山东高二数学期末考知识点
- 格式:docx
- 大小:37.25 KB
- 文档页数:4
数学高二上册期末考知识点一、平面向量1. 向量的定义和性质2. 向量的加法和减法3. 向量的标量乘法4. 向量的数量积和向量积5. 向量的共线和垂直关系6. 平面向量的坐标表示和运算二、立体几何1. 空间几何基本概念2. 空间中的直线和平面3. 空间中的角度4. 平面与平面的位置关系5. 直线与直线的位置关系6. 空间中的几何体的性质和计算三、复数与复平面1. 复数的定义和运算2. 复数的共轭和模3. 复数的三角形式和指数形式4. 复数的乘方和根式四、函数与方程1. 函数的概念和性质2. 基本初等函数的图像和性质3. 反函数和复合函数4. 复函数和实函数5. 方程的根和解的性质6. 一元一次方程和一元二次方程7. 一次函数和二次函数的图像和性质五、数列与数学归纳法1. 数列的概念和性质2. 等差数列和等比数列3. 通项公式和求和公式4. 数学归纳法的原理和应用六、三角函数与解三角形1. 角度的概念和性质2. 弧度制和角度制的互相转化3. 三角函数的定义和性质4. 三角函数的图像和周期性5. 三角函数的基本关系6. 正弦定理和余弦定理7. 几何平均定理和正弦定理的应用七、导数与函数的应用1. 导数的概念和性质2. 函数的极限和连续性3. 导函数的计算和性质4. 函数的增减性和极值5. 函数的图像和曲率6. 函数的应用,如求函数的最值、问题的优化等八、数理统计与概率1. 统计基本概念和统计图表2. 随机事件和概率3. 概率的基本性质和运算4. 离散型随机变量和连续性随机变量5. 期望、方差和标准差6. 伯努利试验、二项分布和正态分布7. 抽样调查和样本均值的分布以上是数学高二上册期末考的知识点,包括平面向量、立体几何、复数与复平面、函数与方程、数列与数学归纳法、三角函数与解三角形、导数与函数的应用,以及数理统计与概率。
通过对这些知识的学习和掌握,同学们可以更好地应对期末考试,提高数学成绩。
希望大家认真学习,取得好成绩!。
2021年山东省济宁市曲阜第二中学高二数学理期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知{a n}是等差数列,其前n项和为S n,若a3=7﹣a2,则S4=()A.15 B.14 C.13 D.12参考答案:B【考点】等差数列的性质;等差数列的前n项和.【专题】等差数列与等比数列.【分析】利用已知条件求出a3+a2的值,然后求解S4的值.【解答】解:由题意可知a3=7﹣a2,a3+a2=7,S4=a1+a2+a3+a4=2(a3+a2)=14.故选:B.【点评】本题考查等差数列的基本性质,数列求和,基本知识的考查.2. 设,则a,b,c 的大小是()A. a>c>bB. b>a>cC. b>c>aD. a>b>c参考答案:D【分析】利用指数函数与对数函数的单调性即可得出.【详解】,,,故选:D【点睛】本题考查了指数函数与对数函数的单调性的应用,属于基础题.3. 已知实数x,y满足条件,则z = x + 3y的最小值是()A.B.C.12 D.-12参考答案:B略4. 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为()A.B.C.D.参考答案:D【考点】相互独立事件的概率乘法公式.【专题】概率与统计.【分析】先由题意根据独立事件的概率乘法公式求得两人都击不中的概率,再用1减去此概率,即为目标被击中的概率.【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1﹣)(1﹣)=,故目标被击中的概率为1﹣=,故选:D.【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.5. 已知x>0,y>0,且.若恒成立,则m的取值范围为()A.(3,4) B.(-4,3) C.(-∞,3)∪(4,+∞) D.(-∞,-4)∪(-3,+∞)参考答案:C6. 给定命题:函数和函数的图象关于原点对称;命题:当时,函数取得极小值.下列说法正确的是()A.是假命题B.是假命题C.是真命题D.是真命题参考答案:B略7. 的值为().A. B. C. D.-参考答案:D略8. 已知三棱柱ABC-A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于 ( )A B. C. D.参考答案:B9. f(x)是集合A到集合B的一个函数,其中,A={1,2,…,n},B={1,2,…,2n},n∈N*,则f(x)为单调递增函数的个数是()A.B.n2n C.(2n)n D.参考答案:D【考点】D8:排列、组合的实际应用.【分析】所有的从集合A到集合B的函数f(x)总共有(2n)n个,每从B的2n元素中选取n个元素的一个组合,就对应了一个增函数f(x),故单调递增函数f(x)的个数为C2n n,即可得出结论.【解答】解:所有的从集合A到集合B的函数f(x)总共有(2n)n个,从1,2, (2)中任意取出n个数,唯一对应了一个从小到大的排列顺序,这n个从小到大的数就可作为A中元素1,2,…,n的对应函数值,这个函数就是一个增函数.每从B的2n元素中选取n个元素的一个组合,就对应了一个增函数f(x),故单调递增函数f(x)的个数为C2n n,故选:D.10. 已知两个等差数列和的前项和分别为A和,且,则使得为整数的正整数的个数是()A.2 B.3 C.4 D.5参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 某工厂有三个车间,现将7名工人全部分配到这三个车间,每个车间至多分3名,则不同的分配方法有______________种.(用数字作答)参考答案:1050略12. 从如图所示的长方形区域内任取一个点M(x,y), 则点M 取自阴影部分的概率为.参考答案:略13. 在△ABC中,a=1,B=45°,S△ABC=2,则b= .参考答案:5【考点】正弦定理;余弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】由已知利用三角形面积公式可求c的值,根据余弦定理即可求b的值.【解答】解:∵在△ABC中,a=1,B=45°,S△ABC=2=acsinB=,可得:ac=4,∴c=4,∴b===5.故答案为:5.【点评】本题主要考查了三角形面积公式,余弦定理在解三角形中的综合应用,属于基础题.14. 设有两个命题:①关于x的不等式mx2+1>0的解集是R;②函数f(x)=log m x是减函数,如果这两个命题中有且只有一个真命题,则实数m的取值范围是________.参考答案:m≥1或m=015. 已知双曲线的方程为,则它的离心率为______.参考答案:216. 已知椭圆:的焦距为4,则m为.参考答案:4或8【考点】椭圆的标准方程.【分析】分焦点在x,y轴上讨论,结合焦距为4,可求m的值.【解答】解:由题意,焦点在x轴上,10﹣m﹣m+2=4,所以m=4;焦点在y轴上,m﹣2﹣10+m=4,所以m=8,综上,m=4或8.故答案为:m=4或8.17. 函数f(x)是周期为4的偶函数,当时,,则不等式在[-1,3]上的解集为___________参考答案:【分析】根据函数的周期性、奇偶性以及时的解析式,画出函数的图像,由此求得的解集.【详解】根据函数周期为的偶函数,以及时,,画出函数图像如下图所示,由图可知,当时符合题意;当时,符合题意.综上所述,不等式的解集为.【点睛】本小题主要考查函数的周期性、奇偶性,考查不等式的解法,考查数形结合的数学思想方法,属于中档题.三、解答题:本大题共5小题,共72分。
高二数学期末考什么知识点数学是一门涵盖广泛的学科,高二数学期末考试所涉及的知识点也是非常多样的。
在这篇文章中,我们将探讨高二数学期末考试可能涉及的主要知识点,以帮助同学们更好地准备考试。
1. 二次函数与一次函数高二数学学习的重要内容之一是二次函数与一次函数。
对于这两种函数,同学们需要掌握它们的性质、图像以及相关的解题方法。
在考试中,可能会涉及二次函数的开口方向、顶点坐标、零点的求解等问题,还可能会要求分析一次函数的斜率、截距等特征。
2. 数列与等差数列数列是数学中的一个重要概念,而等差数列是数列中的一种常见形式。
在数列与等差数列的学习中,同学们需要了解数列的概念、通项公式以及求和公式等内容。
在考试中,可能会出现数列的递推公式的求解、等差数列的首项、公差以及求和等相关问题。
3. 三角函数三角函数是高中数学中的一个重要内容,高二数学期末考试可能会涉及到三角函数的性质、单位圆上的角度、特殊角的数值等。
同学们需要熟悉正弦、余弦、正切等三角函数的定义、性质以及在平面几何中的应用。
4. 平面向量平面向量也是高二数学中的一个重要内容。
同学们需要掌握平面向量的定义、加法、数量积以及向量的模、方向角等概念。
在考试中,可能会出现向量的加减法、数量积的计算、解决几何问题等相关题目。
5. 空间几何空间几何是高二数学中的一部分,涉及到直线、平面、空间图形等内容。
在考试中,可能会涉及到空间中直线与平面的位置关系、空间图形的投影等问题。
同学们需要熟悉直线与平面的方程、求解交点、计算距离等相关知识。
6. 导数与微分高二数学中的导数与微分是重要的数学工具。
同学们需要了解导数的定义、性质以及其在解析几何和函数研究中的应用。
在考试中,可能会涉及函数的极值、曲线的切线方程、微分方程等问题。
7. 概率与统计概率与统计是高中数学中的一个模块,同学们需要了解概率与统计的基本概念、计算方法以及应用。
在考试中,可能会出现概率计算、统计分析等相关题目。
山东省青岛市墨尔文中学2021-2022学年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的零点所在的一个区间是().A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)参考答案:C2. 复数的共轭复数是()A. B. C. D.参考答案:D分析】先对复数进行化简,然后再求解其共轭复数.【详解】,所以共轭复数为.故选D.【点睛】本题主要考查复数的运算及共轭复数,共轭复数的求解一般是先化简复数,然后根据实部相同,虚部相反的原则求解.3. 实半轴长等于,并且经过点B(5,﹣2)的双曲线的标准方程是()A.或B.C.D.参考答案:C【考点】双曲线的简单性质.【分析】若实轴在x轴上,可设其方程为=1,b>0,若实轴在y轴上,可设其方程为=1,b>0,分别把B(5,﹣2)代入,能求出结果.【解答】解:由题设,a=2,a2=20.若实轴在x轴上,可设其方程为=1,b>0,把B(5,﹣2)代入,得b2=16;若实轴在y轴上,可设其方程为=1,b>0,把B(5,﹣2)代入,得b2=﹣(舍),故所求的双曲线标准方程为.故选:C.4. 已知函数有平行于轴的切线且切点在轴右侧,则的范围为A.B.C.D.参考答案:A5. 已知定义在R上的奇函数,满足,且在区间[0,1]上是增函数,若方程在区间上有四个不同的根,则()(A)(B)(C)(D)参考答案:A略6. 已知椭圆C的长轴长为2,两准线间的距离为16,则椭圆的离心率e为()A. B. C.D.参考答案:C7. 下列说法不正确的是()A.空间中一组对边平行且相等的四边形是一定是平行四边形;B.同一平面的两条垂线一定共面;C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D. 过一条直线有且只有一个平面与已知平面垂直.参考答案:A略8. 已知a<b,则下列不等式正确的是()A.B.1﹣a>1﹣b C.a2>b2 D.2a>2b参考答案:B【考点】不等式比较大小;不等关系与不等式.【分析】利用不等式的性质即可得出.【解答】解:∵a<b,∴﹣a>﹣b,∴1﹣a>1﹣b.故选B.9. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A. 1盏B. 2盏C. 3盏D. 4盏参考答案:C 【分析】由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列前项和公式列出方程,即可求出塔的顶层的灯数。
2022年山东省济宁市喻屯第二中学高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 命题“对任意的”的否定是()A.不存在 B.存在C.存在 D.对任意的参考答案:C2. 把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P(B|A)等于()A.B.C.D.参考答案:A【考点】条件概率与独立事件.【专题】计算题.【分析】本题是一个条件概率,第一次出现正面的概率是,第一次出现正面且第二次也出现正面的概率是,代入条件概率的概率公式得到结果.【解答】解:由题意知本题是一个条件概率,第一次出现正面的概率是,第一次出现正面且第二次也出现正面的概率是,∴P(B|A)=故选A.【点评】本题考查条件概率,本题解题的关键是看出事件AB同时发生的概率,正确使用条件概率的公式.3. 已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为A. B.C. D.参考答案:A略4. 已知三边满足,且,则的值为()A.4 B. C.3 D.参考答案:A5. 点是曲线上任意一点,则点到直线的最小距离是()A.B. C. D.参考答案:B6. 已知椭圆的左右焦点分别为F1,F2,过右焦点F2作x轴的垂线,交椭圆于A,B两点.若等边的周长为,则椭圆的方程为()A. B. C. D.参考答案:A由题意可得等边的边长为,则,由椭圆的定义可得,即,由,即有,则,则椭圆的方程为,故选A.7. 用演绎法证明函数是增函数时的小前提是A.函数满足增函数的定义B.增函数的定义C.若,则D.若,则参考答案:A8. 已知f(x)是定义在区间(0,+∞)上的函数,其导函数为f'(x),且不等式xf'(x)<2f (x)恒成立,则()A.4f(1)<f(2)B.4f(1)>f(2)C.f(1)<4f(2)D.f(1)<2f'(2)参考答案:B【考点】函数的单调性与导数的关系.【分析】令g(x)=,(x>0),求出函数的导数,得到函数的单调性,求出g(1)>g (2),从而求出答案.【解答】解:令g(x)=,(x>0),则g′(x)=,∵不等式xf'(x)<2f(x)恒成立,∴xf'(x)﹣2f(x)<0,即g′(x)<0,g(x)在(0,+∞)递减,故g(1)>g(2),故4f(1)>f(2),故选:B.【点评】本题考查了函数的单调性问题,考查导数的应用,构造函数g(x)是解题的关键,本题是一道中档题.9. 在下列区间中,函数的零点所在的区间为A. B. C. D.参考答案:C10. 若方程Ax+By+C=0表示与两条坐标轴都相交的直线,则().A.B.C.D.参考答案:B∵方程表示与两条坐标轴都相交的直线,∴直线的斜率存在且不等于,∴且.故选.二、填空题:本大题共7小题,每小题4分,共28分11. 已知xy>0,x≠y,则x4+6x2y2+y4与4xy(x2+y2)的大小关系是______________.参考答案:x4+6x2y2+y4>4xy(x2+y2)解析:x4+6x2y2+y4-4xy(x2+y2)=(x-y)4>012. 已知数列{a n}满足a n a n+1=(﹣1)n(n∈N*),a1=1,S n是数列{a n}的前n项和,则S2015= .参考答案:﹣1【考点】数列递推式.【分析】由数列{a n }满足,a 1=1,可得a 4k ﹣3=1,a 4k ﹣2=﹣1,a 4k ﹣1=﹣1,a 4k =1,k∈N *.即可得出. 【解答】解:∵数列{a n }满足,a 1=1,∴a 2=﹣1,a 3=﹣1,a 4=1,a 5=1…,∴a 4k ﹣3=1,a 4k ﹣2=﹣1,a 4k ﹣1=﹣1,a 4k =1,k∈N *.即数列各项的值呈周期性出现 ∴S 2015=503×(1﹣1﹣1+1)+(1﹣1﹣1)=﹣1. 故答案为:﹣1.13. 不等式组所表示的平面区域的面积为.参考答案:【考点】简单线性规划.【分析】利用二元一次不等式组的定义作出对应的图象,找出对应的平面区域,结合相应的面积公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图:则由得,即A (0,),由得,即B (0,3),由得,即C (1,1),则三角形的面积S=|AB|?h=(3﹣)×1==,故答案为:【点评】本题主要考查一元二次不等式组表示平面区域,利用数形结合是解决本题的关键.14. 如图,一个底面半径为R 的圆柱形量杯中装有适量的水。
