.[集训冲关]1.[考法二]命题“若a= n,则tan a= 1”的逆否命题是()A .若a^f,则tan aM 14B.若a= ~7,则tan aM 14…nC .右tan aM 1,贝U aM4nD .若tan a丰 1,贝U a=T4解析:选C 否定原命题的结论作条件,否定原命题的条件作结论所得的命题为逆否命题,可知C正确.2. [考法一、二]原命题为“若Z1, Z2互为共轭复数,则|Z i|=|Z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A .真,假,真B.假,假,真C .真,真,假D .假,假,假解析:选B 因为原命题为真,所以它的逆否命题为真;若|Z i|= |Z2|,当z i= 1, Z2 = -1时,这两个复数不是共轭复数,所以原命题的逆命题为假,故否命题也为假.故选 B.+ 0, Ovxvl,3. [考法一]定义“正对数”:ln x = 现有四个命题:IJn x, x> 1.①若a>0, b>0,贝V In+(a b) = bln+a ;②若a>0, b>0,贝V In (ab)= In a+ In b;③若a>0, b>0,贝U In +房In+a - In +b;④若a>0, b>0,贝V In (a+ b)< In a+ In b+ In 2.其中的真命题有 ________ (写出所有真命题的编号).解析:对于①,当a > 1时,a b> 1,则In (a b)= In a b= bIn a= bIn a;当0<a<1 时,0<a b<1,则In+(a b)= 0, bIn+a= 0,即In*(a b)= bIn^a,故①为真命题.同理讨论a, b在(0,+s)内的不同取值,可知③④为真命题.对于②,可取特殊值 a = e, b=1,e贝V In,ab) = 0, In*a + In*b= 1 + 0= 1,故②为假命题.综上可知,真命题有①③④.答案:①③④突破点二充分条件与必要条件抓牢双基•自学回扣[基本知识]1.充分条件与必要条件的概念2.一、判断题(对的打,错的打“X” )(1) 当q是p的必要条件时,p是q的充分条件.()(2) 当p是q的充要条件时,也可说成q成立当且仅当p成立.()(3) “ x= 1”是“ x2—3x+ 2 = 0”的必要不充分条件.()答案:⑴“(2)V (3) X二、填空题1. ______________________________ “x = 3”是“ x2=9”的条件(填“充分不必要”或“必要不充分” _______________ ).答案:充分不必要2. ab>0”是“ a>0, b>0” 的_______ 条件.答案:必要不充分3. xy= 1 是lg x+ lg y= 0 的________ 条件.解析:lg x + lg y= lg(xy) = 0,/• xy= 1 且x>0, y>0.所以“lg x + lg y= 0”成立,xy= 1必成立,反之无法得到x>0 , y>0.因此“xy= 1”是“lg x+ lg y= 0”的必要不充分条件.答案:必要不充分4. 设p, r都是q的充分条件,s是q的充要条件,t是s的必要条件,t是r的充分条件,那么p是t的____________ 条件,r是t的 ___________ 条件(用“充分不必要”“必要不充分” “充要”填空).解析:由题知p? q? s? t,又t? r, r? q,故p是t的充分不必要条件,r是t的充要条件.答案:充分不必要充要研透高考廉化提能[全析考法]考法一充分条件与必要条件的判断•[例1](1)(2018北京高考)设a, b, c, d是非零实数,则“ ad= be”是“ a, b, c, d成等比数列”的()A .充分而不必要条件B.必要而不充分条件C .充分必要条件D.既不充分也不必要条件11 交(2)(2018 天•津高考)设x € R,则“ x -寸V ;” 是“ x3V 1 ”的( )A .充分而不必要条件B.必要而不充分条件C•充要条件D.既不充分也不必要条件[解析](1)a, b, e, d 是非零实数,若a<0, d<0, b>0, e>0,且ad= be,则a, b , e , d不成等比数列(可以假设a= —2, d=- 3, b= 2 , e= 3).若a , b , e , d成等比数列,贝U 由等比数列的性质可知ad= be.所以“ad= be”是“a , b , e , d成等比数列”的必要而不充分条件.1 1 ,(2)由X-2 V 2,得0 V X V 1,则0V x3v 1 ,1 1 3即“ x-2 V 2” ? “ x3V 1”;1 1由x3V 1 ,得X V 1,当x< 0 时,x- 1 > -,2 2即“ x3V 1 ”* “ x -1 V 2 ”.1 1 3所以“ x-1V 1”是“ x3V 1”的充分而不必要条件.2 2[答案](1)B (2)A[方法技巧]充分、必要条件的判断方法考法二根据充分、必要条件求参数范围[例2](2019大庆质检)已知p:x< 1+ m, q:|x—4|w 6.若p是q的必要不充分条件,则m的取值范围是()A. (— m,—1]B. (— 8, 9]C. [1,9]D. [9,+m )[解析]由|x—4|W 6,解得一2< x< 10,因为p是q的必要不充分条件,所以m+ 1> 10, 解得m> 9.故选D.[答案]D[方法技巧]根据充分、必要条件求参数范围的思路方法(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[集训冲关]1. [考法一]已知m,n为两个非零向量,贝U"mnv0”是"m与n的夹角为钝角”的()A .充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 设m, n的夹角为0,若才< 0v n,则cos 0<0,所以m n<0 ;若0= n则m n=—|m| |n|<0.故“ m n<0”是“ m与n的夹角为钝角”的必要不充分条件.故选 B.2. [考法一]已知a, B均为第一象限角,那么“a> g'是“ sin a>sin 的()A .充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件解析:选D a= 7n B=寸均为第一象限角,满足a> g但sin a= sin g因此不满足充3 3分性;a=—5n, 3=;均为第一象限角,满足sin a>sin g,但a< g因此不满足必要性.故3 6选D.3. [考法二]设M为实数区间,a>0且1,若“ a € M”是“函数f(x)= log a|x—1|在(0,1)上单调递增”的充分不必要条件,则区间M可以是()C • (0,1) D. 0, 1 2解析:选D 由函数f(x)= log a|x —1|在(0,1)上单调递增可知0<a<1,由题意及选项知区间M可以是0,1 .故选D.4.[考法二]已知p:(x—m)3>3(x—m)是q:x2+ 3x—4<0的必要不充分条件,则实数m 的取值范围为_____________ .解析:p对应的集合A= {x|x<m或x>m+ 3}, q对应的集合 B = {x| —4<x<1}.由p是q的必要不充分条件可知 B A,/• m> 1 或m+ 3< —4,即m> 1 或m< —7.答案:(—a, —7]U [1 ,+^ )[课时跟踪检测]2(2019合肥模拟)命题“若a2+ b2= 0,贝V a= 0且b= 0”的逆否命题是()A .若a丰 0 或b z 0,贝U a2+ b2z 0B.若a2+ b2z 0,贝y a丰0 或b z 0C .若a = 0 或b= 0,贝U a2+ b2z 0D .若a2+ b2z 0,贝y a z 0 且b z 0解析:选A 原命题的逆否命题为“若a z0或b z 0,则a2+ b2z 0”.故选A.3(2018 天津高考)设x€ R,则“ x3 4>8” 是“ |x|>2”的()A .充分而不必要条件B.必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由x3> 8? x> 2? |x|> 2,反之不成立,故“x3>8”是“ |x|>2”的充分而不必要条件.解析:选A 因为y = 2 x 是增函数,又a>1,所以3 a >i ,所以3a >2a ;若3a >2a , 则/>1 = g :,所以a>0,所以a>1 ”是3a >2a ”的充分不必要条件,故选 A.5.已知下列三个命题:① 若一个球的半径缩小到原来的 2,则其体积缩小到原来的 8 ② 若两组数据的平均数相等,则它们的标准差也相等; ③ 直线x + y + 1 = 0与圆x 2 + y 2= 1相切. 其中真命题的序号为( )A .①②③B .①②C .①③D .②③解析:选C对于命题①,设球的半径为 R ,则4 n R 3 = 1-u R 3,故体积缩小到原来的3 y 8 38,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确; 半径,所以直线与圆相切,命题正确.26. (2019咸阳模拟)已知p : m =— 1, q :直线x — y = 0与直线x + m y = 0互相垂直, 则p 是q 的()A •充分不必要条件B .必要不充分条件C •充要条件D •既不充分也不必要条件2 一 1解析:选A 由题意得直线 x + m 2y = 0的斜率是—1,所以 肓 =—1, m = ±. 所以p 是q 的充分不必要条件•故选A.7. (2019重庆调研)定义在R 上的可导函数f(x),其导函数为f ' (x),则“ f ' (x)为偶函 数”是“ f(x)为奇函数”的()A •充分不必要条件B .必要不充分条件C •充要条件D •既不充分也不必要条件解析:选 B •/ f(x)为奇函数,••• f( — x) =— f(x).「. [f( — x)] = [— f(x)] =— f ' (x), ••• f ' (— x)= f ' (x) ,即卩 f ' (x)为偶函数;反之,若 f ' (x)为偶函数,如 f ' (x)= 3x 2, f(x)=对于命题③, 圆x 2+ / = *的圆心(0,0)到直线x + y + 1 = 0的距离d =吩等于圆的1x3+ 1满足条件,但f(x)不是奇函数,所以“ f'(X)为偶函数”是“ f(x)为奇函数”的必要不充分条件.故选B.8. (2019抚州七校联考)A, B, C三个学生参加了一次考试,A, B的得分均为70分,C的得分为65分.