2020年山东省聊城市第一中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 为研究两变量x和y的线性相关性,甲、乙两人分别做了研究,利用线性回归方法得到回归直线方程m和n,两人计算相同,也相同,则下列说法正确的是()A.m与n重合B.m与n平行C.m与n交于点(,)D.无法判定m与n是否相交参考答案:C【考点】线性回归方程.【分析】根据回归直线经过样本的中心点,得到直线m和n交于点(,).【解答】解:两个人在试验中求出变量x的观测数据的平均值都是,变量y的观测数据的平均值都是,∴这组数据的样本中心点是(,),∵回归直线经过样本的中心点,∴m和n都过(,),即回归直线m和n交于点(,).故选:C.2. 已知是椭圆上一点,是椭圆的一个焦点,则以线段为直径的圆和以椭圆长轴为直径的圆的位置关系是A.相离B.内切 C.内含 D.可以内切,也可以内含参考答案:B略3. 已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:①M={};②M={(x,y)|y=sinx+1};③M={(x,y)|y=log2x};④M={(x,y)|y=e x﹣2}.其中是“垂直对点集”的序号是()A.①②B.②③C.①④D.②④参考答案:D【分析】对于①利用渐近线互相垂直,判断其正误即可.对于②、③、④通过函数的定义域与函数的值域的范围,画出函数的图象,利用“垂直对点集”的定义,即可判断正误;【解答】解:对于①y=是以x,y轴为渐近线的双曲线,渐近线的夹角是90°,所以在同一支上,任意(x1,y1)∈M,不存在(x2,y2)∈M,满足好集合的定义;在另一支上对任意(x1,y1)∈M,不存在(x2,y2)∈M,使得x1x2+y1y2=0成立,所以不满足“垂直对点集”的定义,不是“垂直对点集”.对于②M={(x,y)|y=sinx+1},对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如(0,1)、(π,0),满足“垂直对点集”的定义,所以M是“垂直对点集”;正确.对于③M={(x,y)|y=log2x},取点(1,0),曲线上不存在另外的点,使得两点与原点的连线互相垂直,所以不是“垂直对点集”.对于④M={(x,y)|y=e x﹣2},如下图红线的直角始终存在,对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如取M(0,﹣1),则N(ln2,0),满足“垂直对点集”的定义,所以是“垂直对点集”;正确.所以②④正确.故选D.【点评】本题考查“垂直对点集”的定义,利用对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,是本题解答的关键,函数的基本性质的考查,注意存在与任意的区别.4. 设F1,F2分别为椭圆C1: +=1(a>b>0)与双曲线C2:﹣=1(a1>0,b1>0)的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若椭圆的离心率e=,则双曲线C2的离心率e1为()A.B.C.D.参考答案:B【考点】椭圆的简单性质;双曲线的简单性质.【分析】利用椭圆与双曲线的定义列出方程,通过勾股定理求解离心率即可.【解答】解:由椭圆与双曲线的定义,知|MF1|+|MF2|=2a,|MF1|﹣|MF2|=2a,所以|MF1|=a+a1,|MF2|=a﹣a1.因为∠F1MF2=90°,所以,即,即,因为,所以.故选:B.5. 下列有关坐标系的说法,错误的是()A.在直角坐标系中,通过伸缩变换圆可以变成椭圆B.在直角坐标系中,平移变换不会改变图形的形状和大小C.任何一个参数方程都可以转化为直角坐标方程和极坐标方程D.同一条曲线可以有不同的参数方程参考答案:C【考点】Q1:坐标系的作用.【分析】根据坐标系的解出知识判断即可.【解答】解:直角坐标系是最基本的坐标系,在直角坐标系中,伸缩变形可以改变图形的形状,但是必须是相近的图形可以进行伸缩变化得到,例如圆可以变成椭圆;而平移变换不改变图形和大小而只改变图形的位置;对于参数方程,有些比较复杂的是不能化成普通方程的,同一条曲线根据参数选取的不同可以有不同的参数方程.故选:C.6. 在三棱锥中,底面,,,,,,则点到平面的距离是( )A. B.C. D.参考答案:B7. 如图,在正四棱柱中,E、F分别是的中点,则以下结论中不成立的是()A. B.C. D.参考答案:D8. 函数是( ).A.偶函数,在区间上单调递增B.偶函数,在区间上单调递减C.奇函数,在区间上单调递增D.奇函数,在区间上单调递减参考答案:B略9. 下面几种推理过程是演绎推理的是()A.两条直线平行,同旁内角互补,如果和是两条平行直线的同旁内角,则.B.由平面三角形的性质,推测空间四面体性质.C.某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人D.在数列中,由此归纳出的通项公式.参考答案:A略10. 已知x与y之间的一组数据是则y与x的线性回归方程y=bx+a必过点()A. (2, 2)B.(1,2) C. (1.5, 0) D. (1.5 , 5)参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 如图,在正方体ABCD﹣A′B′C′D′中,异面直线AC与BC′所成的角为.参考答案:60°【考点】异面直线及其所成的角.【专题】计算题;转化思想;综合法;空间角.【分析】连结A′B、A′C′,由AC∥A′C′,得∠A′C′B是异面直线AC与BC′所成的角,由此能求出异面直线AC与BC′所成的角.【解答】解:在正方体ABCD﹣A′B′C′D′中,连结A′B、A′C′,∵AC∥A′C′,∴∠A′C′B是异面直线AC与BC′所成的角,∵A′B=BC′=A′C′,∴∠A′C′B=60°,∴异面直线AC与BC′所成的角为60°.故答案为:60°.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.12. 给出下列命题:①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;②命题“△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;③命题“若a>b>0,则>>0”的逆否命题;④“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.其中真命题的序号为________.参考答案:①②③略13. 已知函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是________.参考答案:(-∞,0)14. 若一元二次不等式对一切实数都成立,则的范围是____________.参考答案:略15. 已知曲线C:x=(-2≤y≤2)和直线y=k(x-1)+3只有一个交点,则实数k的取值范围是________.参考答案:略16. 设在4次独立重复试验中,事件A至少发生一次的概率等于,则在一次试验中事件A发生的概率是.参考答案:1/3略17. 若空间向量满足,,则=_____________.参考答案:略三、解答题:本大题共5小题,共72分。
数学高二上期末考试知识点高二上学期即将结束,期末考试即将来临,对于数学学科而言,学生们需掌握一定的知识点才能在考试中取得好成绩。
本文将重点介绍高二数学上学期期末考试的知识点,以帮助各位同学更好地复习和备考。
一、函数与方程1. 函数概念与性质:函数的定义、定义域、值域、奇偶性、周期性等基本性质。
2. 一次函数:一次函数的定义、函数图像、斜率、截距、函数间的等式与不等式关系等。
3. 二次函数:二次函数的定义、函数图像、顶点坐标、对称轴、零点、极值点、函数间的等式与不等式关系等。
4. 指数与对数函数:指数函数与对数函数的基本性质、定义、图像、指数方程与对数方程的解法等。
二、数列与数列极限1. 等差数列:等差数列的定义、通项公式、前n项和公式等。
2. 等比数列:等比数列的定义、通项公式、前n项和公式、求和公式等。
3. 数列极限:数列极限的定义、收敛与发散的判断、极限性质、极限计算等。
三、三角函数1. 常用角:角度制与弧度制的相互转换、正弦、余弦、正切等常用角的值计算。
2. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像特征、周期性、奇偶性、函数图像的平移等。
3. 三角函数的基本关系与恒等式:三角函数之间的基本关系、和差角公式、倍角公式、辅助角公式等。
四、解析几何1. 直线与圆的方程:直线的斜截式、点斜式、一般式等,圆的标准式与一般式等。
2. 直线与圆的位置关系:直线与直线的位置关系、直线与圆的位置关系等。
3. 向量:向量的定义、运算、数量积、向量坐标法、向量的共线条件等。
五、概率与统计1. 基本概念与方法:随机事件、样本空间、基本概率、频率与概率的关系等。
2. 排列与组合:排列与组合的基本概念、思想方法、计算公式等。
3. 统计初步:频数表、频率表、频率分布直方图等。
六、数学推理与证明1. 数学归纳法:数学归纳法的基本思想、证明方法等。
2. 数列的证明:数列的单调性、有界性、极限等的证明。
3. 函数的证明:函数的奇偶性、周期性等的证明。
高二数学期末考哪些知识点高二数学期末考知识点数学是一门学科,对学生来说,无论是在基础教育阶段还是高中阶段,都是必修的科目。
针对高二数学期末考试,下面列举了一些较为重要的知识点供大家学习和复习参考。
一、函数与方程1. 函数的概念与性质- 函数的定义及表示方法- 奇偶函数的判断及性质- 函数的单调性及最值2. 一次函数和二次函数- 一次函数的性质、图像及应用- 二次函数的性质、图像及应用- 二次函数与一元二次方程的关系3. 三角函数- 基本概念与性质- 三角函数的图像、周期性及性质- 三角函数的和差化积、倍角公式等运算方法二、空间与向量1. 空间几何- 点、线、面的性质与判定- 空间中的平面与直线的位置关系- 空间几何问题的应用2. 向量的基本概念与运算- 向量的定义、性质及表示方法- 向量的加减、数量积及应用- 向量的线性相关性与线性无关性3. 空间中直线和平面的方程- 直线的向量方程、参数方程及一般方程 - 平面的点法式方程及一般方程- 直线和平面的位置关系与应用三、概率与统计1. 概率基础- 随机事件及其运算- 事件的概率及性质- 古典概型与几何概型2. 排列与组合- 排列与组合的基本概念- 排列与组合的计算公式- 排列组合问题的应用3. 统计与抽样调查- 数据的收集与整理- 描述统计与统计图表- 抽样调查与推断统计四、导数与微分1. 导数的概念与性质- 导数的定义与计算方法- 导数的几何意义与物理应用- 导数与函数的关系2. 微分的概念与应用- 微分的定义及计算方法- 微分中值定理的应用- 高阶导数与函数的性质以上列出的知识点只是高二数学期末考试的一部分内容,学生在复习时还需综合教材、教师的指导以及平时的学习情况进行全面复习。
通过归纳总结每个知识点的要点,合理安排复习时间,并进行大量的练习和习题训练,相信可以在期末考试中取得好成绩。
祝愿所有参加考试的学生都能充分发挥自己的优势和潜力,取得令人满意的成绩!加油!。
2022年山东省烟台市第二十三中学高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 表中提供了某厂节能降耗技术改造后生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.根据下表提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中t的值为()A.3 B.3.15 C.3.5 D.4.5参考答案:A【考点】回归分析的初步应用.【专题】计算题.【分析】先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【解答】解:∵由回归方程知=,解得t=3,故选A.【点评】本题考查回归分析的初步应用,考查样本中心点的性质,考查方程思想的应用,是一个基础题,解题时注意数字计算不要出错.2. “杨辉三角” 是中国古代重要的数学成就,在南宋数学家杨辉所著的《详解九章算法》一书中出现,它比西方的“帕斯卡三角形”早了300多年,如图是杨辉三角数阵,记a n为图中第n行各个数之和,S n 为{a n}的前n项和,则A. 1024 B. 1023 C. 512 D. 511参考答案:B【分析】依次算出前几行的数值,然后归纳总结得出第行各个数之和的通项公式,最后利用数列求和的公式,求出【详解】由题可得:,,,,,依次下推可得:,所以为首项为1,公比为2的等比数列,故;故答案选B【点睛】本题主要考查杨辉三角的规律特点,等比数列的定义以及前项和的求和公式,考查学生归纳总结和计算能力,属于基础题。
3. 关于x的不等式mx2﹣mx﹣1<0的解集是全体实数,则m应满足的条件是()A.[﹣4,0] B .(﹣4,0] C .[0,4)D .(﹣4,0)参考答案:B【考点】二次函数的性质.【专题】函数思想;综合法;不等式的解法及应用.【分析】若m=0.则﹣1<0恒成立,若m≠0,由不等式的解集是全体实数可知f(x)=mx2﹣mx﹣1开口向下,△<0,列出不等式解出m的范围.【解答】解:当m=0时,不等式为﹣1<0,恒成立;当m≠0时,∵不等式mx2﹣mx﹣1<0的解集是全体实数,∴,解得﹣4<m<0.综上,m的取值范围是(﹣4,0].故选:B.【点评】本题考查了二次不等式与二次函数的关系,对m进行讨论是关键.4. 观察式子:,,,,则可归纳出式子为()A.B.C.D.参考答案:C5. 如右图,阴影部分面积为()A.B.C.D.参考答案:B略6. 下列说法中运用了类比推理的是()A. 人们通过大量试验得出掷硬币出现正面向上的概率为0.5B. 在平面内,若两个正三角形的边长的比为1:2,则它们的面积比为1:4.从而推出:在空间中,若两个正四面体的棱长的比为1:2,则它们的体积比为1:8C. 由数列的前5项猜出该数列的通项公式D. 数学中由周期函数的定义判断某函数是否为周期函数参考答案:B【分析】根据归纳推理、类比推理、和演绎推理对四个选项逐一判断,最后选出正确的答案.【详解】选项A:是归纳推理;选项B:是类比推理;选项C:是归纳推理;选项D:是演绎推理.【点睛】本题考查了类比推理,熟练掌握归纳推理、类比推理、和演绎推理的定义是解题的关键.7. 已知多项式f(x)=4x5+2x4+3.5x3﹣2.6x2+1.7x﹣0.8,用秦九韶算法算f(5)时的V1值为( )A.22 B.564.9 C.20 D.14130.2参考答案:A考点:秦九韶算法.专题:算法和程序框图.分析:利用秦九韶算法可得f(x)=((((4x+2)x+3.5)x﹣2.6)x+1.7)x﹣0.8,即可得出.解答:解:∵f(x)=((((4x+2)x+3.5)x﹣2.6)x+1.7)x﹣0.8,∴v0=4,v1=4×5+2=22.故选:A.点评:本题考查了秦九韶算法,属于基础题.8. 已知垂直时k值为 ( )A.17 B.18 C.19D.20参考答案:C9. 我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦。