已知命题p:若及格分低于70分,贝U A,B,C都没有及格.则下列四个命题中为p的逆否命题的是()A .若及格分不低于70分,则A, B, C都及格B.若A, B, C都及格,则及格分不低于70分C .若A, B, C至少有一人及格,则及格分不低于70分D •若A, B, C至少有一人及格,则及格分高于70分解析:选C 根据原命题与它的逆否命题之间的关系知,命题p的逆否命题是若A, B,C 至少有一人及格,则及格分不低于70 分.故选C.9. (2019济南模拟)原命题:“ a, b为两个实数,若a + b>2,则a, b中至少有一个不小于1”,下列说法错误的是( )A. 逆命题为:a, b为两个实数,若a, b中至少有一个不小于1,则a+b>2,为假命题B. 否命题为:a, b为两个实数,若a + b<2,则a, b都小于1,为假命题C .逆否命题为:a, b为两个实数,若a, b都小于1,则a + b<2,为真命题D. a, b为两个实数,“a+ b》2”是“a, b中至少有一个不小于1”的必要不充分条件解析:选D 原命题:a, b为两个实数,若a+ b> 2,则a, b中至少有一个不小于1; 逆命题:a, b为两个实数,若a, b中至少有一个不小于1,则a+ b> 2;否命题:a, b为两个实数,若a + b<2,则a, b都小于1;逆否命题:a, b为两个实数,若a, b都小于1, 则a+ b<2.逆否命题显然为真,故原命题也为真;若a= 1.2, b= 0.5,则a+ b> 2不成立,逆命题为假命题,所以否命题为假命题. 所以“ a+ b>2”是“a, b中至少有一个不小于1 ” 的充分不必要条件.故选D.10. 已知:p:x> k, q:(x+ 1)(2 —x)<0,如果p是q的充分不必要条件,则实数k的取值范围是( )A. [2,+s )B. (2,+^ )C. [1 ,+^ )D. (— a, —1]解析:选B 由q:(x + 1)(2 —x)<0,得x< —1或x>2,又p是q的充分不必要条件,所以k>2,即实数k的取值范围是(2, + a),故选B.11. 在原命题“若A U B工B,则A A B M A”与它的逆命题、否命题、逆否命题中,真命题的个数为________ .解析:逆命题为“若A A B M A,贝U A U B M B” ;否命题为“若A U B= B,贝U A A B = A” ;逆否命题为“若A A B = A,贝U A U B= B”.全为真命题.答案:412.已知命题"若 m — ivxvm + 1,贝U 1<x<2”的逆命题为真命题,则 m 的取值范围是 解由已知得,若1<x<2成立, 则m — 1<xvm + 1也成立.m —1<1, K m < 2. m + 1 > 2.答案:[1,2]13.条件p : 1 — x<0,条件q : x>a ,若p 是q 的充分不必要条件,则 a 的取值范围是 解析:p : x>1,若p 是q 的充分不必要条件,则p ? q ,但q ' p ,也就是说,p 对应的集合是q 对应的集合的真子集,所以 a<1.答案:(—3 1) 14. (2019湖南十校联考)已知数列{a n }的前n 项和S n = Aq n + B(q M 0),则“ A =— B ” 是“数列{a n }为等比数列”的 ____________ 条件.解析:若A = B = 0,贝y S n = 0,数列{a n }不是等比数列.2 3如果{a n }是等比数列,由 a 1= S 1 = Aq + B ,得 a 2= S 2 — a 1= Aq — Aq , a 3= S 3 — S 2= Aq —Aq 2,.a 1a 3= a 2,从而可得 A =— B ,故“A =— B ”是“数列{a n }为等比数列”的必要不充分条件.答案:必要不充分15. (2019湖南长郡中学模拟)已知函数f(x)= 4sin 2 ;+ x - 2.3遇 2x — 1, p : n< x < 才, q : |f(x)— m|<2,若p 是q 的充分不必要条件,求实数 m 的取值范围. =4sin ( 2x — n ) + 1.当毛 寸,n 2x —J 4 2 6 3 3 则 f w sin 2x —n w 1,所以 f(x)€ [3,5]. 当 |f(x) — m|<2 时,f(x) € (m — 2, m + 2). 又p 是q 的充分不必要条件,了m — 2<3,所以 所以3<m<5.|m + 2>5,解:化简解析式,=2sin 2x — 2 3cos 2x + 11 — cos 得 f(x) = 4^ --------- cos 2x — 1即实数m的取值范围为(3,5).3. 下列命题中为真命题的是()A. mx2+ 2x—1 = 0是一元二次方程B. 抛物线y= ax2+ 2x—1与x轴至少有一个交点C .互相包含的两个集合相等D.空集是任何集合的真子集解析:选C A中,当m = 0时,是一元一次方程,故是假命题;B中,当△= 4+ 4a<0, 即a< —1时,抛物线与x轴无交点,故是假命题;C是真命题;D中,空集不是本身的真子集,故是假命题.4. (2019 •肥调研)a>1 ”是“3>2a”的()A .充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件。