山东省青岛市胶州市第三中学2022年高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m?α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m?α,则l∥m D.若l∥α,m∥α,则l∥m参考答案:B【考点】直线与平面平行的判定.【分析】根据题意,依次分析选项:A,根据线面垂直的判定定理判断.C:根据线面平行的判定定理判断.D:由线线的位置关系判断.B:由线面垂直的性质定理判断;综合可得答案.【解答】解:A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l∥α,m?α,则l∥m或两线异面,故不正确.D:平行于同一平面的两直线可能平行,异面,相交,不正确.B:由线面垂直的性质可知:平行线中的一条垂直于这个平面则另一条也垂直这个平面.故正确.故选B2. 已知动点对应的复数满足,且点与点连线的斜率之积为,则等于()A. B. C. D.参考答案:B略3. 不等式的解集是()A. B. C. D.参考答案:A4. 若函数f(x)=lnx+(a∈N)在(1,3)上只有一个极值点,则a的取值个数是()A.1 B.2 C.3 D.4参考答案:A【考点】利用导数研究函数的极值.【分析】求出函数的导数,由函数的零点存在定理可得f′(1)f′(3)<0,进而验证a=4与a=时是否符合题意,即可求答案.【解答】解:f(x)的导数为f′(x)=﹣,当f′(1)f′(3)<0时,函数f(x)在区间(1,3)上只有一个极值点,即为(1﹣a)(﹣a)<0,解得4<a<;当a=4时,f′(x)=﹣=0,解得x=1?(1,3),当a=时,f′(x)=﹣=0在(1,3)上无实根,则a的取值范围是4<a<,且a∈N,即为a=5.故选:A.【点评】本题考查利用导数研究函数的极值问题,体现了转化的思想方法的运用,考查运算能力,属于中档题.5. 若b为实数,且a+b=2,则3a+3b的最小值为()A.18 B.6 C.2D.2参考答案:B【考点】基本不等式.【分析】3a +3b 中直接利用基本不等式,再结合指数的运算法则,可直接得到a+b .【解答】解:∵a+b=2,∴3a +3b故选B【点评】本题考查基本不等式求最值和指数的运算,属基本题.6. 将边长为1的正方形ABCD 沿对角线BD 折成直二面角,若点P 满足,则的值为 ( )A.B.2C.D.参考答案:A7. 已知函数f(x)的导函数的图像如左图所示,那么函数f(x)的图像最有可能的是( )参考答案:A8. 若等差数列{}的前5项和=25, 且=3, 则= ( )A. 12B. 13C. 14D. 15 参考答案: B9. “a = 1”是“复数(,i 为虚数单位)是纯虚数”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件参考答案:C10. 的展开式中,第4项的二项式系数是( ) A .B .C .D .参考答案:A 略二、 填空题:本大题共7小题,每小题4分,共28分11. 命题“若,则”的否命题是(填:真、假)命题.参考答案:假命题的否命题为:若,则,取可得该否命题为假命题.12. 若函数y=的定义域为(c ,+∞),则实数c 等于 _________ .参考答案:13. 从区间[0,1]内任取两个数,则这两个数的和小于的概率为.参考答案:【考点】几何概型.【分析】设取出的两个数分别为x 、y,可得满足“x、y∈(0,1)”的区域为横纵坐标都在(0,1)之间的正方形内部,而事件“两数之和小于”对应的区域为正方形的内部且在直线x+y=下方的部分,根据题中数据分别计算两部分的面积,由几何概型的计算公式可得答案.【解答】解:设取出的两个数分别为x、y,可得0<x<1且0<y<1,满足条件的点(x,y)所在的区域为横纵坐标都在(0,1)之间的正方形内部,其面积为S=1×1=1,若两数之和小于,即x+y<,对应的区域为直线x+y=下方,且在正方形内部,面积为S'=1﹣=.由此可得:两数之和小于概率为P=.故答案为:.14. 以双曲线的左焦点为焦点的抛物线标准方程是.参考答案:15. 已知,则与的夹角为参考答案:略16. 下列命题中是真命题的是 .①x∈N, ;②所有可以被5整除的整数,末尾数字都是0;③“若m>0,则x2+x-m=0有实根”的逆否命题;④“若x2+y2≠0,则x,y不全为零”的否命题.参考答案:③④17. 已知抛物线的焦点坐标是(0,﹣3),则抛物线的标准方程是.参考答案:x2=﹣12y【考点】抛物线的标准方程.【专题】计算题;定义法;圆锥曲线的定义、性质与方程.【分析】由题意和抛物线的性质判断出抛物线的开口方向,并求出p的值,即可写出抛物线的标准方程.【解答】解:因为抛物线的焦点坐标是(0,﹣3),所以抛物线开口向下,且p=6,则抛物线的标准方程x2=﹣12y,故答案为:x2=﹣12y.【点评】本题考查抛物线的标准方程以及性质,属于基础题.三、解答题:本大题共5小题,共72分。
数学高二上期末考知识点期末考即将来临,为了帮助同学们复习数学知识,以下是高二上学期数学期末考的知识点总结。
希望能够帮助同学们在考试中取得好成绩。
一、函数与方程1. 一元二次函数及其图像特征:顶点坐标、开口方向、对称轴、零点、值域等。
2. 一次函数与二次函数的关系:平移、伸缩等变换。
3. 基础函数的性质与图像:常数函数、一次函数、二次函数、绝对值函数等。
4. 一次函数和二次函数的联立方程:解题方法和实际问题的应用。
5. 分式函数的性质及其图像:零点、值域、与一次函数和二次函数的关系等。
二、数列与数列的应用1. 等差数列与等差数列的通项公式:首项、公差、通项公式及其推导。
2. 等差数列的求和:求和公式及推导。
3. 等比数列与等比数列的通项公式:首项、公比、通项公式及其推导。
4. 等比数列的求和:求和公式及推导。
5. 算术数列与等差数列的关系:求两者的和及应用。
6. 几何数列与等比数列的关系:求两者的和及应用。
三、三角函数1. 实数集上的函数:正弦函数、余弦函数、正切函数、余切函数的定义、性质以及图像。
2. 周期性及函数值的范围:正弦函数、余弦函数、正切函数、余切函数的周期、值域等。
3. 函数值与角度的关系:角度制与弧度制的相互转换、特殊角的函数值、函数值的符号等。
4. 三角函数的性质:奇偶性、单调性、增减区间等。
5. 三角函数的图像和曲线的变换:平移、伸缩、反转等。
6. 两角和与差的关系,倍角与半角的关系:三角函数的和差化积、积化和差等。
四、平面向量1. 平面向量的定义及表示方法。
2. 平面向量的运算:加法、减法、数乘等运算。
3. 平面向量的模、方向角及方向余弦。
4. 平行向量与共线向量的概念及判定方法。
5. 向量的数量积及其性质:数量积的定义、模、方向角及其性质。
6. 向量的数量积的应用:平面向量共线、垂直的判定、求两向量夹角等。
五、数学课堂整体规范1. 准备课前预习:提前预习课本内容,积极参与课堂讨论。
高二上期末数学必考知识点数学作为一门基础学科,在学生的整个学习生涯中都扮演着重要的角色。
而对于高二学生来说,数学的学习更是决定了其未来高考成绩的重要一环。
为了帮助高二学生备战上期末数学考试,下面将介绍一些必考的数学知识点。
一、函数与方程1. 一次函数与二次函数的性质:学生需要了解一次函数与二次函数的定义、基本性质以及对应的图像特征。
2. 幂函数与指数函数的性质:学生需要理解幂函数与指数函数的定义、图像变化规律以及解题思路。
3. 对数函数:学生需要掌握对数函数与指数函数的互逆关系、对数函数的定义和图像表示。
4. 三角函数的性质:学生需要熟悉常用三角函数的定义、图像变化规律以及基本公式的推导与应用。
二、解析几何1. 直线与平面的交点问题:学生需要掌握利用坐标系求直线与平面的交点,以及解释几何问题。
2. 圆与圆的位置关系:学生需要了解圆与圆的位置关系,如外切、内切、相交等,并能应用到实际问题中。
3. 空间几何体的计算:学生需要掌握计算空间几何体的体积、表面积等相关公式,并能灵活应用于解题过程中。
三、概率与统计1. 概率的基本概念:学生需要理解事件、样本空间、概率的定义,能够计算简单事件的概率。
2. 统计与统计图表:学生需要掌握数据的分类、整理与统计方法,能够制作和解读统计图表。
3. 概率统计问题的解决:学生需要学会分析和解决与概率统计相关的实际问题,包括概率计算和统计推断等内容。
四、数列与数学归纳法1. 等差数列与等比数列的性质:学生需要掌握等差数列与等比数列的定义、通项公式以及应用。
2. 数列的求和与数学归纳法:学生需要了解数列求和的方法,能够通过数学归纳法证明数学命题。
五、导数与微分1. 导数的计算与应用:学生需要掌握导数的定义、基本性质和计算方法,能够应用导数解决实际问题。
2. 微分学的应用:学生需要理解微分的定义和应用,能够应用微分解决实际问题,如最值、极值等。
六、立体几何1. 空间几何体的性质和计算:学生需要了解各种立体几何体的性质,如棱柱、棱锥、球等,掌握其体积计算相关的公式。
高二数学复习考点知识与题型专题讲解1.4.1用空间向量研究直线、平面的位置关系【考点梳理】考点一:空间中点、直线和平面的向量表示1.空间中点的位置向量如图,在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量OP→来表示.我们把向量OP→称为点P的位置向量.2.空间中直线的向量表示式直线l的方向向量为a,且过点A.如图,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使OP→=OA→+t a,①把AB→=a代入①式得OP→=OA→+tAB→,②①式和②式都称为空间直线的向量表示式.3.空间中平面的向量表示式平面ABC的向量表示式:空间一点P位于平面ABC内的充要条件是存在实数x,y,使OP→=OA→+xAB→+yAC→.我们称为空间平面ABC的向量表示式.考点二空间中平面的法向量平面的法向量如图,若直线l⊥α,取直线l的方向向量a,我们称a为平面α的法向量;过点A且以a为法向量的平面完全确定,可以表示为集合 {P|a·AP→=0}.考点三:空间中直线、平面的平行1.线线平行的向量表示设u1,u2分别是直线l1,l2的方向向量,则l∥l2⇔u1∥u2⇔∃λ∈R,使得u1=λu2.12.线面平行的向量表示设u是直线l的方向向量,n是平面α的法向量,l⊄α,则l∥α⇔u⊥n⇔u·n=0.面面平行的向量表示设n1,n2分别是平面α,β的法向量,则α∥β⇔n∥n2⇔∃λ∈R,使得n1=λn2 .1考点四:空间中直线、平面的垂直1.线线垂直的向量表示设u1,u2分别是直线l1 , l2的方向向量,则l⊥l2⇔u1⊥u2⇔u1·u2=0.12. 线面垂直的向量表示设u 是直线 l 的方向向量,n 是平面α的法向量, l ⊄α,则l ⊥α⇔u ∥n ⇔∃λ∈R ,使得u =λn .知识点三 面面垂直的向量表示设n 1,n 2 分别是平面α,β的法向量,则α⊥β⇔n 1⊥n 2⇔n 1·n 2=0.【题型归纳】题型一:平面的法向量的求法1.(2021·江西·景德镇一中高二期中(理))已知直线l 过点(1,0,1)P -,平行于向量(211)S =,,,平面π经过直线l 和点(1,2,3)A ,则平面π的一个法向量n 的坐标为( )A .1212⎛⎫- ⎪⎝⎭,,B .1122⎛⎫- ⎪⎝⎭,,C .(1,0,2)-D .(120)-,, 2.(2021·山西·太原市第六十六中学校高二期中)已知平面α经过点(1,1,1)A 和(1,1,)B z -,(1,0,1)n =-是平面α的法向量,则实数z =( )A .3B .1-C .2-D .3-3.(2021·全国·高二课时练习)如图,四棱柱1111ABCD A B C D -的底面ABCD 是正方形,O 为底面中心,1A O ⊥平面ABCD ,1AB AA =1OCB 的法向量(),,n x y z =为( )A .()0,1,1B .()1,1,1-C .()1,0,1-D .()1,1,1--题型二:空间中点、直线和平面的向量表示4.(2021·全国·高二专题练习)已知点P 是平行四边形ABCD 所在的平面外一点,如果()2,1,4AB =--,(4,2,0)AD =,(1,2,1)AP =--.对于结论:①||6AD =;②AP AD ⊥;③AP 是平面ABCD 的法向量;④AP//BD .其中正确的是( ) A .②④B .②③C .①③D .①②5.(2022·全国·高二)已知平面α内有一点A (2,-1,2),它的一个法向量为(3,1,2)n =,则下列点P 中,在平面α内的是( ) A .(1,-1,1)B .(1,3,32)C .(1,-3,32)D .(-1,3,-32)6.(2022·四川·棠湖中学高二)对于空间任意一点O 和不共线的三点A ,B ,C ,且有(,,)OP xOA yOB zOC x y z R =++∈,则2x =,3y =-,2z =是P ,A ,B ,C 四点共面的( ) A .必要不充分条件B .充分不必要条件 C .充要条件D .既不充分又不必要条件7.(2022·福建·高二学业考试)如图,在长方体体1111ABCD A B C D -中,,E F 分别是棱111,BB B C 的中点,以下说法正确的是( )A .1A E 平面11CC D DB .1A E ⊥平面11BCC B C .11A ED F ∥D .11AE DF ⊥8.(2022·山东淄博·高二期末)在空间直角坐标系Oxyz 中,平面α的法向量为()1,1,1n =,直线l 的方向向量为m ,则下列说法正确的是( )A .若11,,122m ⎛⎫=-- ⎪⎝⎭,则//l αB .若()1,0,1m =-,则l α⊥C .平面α与所有坐标轴相交D .原点O 一定不在平面α内9.(2022·安徽宣城·高二期末)如图已知正方体1111ABCD A B C D -,点M 是对角线1AC 上的一点且1AM AC λ=,()0,1λ∈,则( )A .当12λ=时,1AC ⊥平面1A DMB .当12λ=时,//DM 平面11CB D C .当1A DM 为直角三角形时,13λ=D .当1A DM 的面积最小时,13λ=10.(2021·湖北黄冈·高二期中)已知1v 、2v 分别为直线1l 、2l 的方向向量(1l 、2l 不重合),1n ,2n 分别为平面α,β的法向量(α,β不重合),则下列说法中不正确的是( )A .1212v v l l ⇔∥∥;B .111v n l α⊥⇔∥;C .12n n αβ⊥⇔⊥D .12n n αβ⇔∥∥11.(2021·安徽·高二期中)给出以下命题,其中正确的是( ) A .直线l 的方向向量为()1,1,2a =-,直线m 的方向向量为()2,1,1b =-,则l 与m 垂直 B .直线l 的方向向量为()0,1,1a =-,平面α的法向量为()1,1,1n =,则l α⊥ C .平面α、β的法向量分别为()10,1,3=n ,()21,0,2=n ,则αβ∥D .平面α经过三个点()1,0,1A -,()0,1,0B -,()1,2,0C -,向量()1,,n p q =是平面α的法向量,则53p q +=12.(2022·全国·高二课时练习)若空间两直线1l 与2l 的方向向量分别为()123,,a a a a =和()123,,b b b b =,则两直线1l 与2l 垂直的充要条件为( )A .11a b λ=,22a b λ=,33a b λ=(R λ∈)B .存在实数k ,使得a kb =C .1122330a b a b a b ++=D .a b a b ⋅=±⋅题型五:空间向量研究直线、平面的位置综合问题13.(2022·全国·高二课时练习)在棱长为1的正方体1111ABCD A B C D -中,E 为1CC 的中点,P 、Q 是正方体表面上相异两点.若P 、Q 均在平面1111D C B A 上,满足1BP A E ⊥,1BQ A E ⊥.(1)判断PQ 与BD 的位置关系; (2)求1A P 的最小值.14.(2022·福建宁德·高二期中)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,其中AD BC ∥.,3,2,AD AB AD AB BC PA ⊥===⊥平面ABCD ,且3PA =,点M 在棱PD 上,点N 为BC 中点.(1)若2DM MP =,证明:直线//MN 平面PAB :(2)线段PD 上是否存在点M ,使NM 与平面PCD 6PM PD 值;若不存在,说明理由15.(2022·江苏·沛县教师发展中心高二期中)如图,在正四棱柱1111ABCD A B C D -中,122AA AB ==,E ,F 分别为棱1AA ,1CC 的中点,G 为棱1DD 上的动点.(1)求证:B ,E ,1D ,F 四点共面;(2)是否存在点G ,使得平面GEF ⊥平面BEF ?若存在,求出DG 的长度;若不存在,说明理由.【双基达标】一、单选题16.(2022·四川省成都市新都一中高二期中(理))在直三棱柱ABC A B C '''-中,底面是以B 为直角项点,边长为1的等腰直角三角形,若在棱CC '上有唯一的一点E 使得A E EB '⊥,那么BB '=( )A .1B .2C .12D .1317.(2022·江苏·滨海县五汛中学高二期中)已知平面α的法向量为(342)n =-,,,(342)AB =--,,,则直线AB 与平面α的位置关系为( )A .AB α∥B .AB α⊥C .AB α⊂D .AB α⊂或AB α∥18.(2022·广东·广州奥林匹克中学高二阶段练习)如图,在正四棱柱1111ABCD A B C D -中,O 是底面ABCD 的中心,,E F 分别是11,BB DD 的中点,则下列结论正确的是( )A .1A O //EFB .1A O EF ⊥C .1A O //平面1EFBD .1A O ⊥平面1EFB 19.(2022·全国·高二)有以下命题: ①一个平面的单位法向量是唯一的②一条直线的方向向量和一个平面的法向量平行,则这条直线和这个平面平行 ③若两个平面的法向量不平行,则这两个平面相交④若一条直线的方向向量垂直于一个平面内两条直线的方向向量,则直线和平面垂直 其中真命题的个数有( ) A .1个B .2个C .3个D .4个20.(2022·全国·高二课时练习)如图,在空间直角坐标系中,有正方体ABCD A B C D ''''-,给出下列结论:①直线DD '的一个方向向量为1(0,0,1)v =;②直线BC '的一个方向向量为2(0,1,1)v =; ③平面ABB A ''的一个法向量为1(0,1,0)n =;④平面B CD '的一个法向量为2(1,1,1)n =.其中正确的个数为( ). A .1B .2C .3D .421.(2022·全国·高二)已知直线1l 经过点1(1,2,3)P -,平行于向量1(1,1,2)s =-,直线2l 经过点2(1,2,0)P -,平行于向量2(0,1,1)s =,求与两直线1l ,2l 都平行的平面α的一个法向量的坐标.22.(2022·全国·高二)如图所示,已知矩形ABCD 和矩形ADEF 所在的平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,13AN AE =.(1)求证:MN AD ⊥;(2)若1CD DE ==,求MN 的长.【高分突破】一:单选题23.(2022·江苏·盐城市伍佑中学高二阶段练习)若直线l 的一个方向向量为()1,2,1a =--,平面α的一个法向量为()2,4,2b =-,则( )A .l α⊂B .//l αC .l α⊥D .//l α或l α⊂24.(2022·江苏苏州·高二期末)已知平面α的一个法向量为n =(2,-2,4), AB =(-1,1,-2),则AB 所在直线l 与平面α的位置关系为( ) A .l ⊥αB .l α⊂C .l 与α相交但不垂直D .l ∥α25.(2021·全国·高二如图,在三棱锥P ABC -中,PA ⊥平面ABC ,90ABC ∠=,60BAC ∠=,2PA AB ==.以点B 为原点,分别以BC ,BA ,AP 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,设平面PAB 和平面PBC 的法向量分别为m 和n ,则下面选项中正确的是( ).A .点P 的坐标为()0,0,2-B .()4,0,2PC =- C .n 可能为()0,2,2-D .cos ,0m n >26.(2021·云南·巍山彝族回族自治县第二中学高二)设α,β是不重合的两个平面,α,β的法向量分别为1n ,2n ,l 和m 是不重合的两条直线,l ,m 的方向向量分别为1e ,2e ,那么αβ∥的一个充分条件是( )A .l α⊂,m β⊂,且11e n ⊥,22e n ⊥B .l α⊂,m β⊂,且12e e ∥C .11e n ∥,22e n ∥,且12e e ∥D .11e n ⊥,22e n ⊥,且12e e ∥27.(2021·浙江金华第一中学高二期中)平面四边形ABEF 和四边形CDFE 都是边长为1的正方形,且平面ABEF ⊥CDFE ,点G 为线段AF 的中点,点P ,Q 分别为线段BE 和CE 上的动点(不包括端点).若GQ DP ⊥,则线段PQ 的长度的取值范围为( )A .⎡⎣B .⎣C .⎣D .⎣⎭ 28.(2021·湖北·武汉市第十四中学高二阶段练习)设a ,b 是两条直线,a ,b 分别为直线a ,b 的方向向量,α,β是两个平面,且a α⊥,b β⊥,则“αβ⊥”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件29.(2021·河南·高二阶段练习(理))给出下列命题:①直线l 的方向向量为()1,1,2a =-,直线m 的方向向量为12,1,2⎛⎫=- ⎪⎝⎭b ,则l m ⊥②直线l 的方向向量为()0,1,1a =-,平面α的法向量为()1,1,1n =--,则l α⊥. ③平面,αβ的法向量分别为()()120,1,310,,,2n n ==,则//αβ.④平面α经过三点A (1,0,-1),B (0,1,0),C (-1,2,0),向量()1,,=n u t 是平面α的法向量,则u +t =1.其中真命题的序号是( )A .②③B .①④C .③④D .①②30.(2021·安徽省五河第一中学高二阶段练习)已知点(2A ,1-,2)在平面α内,(3n =,1,2)是平面α的一个法向量,则下列点P 中,在平面α内的是( ) A .(1P ,1-,1)B .P 31,3,2⎛⎫⎪⎝⎭C .31,3,2P ⎛⎫- ⎪⎝⎭D .31,3,4P ⎛⎫-- ⎪⎝⎭31.(2021·北京·汇文中学高二期中)若,αβ表示不同的平面,平面α的一个法向量为1(1,2,1)v =,平面β的一个法向量为2(2,4,2)v =---,则平面α与平面β( )A .平行B .垂直C .相交D .不确定32.(2021·重庆市第十一中学校高二期中)已知直线l 的方向向量是(3,2,1)a =-,平面α的法向量是1,2(,)1n =-,则l 与α的位置关系是( ) A .l α⊥B .//l αC .//l α或l α⊂D .l 与α相交但不垂直 二、多选题(共0分)33.(2022·浙江省长兴中学高二期末)直三棱柱111ABC A B C -中,1,,,,CA CB CA CB CC D E M ⊥==分别为11B C ,11,CC AB 的中点,点N 是棱AC 上一动点,则( )A .对于棱AC 上任意点N ,有1MN BC ⊥B .棱AC 上存在点N ,使得MN ⊥面1BC NC .对于棱AC 上任意点N ,有MN 面1A DED .棱AC 上存在点N ,使得MN DE ∥34.(2022·江苏·涟水县第一中学高二阶段练习)在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,动点P 在体对角线1BD 上(含端点),则下列结论正确的有( )A .顶点B 到平面APC 2.存在点P ,使得1BD ⊥平面APC C .AP PC +30.当P 为1BD 中点时,APC ∠为钝角35.(2022·江苏·连云港高中高二期中)给出下列命题,其中是真命题的是( )A .若直线l 的方向向量()1,1,2a =-,直线m 的方向向量12,1,2⎛⎫=- ⎪⎝⎭b ,则l 与m 垂直B .若直线l 的方向向量()0,1,1a =-,平面α的法向量()1,1,1n =--,则l α⊥C .若平面α,β的法向量分别为()10,1,3=n ,()21,0,2=n ,则αβ⊥D .若存在实数,,x y 使,=+MP xMA yMB 则点,,,P M A B 共面36.(2022·福建宁德·高二期中)如图,在平行六面体1111ABCD A B C D -中,1160DAB DAA BAA ∠∠∠===,1AB AD AA ==,点M ,N 分别是棱1111,D C C B 的中点,则下列说法中正确的有( )A .1MN AC ⊥B .向量1,,AN BC BB 共面 C .1CA ⊥平面1C BDD .若AB =1637.(2022·江苏常州·高二期中)下列命题是真命题的有( ) A .A ,B ,M ,N 是空间四点,若,,BA BM BN 不能构成空间的一个基底,那么A ,B ,M ,N 共面B .直线l 的方向向量为()1,1,2a =-,直线m 的方向向量为12,1,2b ⎛⎫=- ⎪⎝⎭,则l 与m 垂直C .直线l 的方向向量为()0,1,1a =-,平面α的法向量为()1,1,1n =--,则l ⊥αD .平面α经过三点(1,0,1),(0,1,0),(1,2,0),(1,,)A B C n u t --=是平面α的法向量,则1u t += 38.(2022·江苏宿迁·高二期中)给定下列命题,其中正确的命题是( ) A .若n 是平面α的法向量,且向量a 是平面α内的直线l 的方向向量,则0a n ⋅= B .若1n ,2n 分别是不重合的两平面,αβ的法向量,则12//0n n αβ⇔⋅= C .若1n ,2n 分别是不重合的两平面,αβ的法向量,则1212//n n n n αβ⇔⋅=⋅ D .若两个平面的法向量不垂直,则这两个平面一定不垂直39.(2022·江苏常州·高二期中)如图,在边长为a 的正方体1111ABCD A B C D -中,点P 在线段1B C 上运动,则下列结论正确的是( )A .1BD AP ⊥B .AP PB +26+ C .异面直线AP 与1A D 23D .11APB C PD ∠=∠40.(2022·全国·高二课时练习)给定下列命题,其中正确的命题是( ) A .若1n ,2n 分别是平面α,β的法向量,则12n n αβ⇔∥∥ B .若1n ,2n 分别是平面α,β的法向量,则120n n αβ⇔⋅=∥C .若n 是平面α的法向量,且向量a 是平面α内的直线l 的方向向量,则0a n ⋅=D .若两个平面的法向量不垂直,则这两个平面一定不垂直 三、填空题41.(2022·江苏·淮安市淮安区教师发展中心学科研训处高二期中)已知平面,ABC (1,2,3),(4,5,6)AB AC ==,写出平面ABC 的一个法向量n =______.42.(2022·四川省成都市新都一中高二期中(理))若直线l 的一个方向向量为()1,2,1a =-,平面a 的一个法向量为()1,2,1b =--,则直线l 与平面α的位置关系是______. 43.(2022·全国·高二课时练习)已知1v 、2v 分别为不重合的两直线1l 、2l 的方向向量,1n、2n 分别为不重合的两平面α、β的法向量,则下列所有正确结论的序号是___________. ①2121////v v l l ⇔;②2121v l l v ⊥⇔⊥;③12////n n αβ⇔;④12n n αβ⊥⇔⊥.44.(2022·四川成都·高二期中(理))如图,已知棱长为2的正方体A ′B ′C ′D ′-ABCD ,M 是正方形BB ′C ′C 的中心,P 是△A ′C ′D 内(包括边界)的动点,满足PM =PD ,则点P 的轨迹长度为______.45.(2022·全国·高二课时练习)向量,,i j k 分别代表空间直角坐标系与,,x y z 轴同方向的单位向量,若45a i j k =-+,44b mi j k =+-,若a 与b 垂直,则实数m =______. 46.(2022·全国·高二课时练习)放置于空间直角坐标系中的棱长为2的正四面体ABCD 中,H 是底面中心,DH ⊥平面ABC ,写出:(1)直线BC 的一个方向向量___________; (2)点OD 的一个方向向量___________; (3)平面BHD 的一个法向量___________;(4)DBC △的重心坐标___________.47.(2022·上海·格致中学高二期末)已知向量()1,2,a m m =+是直线l 的一个方向向量,向量()1,,2n m =是平面α的一个法向量,若直线l ⊥平面α,则实数m 的值为______. 48.(2021·河北省盐山中学高二阶段练习)已知P 是ABCD 所在的平面外一点,()2,1,4AB =--,()4,2,0AD =,()1,2,1AP =--,给出下列结论:①AP AB ⊥; ②AP AD ⊥;③AP 是平面ABCD 的一个法向量;④AP//BD ,其中正确结论的个数是__________. 四、解答题49.(2022·全国·高二)如图所示,在棱长为1的正方体1111OABC O A B C -,中,E 、F 分别是棱AB 、BC 上的动点,且AE BF x ==,其中01x ≤≤,以O 为原点建立空间直角坐标系O xyz -.(1)求证:11A F C E ⊥;(2)若1A 、E 、F 、1C 四点共面,求证:111112A F AC A E =+.50.(2022·全国·高二)如图,在四棱锥S ABCD -中,底面ABCD 为正方形,侧棱SD ⊥底面ABCD ,E 、F 、G 分别为AB 、SC 、SD 的中点.若AB a ,SD b =.(1)求EF ; (2)求cos ,AG BC ; (3)判断四边形AEFG 的形状.51.(2022·湖南·高二)如图,在长方体1111ABCD A B C D -中,2AB =,6AD =,13AA =,建立适当的空间直角坐标系,求下列平面的一个法向量:(1)平面ABCD ; (2)平面11ACC A ; (3)平面1ACD .52.(2022·全国·高二课时练习)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABC D .(1)分别指出平面PAD 、平面PAB 的一个法向量;(2)若AB AD AP ==,试在图中作出平面PDC 的一个法向量; (3)PBD △是否有可能是直角三角形?(4)根据法向量判断平面PBC 与平面PDC 是否有可能垂直.53.(2022·浙江绍兴·高二期末)正四棱柱1111ABCD A B C D -的底面边长为2,侧棱长为4.E 为棱1AA 上的动点,F 为棱1CC 的中点.(1)证明:1EC BD ⊥;(2)若E 为棱1AA 上的中点,求直线BE 到平面11B D F 的距离.【答案详解】1.A 【解析】 【分析】设法向量(),,n x y z =,利用空间向量的数量积即可求解. 【详解】由题意可得()0,2,4AP =--,设经过直线l 和点A 平面的法向量为(),,n x y z =,则24020n AP y z n s x y z ⎧⋅=--=⎨⋅=++=⎩,令1x =,则4,2y z =-= , 所以()1,4,2n =-,所以经过直线l 和点A 平面的法向量为()(),4,2,0t t t t R t -∈≠. 故选:A 2.B 【解析】 【分析】由(1,0,1)n =-是平面α的法向量,可得0AB n ⋅=,即可得出答案. 【详解】解:()2,0,1AB z =--,因为(1,0,1)n =-是平面α的法向量, 所以0AB n ⋅=,即()210z ---=,解得1z =-. 故选:B. 3.C 【解析】 【分析】根据空间直角坐标系写出各向量,利用法向量的性质可得解. 【详解】ABCD 是正方形,且AB1AO OC ∴==,11OA ∴=,()0,1,0A ∴-,()1,0,0B ,()0,1,0C ,()10,0,1A ,()1,1,0AB ∴=,()0,1,0OC =,又()111,1,0A B AB ==,()11,1,1B ∴,()11,1,1OB =,平面1OCB 的法向量为(),,n x y z =,则00y x y z =⎧⎨++=⎩,得0y =,x z =-,结合选项,可得()1,0,1n =-, 故选:C. 4.B 【解析】 【分析】求出||25AD = 0AP AD ⋅=判断②正确;由AP AB ⊥,AP AD ⊥判断③正确;假设存在λ使得λ=AP BD ,由122314λλλ-=⎧⎪=⎨⎪-=⎩无解,判断④不正确.【详解】由(2AB =,1-,4)-,(4AD =,2,0),(1AP =-,2,1)-,知:在①中,||166AD ==≠,故①不正确;在②中,4400AP AD ⋅=-++=,∴⊥AP AD ,AP AD ∴⊥,故②正确;在③中,2240AP AB ⋅=--+=, AP AB ∴⊥,又因为AP AD ⊥,AB AD A ⋂=,知AP 是平面ABCD 的法向量,故③正确;在④中,(2BD AD AB =-=,3,4),假设存在λ使得λ=AP BD ,则122314λλλ-=⎧⎪=⎨⎪-=⎩,无解,故④不正确;综上可得:②③正确. 故选:B . 【点睛】本题考查命题真假的判断,考查空间向量垂直、向量平行等基础知识,考查了平面的法向量以及空间向量的模,考查推理能力与计算能力,属于基础题. 5.B 【解析】 【分析】要判断点P 是否在平面内,只需判断向量PA 与平面的法向量n 是否垂直,即判断PA n 是否为0即可.【详解】对于选项A ,(1,0,1)PA =,则(1,0,1)(3,1,2)50==≠PA n ,故排除A ; 对于选项B ,1(1,-4,)2=PA ,则1(1,4,)(3,1,2)34102=-=-+=PA n对于选项C ,1(1,2,)2=PA ,则1(1,2,)(3,1,2)3+21602==+=≠PA n ,故排除C ;对于选项D ,7(3,-4,)2=PA ,则7(3,4,)(3,1,2)9471202=-=-+=≠PA n ,故排除D ; 故选:B 6.B 【解析】 【分析】利用空间中共面定理:空间任意一点O 和不共线的三点A ,B ,C ,且(),,OP xOA yOB zOC x y z R =++∈,得P ,A ,B ,C 四点共面等价于1x y z ++=,然后分充分性和必要性进行讨论即可. 【详解】解:空间任意一点O 和不共线的三点A ,B ,C ,且(),,OP xOA yOB zOC x y z R =++∈ 则P ,A ,B ,C 四点共面等价于1x y z ++=若2x =,3y =-,2z =,则1x y z ++=,所以P ,A ,B ,C 四点共面 若P ,A ,B ,C 四点共面,则1x y z ++=,不能得到2x =,3y =-,2z = 所以2x =,3y =-,2z =是P ,A ,B ,C 四点共面的充分不必要条件 故选B. 【点睛】本题考查了空间中四点共面定理,充分必要性的判断,属于基础题.7.A 【解析】 【分析】对A :由平面11ABB A 平面11CC D D ,然后根据面面平行的性质定理即可判断;对B :若1A E ⊥平面11BCC B ,则1A E ⊥1BB ,这与1A E 和1BB 不垂直相矛盾,从而即可判断; 对C 、D :以D 为坐标原点,建立空间直角坐标系,由1A E 与1D F 不是共线向量,且2110A E D F b ⋅=>,从而即可判断.【详解】解:对A :由长方体的性质有平面11ABB A 平面11CC D D ,又1A E ⊂平面11ABB A ,所以1A E 平面11CC D D ,故选项A 正确;对B :因为E 为棱1BB 的中点,且111A B BB ⊥,所以1A E 与1BB 不垂直,所以若1A E ⊥平面11BCC B ,则1A E ⊥1BB ,这与1A E 和1BB 不垂直相矛盾,故选项B 错误; 对C 、D :以D 为坐标原点,建立如图所示的空间直角坐标系,设1,,DA a DC b DD c ===,则()1,0,A a c =,,,2c E a b ⎛⎫⎪⎝⎭,()10,0,D c ,,,2a Fbc ⎛⎫ ⎪⎝⎭,所以10,,2cA E b ⎛⎫=- ⎪⎝⎭,1,,02aD F b ⎛⎫= ⎪⎝⎭,因为1A E 与1D F 不是共线向量,且2110A E D F b ⋅=>,所以1A E 与1D F 不平行,且1A E 与1D F 不垂直,故选项C 、D 错误. 故选:A. 8.C 【解析】 【分析】根据空间位置关系的向量方法依次讨论各选项即可得答案. 【详解】解:对于A 选项,111022m n ⋅=--+=,所以m n ⊥,故//l α或l α⊂,故A 选项错误; 对于B 选项,1010m n ⋅=+-=,所以m n ⊥,故//l α或l α⊂,故B 选项错误;对于C 选项,由于法向量的横、纵、竖坐标均不取零,故平面不与坐标轴确定的平面平行,所以平面α与所有坐标轴相交,故正确;对于D 选项,由法向量不能确定平面的具体位置,故不能确定原点O 与平面α关系,故错误. 故选:C 9.D 【解析】 【分析】建立空间直角坐标系,利用空间向量法一一计算可得; 【详解】解:由题可知,如图令正方体的棱长为1,建立空间直角坐标系,则()11,0,0A ,()1,0,1A ,()10,1,0C ,()0,0,1D ,()10,0,0D ,()11,1,0B ,()0,1,1C ,所以()11,1,1AC =--,因为1AM AC λ=,所以()1,,1M λλλ-+-+,所以()1,,1A M λλλ=--+,()1,,DM λλλ=-+-,()11,0,1CB =-,()10,1,1D C =,设平面11CB D 的法向量为(),,n x y z =,则1100CB n x z D C n y z ⎧⋅=-=⎪⎨⋅=+=⎪⎩,令1x =,则1z =,1y =-,所以()1,1,1n =-对于A :若1AC ⊥平面1A DM ,则11AC A M ⊥,则()()11110AC A M λλλ⋅=++-⨯-+=,解得13λ=,故A 错误;对于B :若//DM 平面11CB D ,则DM n ⊥,即10DM n λλλ⋅=-+--=,解得13λ=,故B 错误;当1A DM 为直角三角形时,有1MD MA ⊥,即()()()21110A M DM λλλλλ⋅=--+++--+=,解得23λ=或0λ=(舍去),故C 错误;设M 到1DA 的距离为k ,则22221111323()2236k DM λλλ=-=-+=-+,∴当1A DM 的面积最小时,13λ=,故D 正确.故选:D .10.B 【解析】 【分析】按照方向向量和法向量在线面关系中的应用直接判断即可. 【详解】A 选项:因为1l 、2l 不重合,所以1212v v l l ⇔∥∥,A 正确;B 选项:111v n l α⊥⇔∥或1l α⊂,B 错误;C 选项:12n n αβ⊥⇔⊥,C 正确;D 选项:因为α,β不重合,所以12n n αβ⇔∥∥,D 正确. 故选:B. 11.D 【解析】 【分析】判断直线的方向向量和平面的法向量间的关系,判断线线,线面,面面的位置关系,即可判断选项. 【详解】对于A ,因为21210a b ⋅=--=-≠,所以l 与m 不垂直,A 错误; 对于B ,因为110a n ⋅=-+=,l α⊥不成立,所以B 错误; 对于C ,因为1n 与2n 不平行,所以αβ∥不成立,C 错误;对于D ,()1,1,1AB =--,()1,3,0BC =-,由10n AB p q ⋅=--+=,130n BC p ⋅=-+=,解得13p =,43q =,所以53p q +=,D 正确. 故选:D. 12.C 【解析】 【分析】由空间直线垂直时方向向量0a b ⋅=,即可确定充要条件. 【详解】由空间直线垂直的判定知:1122330a b a b a b a b ⋅=++=. 当1122330a b a b a b ++=时,即0a b ⋅=,两直线1l 与2l 垂直. 而A 、B 、D 说明1l 与2l 平行. 故选:C13.(1)PQ 与BD 的位置关系是平行【解析】 【分析】(1)建立空间直角坐标系,利用空间向量判断PQ 与BD 的位置关系;(2)用含参数的表达式求出1A P ,进而求出最小值. (1)以D 为原点,以射线DA ,DC ,1DD 分别为x ,y ,z 轴的正向建立空间直角坐标系,()11,0,1A ,10,1,2⎛⎫ ⎪⎝⎭E ,()1,1,0B .因为P 、Q 均在平面1111D C B A 上,所以设(),,1P a b ,(),,1Q m n ,则111,1,2A E ⎛⎫=-- ⎪⎝⎭,()1,1,1BP a b =--,()1,1,1BQ m n =--. 因为1BP A E ⊥,1BQ A E ⊥,所以()()()()111110,21110,2BP A E a b BQ A E m n ⎧⋅=--+--=⎪⎪⎨⎪⋅=--+--=⎪⎩解得:1,21.2b a n m ⎧-=⎪⎪⎨⎪-=⎪⎩所以(),,0PQ n b n b =--,()1,1,0BD =--,即()PQ b n BD =-,PQ BD ,所以PQ 与BD 的位置关系是平行.(2)由(1)可知:12b a -=,()11,,0A P a b =-,所以()101A P a a ===≤≤.当14a =时,1A P 有最小值,最小值为. 14.(1)证明见解析(2)不存在,理由见解析【解析】【分析】(1)以点A 为坐标原点,以AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系,用向量法证明;(2)利用向量法计算,判断出点M 不存在.(1)如图所示,以点A 为坐标原点,以AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系,则(0,0,3),(2,0,0),(0,3,0),(2,2,0),(2,1,0)P B D C N若2DM MP =,则(0,1,2)M ,(2,0,2)MN =-因为PA ⊥平面ABCD ,所以AD PA ⊥又因为,AD AB PA AB A ⊥⋂=所以AD ⊥平面PAB平面PAB 的其中一个法向量为(0,3,0)AD =所以0MN AD ⋅=,即AD MN ⊥又因为MN ⊄平面PAB所以//MN 平面PAB(2)不存在符合题意的点M ,理由如下:(0,3,3),(2,1,0),(2,2,0),PD CD DN =-=-=-设平面PCD 的法向量()1111,,n x y z =则111133020PD n y z CD n x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 不妨令11x =,则1(1,2,2)n = 设PM PDλ=,即,[0,1]PM PD λλ=∈(0,3,3)PM λλ=-则0,3,(3)3M λλ- 12(2,13,33),sin cos ,1MN MN n λλθ=--==+==解得53λ=或13λ=-,不满足[0,1]λ∈,故不存在符合题意的点M .15.(1)证明见解析(2)存在,12【解析】【分析】(1)连接1D E ,1D F ,取1BB 的中点为M ,连接1MC ,ME ,根据E 为1AA 的中点, F 为1BB 的中点,分别得到11//D E MC ,1//BF MC ,从而有1//BF D E ,再由平面的基本性质证明;(2)以D 为坐标原点,DA ,DC ,1DD 分别为x 轴,y 轴,z 轴建立空间直角坐标系,假设存在满足题意的点G ,设()0,0,G t ,分别求得平面BEF 的一个法向量()1111,,x n y z =和平面GEF 的一个法向量()2222,,n x y z =,根据平面GEF ⊥平面BEF ,由120n n ⋅=求解.(1)证明:如图所示:连接1D E ,1D F ,取1BB 的中点为M ,连接1MC ,ME ,因为E 为1AA 的中点,所以1111////EM A B C D ,且1111EM A B C D ==,所以四边形11EMC D 为平行四边形,所以11//D E MC ,又因为F 为1BB 的中点,所以1//BM C F ,且1BM C F =,所以四边形1BMC F 为平行四边形,所以1//BF MC ,所以1//BF D E ,所以B ,E ,1D ,F 四点共面;(2)以D 为坐标原点,DA ,DC ,1DD 分别为x 轴,y 轴,z 轴建立空间直角坐标系,假设存在满足题意的点G ,设()0,0,G t ,由已知()1,1,0B ,()1,0,1E ,()0,1,1F , 则()1,1,0EF =-,()0,1,1EB =-,()1,0,1EG t =--,设平面BEF 的一个法向量为()1111,,x n y z =,则1100n EF n EB ⎧⋅=⎪⎨⋅=⎪⎩,即111100x y y z -+=⎧⎨-=⎩, 取11x =,则()11,1,1n =;设平面GEF 的一个法向量为()2222,,n x y z =,则2200n EF n EG ⎧⋅=⎪⎨⋅=⎪⎩,即()1222010x y x t z -+=⎧⎨-+-=⎩, 取21x t =-,则()21,1,1n t t =--;因为平面GEF ⊥平面BEF ,所以120n n ⋅=,所以1110t t -+-+=, 所以12t =.所以存在满足题意的点G ,使得平面GEF ⊥平面BEF ,DG 的长度为12.【解析】【分析】建立空间直角坐标系,设出()0BB m m '=>,根据垂直和唯一的点E 得到方程22210m m λλ-+=由唯一解,根据二次函数根的分布问题求出2m =.【详解】如图,以B 为坐标原点,BA ,BC ,BB '所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设()0BB m m '=>,则()()0,0,0,1,0,B A m ',()0,1,E m λ,01λ≤≤,则()()1,1,,0,1,A E m m BE m λλ=--'=,则()()2221,1,0,1,10A E BE m m m m m λλλλ⋅=--⋅=-'+=,因为在棱CC '上有唯一的一点E 使得A E EB '⊥,所以22210m m λλ-+=在01λ≤≤上有唯一的解,令()2221f m m λλλ=-+,可知()()011f f ==,故要想在01λ≤≤上有唯一的解,只需42Δ40m m =-=,因为0m >,所以解得:2m =17.B【解析】【分析】求出AB n =-,即n 与AB 平行,从而求出AB α⊥【详解】因为AB n =-,即(342)n =-,,与(342)AB =--,,平行, 所以直线AB 与平面α垂直.故选:B18.B【解析】【分析】建立空间直角坐标系,利用空间位置关系的向量证明,逐项分析、判断作答.【详解】在正四棱柱1111ABCD A B C D -中,以点D 为原点建立如图所示的空间直角坐标系,令12,2(0,0)AB a DD b a b ==>>,O 是底面ABCD 的中心,,E F 分别是11,BB DD 的中点, 则11(,,0),(2,0,2),(2,2,),(2,2,2),(0,0,)O a a A a b E a a b B a a b F b ,1(,,2)OA a a b =-,1(2,2,0),(0,0,)FE a a EB b ==,对于A ,显然1OA 与FE 不共线,即1A O 与EF 不平行,A 不正确;对于B ,因12()2020OA FE a a a a b ⋅=⋅+-⋅+⋅=,则1OA FE ⊥,即1A O EF ⊥,B 正确;对于C ,设平面1EFB 的法向量为(,,)n x y z =,则12200n EF ax ay n EB bz ⎧⋅=+=⎪⎨⋅==⎪⎩,令1x =,得(1,1,0)n =-, 120OA n a ⋅=>,因此1OA 与n 不垂直,即1A O 不平行于平面1EFB ,C 不正确;对于D ,由选项C 知,1OA 与n 不共线,即1A O 不垂直于平面1EFB ,D 不正确.故选:B19.A【解析】【分析】根据平面单位法向量的定义可判断①,根据直线方向向量与平面法向量的关系判断②,根据两平面法向量关系判断③,根据直线与平面垂直的判定定理判断④.【详解】因为一个平面的单位法向量方向不同,所以有2个,故①错误;当一条直线的方向向量和一个平面的法向量平行时,则这条直线和这个平面垂直,故② 错误;因为两个平面的法向量平行时,平面平行,所以法向量不平行,则这两个平面相交,③正确;若一条直线的方向向量垂直于一个平面内两条相交直线的方向向量,则直线和平面垂直,故④ 错误.故选:A20.A【解析】【分析】由直线的方向向量及平面的法向量的定义即可求解.【详解】解:设正方体ABCD A B C D ''''-的边长为1,则()0,0,0D ,()0,0,1D ',()1,1,0B ,()0,1,1C ',()1,1,1B ',()0,1,0C ,对①:因为(0,0,1)DD '=,所以直线DD '的一个方向向量为1(0,0,1)v =正确; 对②:因为()101BC ,,'=-,所以直线BC '的一个方向向量为2(0,1,1)v =不正确; 对③:因为OA ⊥平面ABB A '',又()1,0,0OA =,所以平面ABB A ''的一个法向量为1(0,1,0)n =不正确;对④:因为2(1,1,1)n =,()1,1,1DB '=,()0,1,0DC =,211130DB n ++='⋅=≠,201010DC n ⋅=++=≠,所以平面B CD '的一个法向量为2(1,1,1)n =不正确. 故选:A.21.(3,1,1)-(不唯一)【解析】【分析】由题设,1(1,1,2)s =-、2(0,1,1)s =是直线1l 、2l 的方向向量,设面α的法向量(,,)m x y z =,应用空间向量垂直的坐标表示求法向量即可.【详解】由题设,直线1l 、2l 的方向向量分别为1(1,1,2)s =-、2(0,1,1)s =,而12s s λ≠(R)λ∈, 所以直线1l 、2l 不平行,设与两直线1l ,2l 都平行的平面α的一个法向量(,,)m x y z =,所以21200m x y z m z s s y ⎧=-+=⎪⎨=+=⎪⋅⎩⋅,令1z =-,则(3,1,1)m =-. 故与两直线1l ,2l 都平行的平面α的一个法向量的坐标(3,1,1)-.22.(1)见解析【解析】【分析】(1)根据面面垂直的性质证明AB ⊥平面ADEF ,可得AB AF ⊥,再将MN 用,,AB AD AF 表示,再根据向量数量积的运算律证明0MN AD ⋅=,即可得证;(2)根据(1),根据2MN MN =,将MN 用,,AB AD AF 表示,从而可得出答案.(1)证明:在矩形ABCD 中,AB AD ⊥, 因为平面ABCD ⊥平面ADEF ,且平面ABCD 平面ADEF AD =, AB 平面ABCD , 所以AB ⊥平面ADEF ,又因AF ⊂平面ADEF ,所以AB AF ⊥, MN MB BA AN =++1133DB BA AE =++()()1133AB AD AB AD AF =--++ 2133AB AF =-+, 所以212103333MN AD AB AF AD AB AD AF AD ⎛⎫⋅=-+⋅=-⋅+⋅= ⎪⎝⎭, 所以MN AD ⊥; (2)解:因为1CD DE ==, 所以1AB AF ==,则222214145339993MN AB AF AB AF AB AF ⎛⎫=-+=+-⋅= ⎪,即MN 23.C 【解析】 【分析】推导出//a b ,利用空间向量法可得出线面关系. 【详解】因为()1,2,1a =--,()2,4,2b =-,则2b a =-,即//a b ,因此,l α⊥. 故选:C. 24.A 【解析】 【分析】由向量AB 与平面法向量的关系判断直线与平面的位置关系. 【详解】因为2AB n -=,所以//AB n ,所以AB α⊥. 故选:A . 25.C 【解析】 【分析】根据空间直角坐标系,写出点坐标()0,0,0B ,()0,2,0A ,()23,0,0C ,()0,2,2P ,分别计算即可求值. 【详解】建立空间直角坐标系如图:由题意可得()0,0,0B ,()0,2,0A ,()23,0,0C ,()0,2,2P , 所以()23,2,2PC =--,()0,2,2BP =.设(),,n x y z =,则23220220x y z z y ⎧--=⎪⎨+=⎪⎩,取2z =,可得()0,2,2n =-.因为AB BC ⊥,PA BC ⊥,AB AP A =, 所以BC ⊥平面PAB , 因为BC ⊂平面PBC 所以平面PBC ⊥平面PAB , 所以m n ⊥,所以cos ,0m n =. 综上所述,A ,B ,D 错,C 正确. 故选:C 26.C 【解析】 【分析】利用面面平行的判定定理、向量位置关系及充分条件的定义即可判断. 【详解】对于A ,l α⊂,m β⊂,且11e n ⊥,22e n ⊥,则α与β相交或平行,故A 错误; 对于B ,l α⊂,m β⊂,且12e e ∥,则α与β相交或平行,故B 错误; 对于C ,11e n ∥,22e n ∥,且12e e ∥,则αβ∥,故C 正确;对于D ,11e n ⊥,22e n ⊥,且12e e ∥,则α与β相交或平行,故D 错误. 故选:C. 27.D 【解析】 【分析】以点E 为坐标原点,建立空间直角坐标系,设()()0,001P m m <<,,,()()00,,01Q n n <<,,根据向量垂直的坐标表示求得112n m =-,再由向量的模的计算公式和二次函数的性质可求得范围. 【详解】解:因为平面四边形ABEF 和四边形CDFE 都是边长为1的正方形,且平面ABEF ⊥CDFE ,所以以点E 为坐标原点,建立空间直角坐标系,如下图所示,则()10,1D ,,11,02G ⎛⎫ ⎪⎝⎭,, 设()()0,001P m m <<,,,()()00,,01Q n n <<,, 所以11,2GQ n ⎛⎫=-- ⎪⎝⎭,,()1,1DP m =--,,又GQ DP ⊥,所以0GQ DP ⋅=,即()111,1,11022n m m n ⎛⎫--⋅--=--= ⎪⎝⎭,,, 整理得112n m =-,所以222222155241+1+24455PQ m n m m m m m ⎛⎫⎛⎫=+=+-=-=- ⎪ ⎪⎝⎭⎝⎭,又01m <<,所以25552PQ ≤<, 故选:D.28.C【解析】 【分析】根据题意,结合面面垂直的向量证明方法,即可求解. 【详解】由题意可得a ,b 分别是平面α,β的法向量,所以αβ⊥等价于a b ⊥, 即“αβ⊥”是“a b ⊥”的充要条件. 故选:C. 29.B 【解析】 【分析】依据题意得到:①求数量积a b ⋅,得到a b ⊥,即l m ⊥;②求数量积n a ⋅,可得到a n ⊥,故//l α或l α⊂;③利用1n 与2n 的关系,两者既不平行,也不垂直,故两个平面不平行,是相交关系;④利用法向量的定义得到0,0n AB n AC ⋅=⋅=,解出1u =,0=t ,进而可求解. 【详解】①11211221102a b ⋅=⨯-⨯-⨯=--=,所以a b ⊥,即l m ⊥,所以①正确. ②011(1)(1)0a n ⋅=-⨯+-⋅-=,所以a n ⊥,所以//l α或l α⊂,所以②错误. ③因为1260n n ⋅=≠,且12n xn ≠,所以α与β是相交的.所以③错误.④因为(1n =,u ,)t 是平面α的法向量,A (1,0,-1),B (0,1,0),C (-1,2,0),所以(1,1,1),(2,2,1)AB AC =-=-.所以0,0n AB n AC ⋅=⋅=,即10220u t u t -++=⎧⎨-++=⎩,解得1u =,0=t ,所以1u t +=.所以④正确. 故选:B.30.B 【解析】 【分析】根据题意可得AP n ⊥,依次验证是否满足0n AP ⋅=即可. 【详解】设(P x ,y ,)z ,则(2AP x =-,1y +,2)z -; 由题意知,AP n ⊥,则0n AP ⋅=,3(2)(1)2(2)0x y z ∴-+++-=,化简得329x y z ++=.验证得,在A 中,311214⨯-+⨯=,不满足条件; 在B 中,3313292⨯++⨯=,满足条件;在C 中,3313232⨯-+⨯=,不满足条件; 在D 中,()315313242⎛⎫⨯--+⨯-=- ⎪⎝⎭,不满足条件.故选:B. 31.A 【解析】 【分析】根据两个平面的法向量平行即可判断出平面α与平面β平行. 【详解】对于平面α的一个法向量为1(1,2,1)v =,平面β的一个法向量为2(2,4,2)v =---, 因为1212v v =-,所以12v v 、平行.。
高二数学复习考点知识与题型专题讲解1.2 空间向量基本定理【考点梳理】考点一空间向量基本定理如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=x a+y b+z c.我们把{a,b,c}叫做空间的一个基底,a,b,c都叫做基向量.考点二空间向量的正交分解1.单位正交基底如果空间的一个基底中的三个基向量两两垂直,且长度都是1,那么这个基底叫做单位正交基底,常用{i,j,k}表示.2.向量的正交分解由空间向量基本定理可知,对空间任一向量a,均可以分解为三个向量x i,y j,z k使得a=x i+y j+z k. 像这样把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解.考点三证明平行、共线、共面问题(1) 对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.(2) 如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.考点三求夹角、证明垂直问题(1)θ为a,b的夹角,则cos θ=a·b|a||b|.(2)若a ,b 是非零向量,则a ⊥b ⇔a ·b =0. 知识点三 求距离(长度)问题 ||a =a ·a ( ||AB →=AB →·AB → ).【题型归纳】题型一:空间向量基底概念1.(2021·广东·广州市海珠中学高二期中)下列说法正确的是( ) A .任何三个不共线的向量可构成空间向量的一个基底 B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .直线的方向向量有且仅有一个2.(2021·云南师大附中高二期中)已知{},,a b c 能构成空间的一个基底,则下面的各组向量中,不能构成空间基底的是( ) A .,,a b b c +B .,,a a b c -C .,,a c b c a b ---D .,,a b a b c ++3.(2021·湖南·周南中学高二)设向量,,a b c 不共面,则下列可作为空间的一个基底的是( ) A .{,,}a b b a a +-B .{,,}a b b a b +- C .{,,}a b b a c +-D .{,,}a b c a b c +++ 题型二:空间基底表示向量4.(2022·四川·成都外国语学校高二阶段练习(理))如图,在三棱锥O ABC -中,设,,,OA a OB b OC c ===,若,2AN NB BM MC ==,则MN =( )A .112263a b c +-B .112263a b c -+ C .111263a b c --D .111263a b c ++5.(2022·江苏常州·高二期中)在四面体OABC 中,,,OA a OB b OC c ===,点M 在OA 上,且2,OM MA N =为BC 中点,则MN =( ) A .121232a b c -+B .211322a b c -++C .111222a b c +-D .221332a b c ++6.(2022·湖北·武汉市第十九中学高二期末)如图,在四面体OABC 中,OA a =,OB b =,OC c =,点M 在线段OA 上,且2OM MA =,N 为BC 的中点,则MN 等于( )A .111322a b c ++B .111322a b c -+ C .111322a b c +-D .111322a b c -++ 题型三:空间向量基本定理判断共面7.(2022·全国·高二)已知A ,B ,C 三点不共线,O 为平面ABC 外一点,下列条件中能确定P ,A ,B ,C 四点共面的是( )A .OP OA OB OC =++B .2OP OA OB OC =-- C .111532OP OA OB OC =++D .111333OP OA OB OC =++8.(2022·全国·高二)对空间任一点O 和不共线三点A 、B 、C ,能得到P 、A 、B 、C 四点共面的是( )A .OP OA OB OC =++B .111236OP OA OB OC =++ C .1122OP OA OB OC =++D .以上都错9.(2022·全国·高二)下列向量关系式中,能确定空间四点P ,Q ,R ,S 共面的是( )A .AP AQ AR AS →→→→=++B .23AP AQ AR AS →→→→=++ C .23AP AQ AR AS →→→→=+-D .243AP AQ AR AS →→→→=-+ 题型四:空间向量共面求参数10.(2022·江西·临川一中高二期末(理))已知空间向量()2,1,a m =-,()1,1,2b =-,()1,2,2c t =-,若a ,b ,c 共面,则m +2t =( )A .-1B .0C .1D .-611.(2022·江苏·高二课时练习)已知i ,j ,k 是三个不共面的向量,22AB i j k =-+,23BC i j k =+-,35CD i j k λ=+-,且A ,B ,C ,D 四点共面,则λ的值为( ).A .1-B .1C .2-D .212.(2021·山东省实验中学高二期中)已知A ,B ,C 三点不共线,O 是平面ABC 外任意一点,若2156OM OA OB OC λ=++,则A ,B ,C ,M 四点共面的充要条件是( ) A .1730λ=B .1330λ=C .1730λ=-D .1330λ=-题型五:空间向量基本定理的应用13.(2022·四川·阆中中学高二阶段练习(理))已知存在非零实数λ使得AP BC λ=,且(,0)OP OA xOB yOC x y =-++>,则62x y +的最小值为( )A .4+.8C .6.6+14.(2022·安徽蚌埠·高二期末)在下列命题中正确的是( ) A .已知,,a b c 是空间三个向量,则空间任意一个向量p 总可以唯一表示为p xa yb zc =++ B .若,C AB D 所在的直线是异面直线,则,C AB D 不共面 C .若三个向量,,a b c 两两共面,则,,a b c 共面D .已知A ,B ,C 三点不共线,若111236OD OA OB OC =++,则A ,B ,C ,D 四点共面15.(2021·吉林·长春市第二十九中学高二)已知A 、B 、C 三点不共线,点O 是平面ABC 外一点,则在下列各条件中,能得到点M 与A 、B 、C 一定共面的是( )A .111222OM OA OB OC =++B .1313O OB OC M OA =-+ C .OM OA OB OC =++D .2OM O OB OC A =-- 题型六:空间向量基本定理16.(2022·全国·高二课时练习)如图所示,已知1111ABCD A B C D -是平行六面体.(1)化简1AA BC AB ++;(2)设M 是底面ABCD 的中心,N 是侧面11BCC B 对角线1BC 上的34分点,设1MN AB AD AA αβγ=++,试求α,β,γ的值.17.(2021·河北·石家庄市第六中学高二期中)如图,已知正方体'ABCD A B C D -'''.点E是上底面''''A B C D 的中心,取{,,}AB AD AA ' 为一个基底,在下列条件下,分别求,,x y z的值.(1)BD x AD y AB z AA =+'+'; (2)AE x AD y AB z AA =+'+.【双基达标】一、单选题18.(2022·四川省成都市新都一中高二期中(理))已知M ,A ,B ,C 为空间中四点,任意三点不共线,且2OM OA xOB yOC =-++,若M ,A ,B ,C 四点共面,则x y +的值为( ) A .0B .1C .2D .319.(2022·江苏·涟水县第一中学高二阶段练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++D .1OG =111888OA OB OC ++ 20.(2022·四川省绵阳南山中学高二期中(理))如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且13OG OG =,则( )A .1OG OA OB OC =++B .1111333OG OA OB OC =++ C .1111444OG OA OB OC =++D .1111999OG OA OB OC =++21.(2022·四川省绵阳南山中学高二期中(理))已知O ,A ,B ,C 为空间四点,且向量OA ,OB ,OC 不能构成空间的一个基底,则一定有( ) A .OA ,OB ,OC 共线B .O ,A ,B ,C 中至少有三点共线 C .OA OB +与OC 共线D .O ,A ,B ,C 四点共面22.(2022·江苏宿迁·高二期中)已知P 是ABC 所在平面外一点,M 是PC 中点,且BM x AB y AC z AP =++,则x y z ++=( )A .0B .1C .2D .323.(2022·福建龙岩·高二期中)在平行六面体1111ABCD A B C D -中,点E 是线段1CD 的中点,3AC AF =,设AB a =,AD b =,1AA c =,则EF =( ) A .521632a b c +-B .121632a b c ---C .121632a b c ++D .521632a b c --+24.(2022·全国·高二课时练习)设x a b =+,y b c =+,z c a =+,且{},,a b c 是空间的一个基底,给出下列向量组:①{},,a b x ;②{},,x y z ;③{},,b c z ;④{},,x y a b c ++,则其中可以作为空间的基底的向量组有( ) A .1B .2C .3D .425.(2022·广东深圳·高二期末)如图,在三棱柱111ABC A B C -中,E ,F 分别是BC ,1CC 的中点,2AG GE =,则GF =( )A .1121332AB AC AA -+B .1121332AB AC AA ++C .1211332AB AC AA -+-D .1121332AB AC AA -++26.(2022·全国·高二课时练习)在平行六面体ABCD A B C D ''''-中,已知BA ,BC ,BB '为三条不共面的线段,若23AC x AB yBC zC C ''=++,则x y z ++的值为( ). A .1B .76C .56D .11627.(2022·四川省内江市第六中学高二阶段练习(理))已知空间的一组基底{},,a b c ,若m a b c =-+与n xa yb c =++共线,则x y +的值为( ). A .2B .2-C .1D .0【高分突破】一:单选题28.(2022·吉林·长春吉大附中实验学校高二期末)已知空间向量a ,b ,c ,下列命题中正确的个数是( ) ①若a 与b 共线,b 与c 共线,则a 与c 共线; ②若a ,b ,c 非零且共面,则它们所在的直线共面;⑧若a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一有序实数组(),,x y z ,使得p xa yb zc =++;④若a ,b 不共线,向量(),,0c a b R λμλμλμ=+∈≠,则{},,a b c 可以构成空间的一个基底. A .0B .1C .2D .329.(2022·江苏省阜宁中学高二期中)《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵111ABC A B C -中,,M N 分别是111,A C BB 的中点,G 是MN 的中点,若1AG xAB yAA zAC =++,则x y z ++=( )A .1B .12C .32D .3430.(2022·安徽芜湖·高二期末)下列命题中正确的个数为( ) ①若向量a ,b 与空间任意向量都不能构成基底,则a b ∥;②若向量a b +,b c +,c a +是空间一组基底,则a ,b ,c 也是空间的一组基底; ③{},,a b c 为空间一组基底,若()0,,xa yb zc x y z R ++=∈,则2220x y z ++=;④对于任意非零空间向量()123,,a a a a =,()123,,b b b b =,若a b ∥,则312123aa ab b b ==.A .1B .2C .3D .4 二、多选题31.(2022·福建福州·高二期中)如图,在平行六面体ABCD A B C D ''''-中,AB a =,AD b =,AA c '=.若CM MD '=,12A C A P ''=,则( )A .a A C b c =++'B .1122AM a b c =++C .A ,P ,D 三点共线D .A ,P ,M ,D 四点共面32.(2022·河北邯郸·高二期末)已知a ,b ,c 是空间的一个基底,则下列说法中正确的是( ) A .若0xa yb zc ++=,则0x y z ===B .a ,b ,c 两两共面,但a ,b ,c 不共面C .一定存在实数x ,y ,使得a xb yc =+D .a b +,b c -,2c a +一定能构成空间的一个基底33.(2022·广东惠州·高二期末)下面四个结论正确的是( )A .空间向量a ,()0,0b a b ≠≠,若a b ⊥,则0a b ⋅=B .若对空间中任意一点O ,有111632OP OA OB OC =++,则P 、A 、B 、C 四点共面C .已知{},,a b c 是空间的一组基底,若m a c =+,则{},,a b m 也是空间的一组基底D .任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅34.(2021·浙江·金华市曙光学校高二阶段练习)已知点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,且12OP OA mOB nOC =+-(m ,n R ∈),则m ,n 的值可能为( )A .1m =,12n =-B .12m =,1n =C .12m =-,1n =-D .32m =,1n =35.(2021·湖南·郴州市第三中学高二期中)下列结论正确的是( )A .三个非零向量能构成空间的一个基底,则它们不共面B .两个非零向量与任何一个向量都不能构成空间的一个基底,则这两个向量共线C .若a ,b 是两个不共线的向量,且(c a b λμλ=+,R μ∈且0)λμ≠,则{a ,b ,}c 构成空间的一个基底D .若OA ,OB ,OC 不能构成空间的一个基底,则O ,A ,B ,C 四点共面36.(2021·浙江省杭州第二中学高二期中)已知{},,a b c 是空间中的一个基底,则下列说法正确的是( )A .存在不全为零的实数x ,y ,z ,使得0xa yb zc ++=B .对空间任一向量p ,存在唯一的有序实数组(),,x y z ,使得p xa yb zc =++C .在a ,b ,c 中,能与a b +,a b -构成空间另一个基底的只有cD .不存在另一个基底{},,a b c ''',使得2323a b c a b c '''++=++37.(2021·重庆·高二阶段练习)下列命题中,正确的有( )A .空间任意向量,a b 都是共面向量B .已知P ,A ,B ,C 四点共面,对空间任意一点O ,若2OP OA OB tOC =++,则1t =-C .在四面体中P ABC -,若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=D .若向量,,a b b c c a +++是空间一组基底,则,,a b c 也是空间的一组基底38.(2022·湖南省临湘市教研室高二期末)已知M ,A ,B ,C 四点互不重合且任意三点不共线,则下列式子中能使{,,}MA MB MC 成为空间的一个基底的是( )A .111345OM OA OB OC =++B .2MA MB MC =+C .23OM OA OB OC =++D .32MA MB MC =-三、填空题39.(2022·全国·高二课时练习)如图,在三棱柱111ABC A B C -中,M 为11A C 的中点,若AB a =,BC b =,1AA c =,则BM =______.(用a 、b 、c 表示)40.(2022·江苏常州·高二期中)已知P 是ABC 所在平面外一点,2=PM MC ,且BM x AB y AC z AP =++,则实数x y z ++的值为____________.41.(2022·全国·高二)已知,a b 是平面α上的两个向量,有以下命题:①平面α上任意一个向量(),p a b R λμλμ=+∈;②若存在,R λμ∈,使0a b λμ+=,则0λμ==;③若,a b 不共线,则空间任意一个向量(),p a b R λμλμ=+∈;④若,a b 不共线,且p 与,a b 共面,则都有(),p a b R λμλμ=+∈.请填上所有真命题的序号___________.42.(2022·广东珠海·高二期末)已知四面体OABC 中,D ,E 分别在AB ,OC 上,且AD DB =,2OE EC =,若DE OA OB OC αβγ=++,则αβγ++=________.43.(2021·福建·三明一中高二)如图所示,M 是四面体OABC 的棱BC 的中点,点N在线段OM 上,点P 在线段AN 上,且AP =3PN ,23ON OM =,设OA a =,,OB b OC c ==,则OP =________(用,,a b c 来表示)44.(2022·全国·高二期末)已知三棱锥O ABC -,点M ,N 分别为线段AB ,OC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN 等于_____________.45.(2022·全国·高二)已知关于向量的命题,(1)a b a b -=+是a ,b 共线的充分不必要条件;(2)若//a b ,则存在唯一的实数λ,使a b λ=;(3)0a b ⋅=,0b c ⋅=,则a c =; (4)若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一基底; (5)()a b c a b c ⋅⋅=⋅⋅.在以上命题中,所有正确命题的序号是________.四、解答题46.(2022·江苏·徐州市王杰中学高二)如图,在空间四边形OABC 中,已知E 是线段BC 的中点,G 在AE 上,且2AG GE =.(1)试用OA ,OB ,OC 表示向量OG ;(2)若2OA =,3OB =,4OC =,60AOC BOC ∠=∠=︒,90AOB ∠=︒,求OG AB ⋅的值.47.(2022·全国·高二)如图,在平行六面体1111ABCD A B C D -中,12C C EC =,13AC FC =.(1)求证:A 、F 、E 三点共线;(2)若点G 是平行四边形11B BCC 的中心,求证:D 、F 、G 三点共线.48.(2022·江苏·扬州中学高二阶段练习)如图,在四面体OABC 中,M 是棱OA 上靠近A 的三等分点,N 是棱BC 的中点,P 是线段MN 的中点.设OA a =,OB b =,OC c =.(1)用a ,b ,c 表示向量OP ;(2)若1a b c ===,且满足(从下列三个条件中任选一个,填上序号:①,,,3π===a b b c c a ;②,,,,32ππ===a b c a b c ;③2,,,,23a b c a b c ππ===,则可求出OP 的值;并求出OP 的大小.49.(2021·山东济宁·高二期中)已知平行六面体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,12AA =,1160A AB A AD ∠=∠=︒.(1)求1AD AC ⋅;(2)求1AC .【答案详解】1.C【详解】对于A,任何三个不共面的向量都可构成空间的一个基底,所以A错误,B错误;对于C,两两垂直的三个非零向量不共面,可构成空间的一个基底,C正确;对于D,直线的方向向量有无数个,所以D错误.故选:C2.C【详解】由图形结合分析---,,a cbc a b三个向量共面,不构成基底,故选:C3.C选项A:由于()()2+--=,三个向量共面,故不能作为空间的一个基底;a b b a a选项B:由于()()2++-=,三个向量共面,故不能作为空间的一个基底;a b b a b选项C :若,,a b b a c +-三个向量共面,则存在,x y R ∈,使得()()()()c x a b y b a x y a x y b =++-=-++,则向量,,a b c 共面,矛盾,故,,a b b a c +-三个向量不共面,因此可以作为空间的一个基底;选项D :由于()a b c a b c ++=++,三个向量共面,故不能作为空间的一个基底; 故选:C4.A【详解】连接,,OM ON 111()()()223MN ON OM OA OB OC CM OA OB OC CB =-=+-+=+--=11112112()()23263263OA OB OC OB OC OA OB OC a b c +---=+-=+-. 故选:A5.B【解析】【分析】利用空间向量的线性运算,空间向量基本定理求解即可.【详解】解:点M 在线段OA 上,且2OM MA =,N 为BC 中点,∴23OM OA =,111()222ON OB OC OB OC =+=+, ∴122113122223a b c MN ON OM OB OC OA =-=+-+=-+. 故选:B .6.D【解析】【分析】利用空间向量的加法与减法可得出OM 关于a 、b 、c 的表达式.【详解】()()21113232MN MA AB BN OA OB OA BC OB OA OC OB =++=+-+=-+- 111322a b c =-++. 故选:D.7.D【解析】【分析】根据点P 与点,,A B C 共面,可得1x y z ++=,验证选项,即可得到答案.【详解】设OP xOA yOB zOC =++,若点P 与点,,A B C 共面,则1x y z ++=,对于选项A :11131x y z ++=++=≠,不满足题意;对于选项B :21101x y z ++=--=≠,不满足题意;对于选项C :11131153230x y z ++=++=≠,不满足题意; 对于选项D :1111333x y z ++=++=,满足题意.故选:D.8.B【解析】【分析】证明出若OP xOA yOB zOC =++且1x y z ++=,则P 、A 、B 、C 四点共面,进而可得出合适的选项.【详解】设OP xOA yOB zOC =++且1x y z ++=,则()1OP xOA yOB x y OC =++--,()()OP OC x OA OC y OB OC ∴-=-+-, 则CP xCA yCB =+,所以,CP 、CA 、CB 为共面向量,则P 、A 、B 、C 四点共面. 对于A 选项,OP OA OB OC =++,11131++=≠,P 、A 、B 、C 四点不共面; 对于B 选项,111236OP OA OB OC =++,1111236++=,P 、A 、B 、C 四点共面; 对于C 选项,1122OP OA OB OC =++,1112122++=≠,P 、A 、B 、C 四点不共面.故选:B.9.D【解析】【分析】由243AP AQ AR AS →→→→=-+,得23RP RQ RS →→→=+,即得解. 【详解】由243AP AQ AR AS →→→→=-+,得23AP AR AQ AR AS AR →→→→→→⎛⎫⎛⎫-=-+- ⎪ ⎪⎝⎭⎝⎭,即23RP RQ RS →→→=+,所以RP →,,RQ RS →→为共面向量, 故,,,P Q R S 四点共面. 故选:D . 10.D 【解析】 【分析】根据向量共面列方程,化简求得2m t +. 【详解】2111-≠-,所以,a b 不共线, 由于a ,b ,c 共面, 所以存在,x y ,使c xa yb =+, 即()()()21,2,22,,1,11,t x m y -=--+,()()(),,21,2,22,,t x x y x y y m -+-=-, ()()1,2,22,,2y t x y x x m y ---+=+,21222x y x y mx y t-+=-⎧⎪-=⎨⎪+=⎩,()()13123222x y m t mx y t =-⎧⎪=-⇒⋅-+⋅-=⎨⎪+=⎩, 即26m t +=-.故选:D 11.B 【解析】 【分析】根据已知条件用i ,j ,k 表示AC ,AD ,再由空间共面向量定理设AD x AB y AC =+,再列方程组,解方程组即可求解. 【详解】因为22AB i j k =-+,23BC i j k =+-,35CD i j k λ=+-所以3AC AB BC i j k =+=-- ,()326A AC D CD i j k λ+==++-, 由空间共面向量定理可知,存在实数,x y 满足AD x AB y AC =+, 即()()()326232i j k x i j k i j k y λ++-=-+-+-,所以332262x y x y x y λ+=+⎧⎪=--⎨⎪-=-⎩,解得221x y λ=-⎧⎪=⎨⎪=⎩,所以λ的值为1,故选:B. 12.B 【解析】 【分析】由四点共面的充要可得21156λ++=,求解即可. 【详解】O 是平面ABC 外任意一点,且2156OM OA OB OC λ=++,若A ,B ,C ,M 四点共面的充要条件是21156λ++=,即1330λ=. 故选:B. 13.A 【解析】 【分析】根据向量的共面定理,得到2x y +=,再结合基本不等式,即可求解. 【详解】由题意,存在非零实数λ使得AP BC λ=,可得//AP BC ,即,,,P A B C 四点共面, 因为(,0)OP OA xOB yOC x y =-++>,根据向量的共面定量,可得11x y -++=,即2x y +=,又由621621621()()(62)(84222y x x y x y x y x y +=⋅++=⋅+++≥+=+当且仅当62y x x y=时,即x =时,等号成立,所以62x y +的最小值为4+故选:A. 14.D 【解析】 【分析】对于A ,利用空间向量基本定理判断,对于B ,利用向量的定义判断,对于C ,举例判断,对于D ,共面向量定理判断 【详解】对于A ,若,,a b c 三个向量共面,在平面α,则空间中不在平面α的向量不能用,,a b c 表示,所以A 错误,对于B ,因为向量是自由向量,是可以自由平移,所以当,C AB D 所在的直线是异面直线时,,C AB D 有可能共面,所以B 错误,对于C ,当三个向量,,a b c 两两共面时,如空间直角坐标系中的3个基向量两两共面,但这3个向量不共面,所以C 错误,对于D ,因为A ,B ,C 三点不共线,111236OD OA OB OC =++,且1111236++=,所以A ,B ,C ,D 四点共面,所以D 正确, 故选:D 15.B 【解析】 【分析】证明出当1x y z ++=,且OM xOA yOB zOC =++,则点M 、A 、B 、C 共面.然后逐项验证可得合适的选项. 【详解】若1x y z ++=,且OM xOA yOB zOC =++,则()1OM xOA yOB x y OC =++--,则()()OM OC x OA OC y OB OC -=-+-, 即xCA yCB CM =+,所以,点M 、A 、B 、C 共面. 对于A 选项,1111222++≠,A 选项中的点M 、A 、B 、C 不共面; 对于B 选项,111133-+=,B 选项中的点M 、A 、B 、C 共面;对于C 选项,1111++≠,C 选项中的点M 、A 、B 、C 不共面; 对于D 选项,2111--≠,D 选项中的点M 、A 、B 、C 不共面. 故选:B. 16.(1)1AC ; (2)12α=,14,34γ=. 【解析】 【分析】(1)利用平行六面体的性质及向量的线性运算即得;(2)利用向量线性运算的几何表示可得1113244AB A MN AA D =++,进而即得. (1)∵1111ABCD A B C D -是平行六面体, ∴1111111AA BC AB AA BC A B AC ++=++= (2)∵MN =MB BN +11324DB BC =+()()11324AB AD AA AD =-++ 1113244AB AD AA =++,又1MN AB AD AA αβγ=++, ∴12α=,14,34γ=. 17.(1)1,1,1x y z ==-= (2)11,,122x y z === 【解析】 【分析】(1)利用空间向量的加法运算,结合相等向量,由空间向量的基本定理求解; (2)利用空间向量的加法运算,结合相等向量,由空间向量的基本定理求解; (1)解:BD BA AA A D ''''=++,AD AB AA '=-+,又因为BD x AD y AB z AA =+'+', 所以1,1,1x y z ==-=; (2)AE AA A D D E =+''''+,12AA AD DB ='++,()12AA AD AB AD =++-', 1122AD AB AA =+'+, 又因为AE x AD y AB z AA =+'+, 所以11,,122x y z ===. 18.D 【解析】 【分析】根据四点共面结论:若,,,A B C D 四点共面,则OD aOA bOB cOC =++且1a b c ++=, 【详解】若M ,A ,B ,C 四点共面,则21x y -++=,则3x y += 故选:D . 19.B 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+ 则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++ 故选:B 20.D 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112111333333999OG OG OA AG OA OB OC OA OA OB OC ⎛⎫==+=++-=++ ⎪⎝⎭ 故选:D 21.D 【解析】 【分析】根据空间向量基本定理即可判断 【详解】由于向量OA ,OB ,OC 不能构成空间的一个基底知OA ,OB ,OC 共面,所以O ,A ,B ,C 四点共面 故选:D 22.A 【解析】 【分析】利用向量减法的三角形法则进行计算即可. 【详解】因为M 是PC 中点,()()()1122BM PM PB PC AB AP AC AP AB AP ∴=-=--=--- 1122AB AC AP =-++,又BM x AB y AC z AP =++, 111,,22x y z ∴=-==,∴0x y z ++=. 故选:A. 23.B 【解析】 【分析】利用向量加法的平行四边形法则,减法的三角形法则即可求解 【详解】因为E 为1CD 中点, 所以()()11111112222AE AD AC AA AD AD AB AA AD AB =+=+++=++ ()11333AC AF AF AC AD AB =⇒==+ 所以1111111213322632EF AF AE AD AB AA AD AB AB AD AA =-=+---=--- 即121362a b c EF =--- 故选:B 24.C 【解析】 【分析】以A 为顶点作AB a =,AD b =,1AA c =,作出平行六面体1111ABCD A B C D -,根据空间向量的加法法则作出,,,,x y z a b c ++,然后判断各组向量是否共面可得结论. 【详解】如图,作平行六面体1111ABCD A B C D -,AB a =,AD b =,1AA c =, 则AC a b =+,1AD b c =+,1AB c a =+,1AC a b c =++,由平行六面体知,,,a b x 共面,,,x y z 不共面,,,b c z 不共面,,,x y a b c ++不共面, 因此可以作为空间的基底的有3组. 故选:C .25.D 【解析】 【分析】根据空间向量线性运算的几何意义进行求解即可. 【详解】23GF AF AG AC CF AE =-=+-()11121121232332AC AA AB AC AB AC AA =+-⨯+=-++, 故选:D . 26.B 【解析】 【分析】根据向量的加法法则及共面向量的基本定理即可求解. 【详解】根据向量的加法法则可得AC AB BC CC AB BC C C '''=++=+-,又23AC x AB yBC zC C ''=++,且,,AB BC C C '不共面,所以 1 2=1 3=-1x y z =⎧⎪⎨⎪⎩,解得111,,23x y z ===-,所以1171236x y z ++=+-=. 故选:B. 27.D 【解析】 【分析】根据m 与n 共线,由()xa yb c z a b c ++=-+,即可求解. 【详解】因为m 与n 共线,空间的一组基底{},,a b c , 所以()xa yb c z a b c ++=-+,所以,,1,x z y z z =⎧⎪=-⎨⎪=⎩解得1,1.x y =⎧⎨=-⎩,所以x +y =0. 故选:D. 28.B 【解析】【分析】用向量共线或共面的基本定理即可判断. 【详解】若 a 与b ,b 与c 共线,0b = ,则不能判定a c λ= , 故①错误;若非零向量,,a b c 共面,则向量c 可以在一个与,a b 组成的平面平行的平面上, 故②错误;,,a b c 不共面,意味着它们都是非零向量,可以作为一组基底,故③正确;c a b λμ=+,∴ c 与,a b 共面,故,,a b c 不能组成一个基底,故④错误; 故选:C. 29.C 【解析】 【分析】连接,AM AN ,由()111312244AG AM AN AB AA AC =+=++,即可求出答案. 【详解】连接,AM AN 如下图:由于G 是MN 的中点,()12AG AM AN =+∴ 11111222AA AC AB AA ⎛⎫=+++ ⎪⎝⎭1131244AB AA AC =++. 根据题意知1AG xAB yAA zAC =++.32x y z ∴++=. 故选:C. 30.C 【解析】 【分析】根据题意、空间向量基底的概念和共线的运算即可判断命题①②③,根据空间向量的平行关系即可判断命题④. 【详解】①:向量a b ,与空间任意向量都不能构成一个基底,则a 与b 共线或a 与b 其中有一个为零向量,所以//a b ,故①正确;②:由向量a b b c c a +++,,是空间一组基底,则空间中任意一个向量d ,存在唯一的实数组()x y z ,,使得d ()()()()()()x a b y b c z c a x z a x y b y z c =+++++=+++++,所以a b c ,,也是空间一组基底,故②正确;③:由{}a b c ,,为空间一组基底,若0()xa yb zc x y z R ++=∈,,, 则0x y z ===,所以2220x y z ++=,故③正确;④:对于任意非零空间向量123()a a a a =,,,123()b b b b =,,,若//a b ,则存在一个实数λ使得=a b λ,有112233a b a b a bλλλ=⎧⎪=⎨⎪=⎩,又123b b b ,,中可以有为0的,分式没有意义,故④错误. 故选:C 31.BD 【解析】 【分析】根据空间向量运算判断AB 选项的正确性,根据三点共线、四点共面的知识判断CD 选项的正确性. 【详解】A C AC AB AD a b c A A AA '=-=+-='+'-,A 选项错误. ()()11112222AM AC A AB AD AD a b c D AA =+=+++='++',B 选项正确. 12A C A P ''=则P 是A C '的中点, ()()()111222c AP AC AA AB AD A b A a ''=+=++++=, c AD b AD AA ''=+=+,则不存在实数λ使AP AD λ'=,所以C 选项错误.()1112212122P a b c a b c b M AM AP AD +==⎛⎫=--= ⎪⎝++⎭+,由于,P M ∉直线AD ,所以,,,A P M D 四点共面,所以D 选项正确. 故选:BD 32.ABD 【解析】 【分析】利用空间向量的基底的概念及空间向量基本定理逐项分析即得. 【详解】∵a ,b ,c 是空间的一个基底,则a ,b ,c 不共面,且两两共面、不共线, ∴若0xa yb zc ++=,则0x y z ===,A 正确,B 正确;若存在x ,y 使得a xb yc =+,则a ,b ,c 共面,与已知矛盾,C 错误;设()()()22a b x b c y c a ya xb y x c +=-++=++-,则21,1,0,y x y x =⎧⎪=⎨⎪-=⎩,此方程组无解,∴a b +,b c -,2c a +不共面,D 正确. 故选:ABD. 33.ABC 【解析】 【分析】空间向量垂直的数量积表示可判断A ;由向量四点共面的条件可判断B ;由空间向量基底的定义可判断C ; a b ⋅是一个数值,c b ⋅也是一个数值,说明a 和c 存在倍数关系,或者说共线,可判断D. 【详解】空间向量a ,()0,0b a b ≠≠,若a b ⊥,则0a b ⋅=,故A 正确; 对空间中任意一点O ,有111632OP OA OB OC =++,且1111632++=,则P 、A 、B 、C 四点共面,故B 正确;因为{},,a b c 是空间的一组基底,所以,,a b c 不共面,m a c =+,则,,+a b a c 也不共面, 即{},,a b m 也是空间的一组基底,故C 正确;任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅,由于a b ⋅是一个数值,c b ⋅也是一个数值, 则说明a 和c 存在倍数关系,或者说共线,不一定相等,故D 错误. 故选:ABC. 34.CD 【解析】 【分析】根据平面向量基本定理,结合空间向量加法的几何意义进行求解即可. 【详解】因为点P 为三棱锥O ABC -的底面ABC 所在平面内的一点, 所以由平面向量基本定理可知:()()AP y AC z AB AO OP y AO OC z AO OB =+⇒+=+++,化简得:(1)OP y z OA yOC zOB =--++,显然有11y z y z --++=, 而12OP OA mOB nOC =+-,所以有11122m n m n +-=⇒-=,当1m =,12n =-时,32m n -=,所以选项A 不可能;当12m =,1n =时,12m n -=-,所以选项B 不可能;当12m =-,1n =-时,12m n -=,所以选项C 可能; 当32m =,1n =时,12m n -=,所以选项D 可能, 故选:CD 35.ABD 【解析】 【分析】根据空间向量基本定理即可判断出各个选项的正误. 【详解】解:对于选项A :三个非零向量能构成空间的一个基底,则三个非零向量不共面,所以选项A 正确,对于选项B :三个非零向量不共面,则此三个向量可以构成空间的一个基底, 若两个非零向量与任何一个向量都不能构成空间的一个基底,则这三个向量共面, 则已知的两个向量共线,所以选项B 正确, 对于选项C :(c a b λμλ=+、R μ∈且λ、0)μ≠,∴a ,b,c 共面,不能构成基底,所以选项C 错误,对于选项D :OA 、OB 、OC 共起点,若O 、A 、B 、C 四点不共面,则必能作为空间的一个基底,所以选项D 正确, 故选:ABD .36.BC【解析】【分析】根据空间向量基底概念分别判断即可.【详解】对于A,若存在不全为零的实数x,y,z,使得x y za b c,++=0{a,b,}c不能构成空间的一个基底,所以A错;对于B,因为{a,b,}c构成空间的一个基底,所以对空间任一向量p,总存在唯一的有序实数组(x,y,)z,使得p xa yb zc=++,所以B对;对于C,因为2()()b a b a b=+--,=++-,2()()a ab a b所以a,b,不能与a b+,a b-构成空间另一个基底;又因为设x,y,z R∈若()()0++-+=x a b y a b zc⇒++-+=⇒===,x y a x y b zc x y z()()00所以c与a b+,a b-构成空间另一个基底;所以在a,b,c中,能与a b+,a b-构成空间另一个基底的只有c,所以C对;对于D,存在,根据向量运算几何意义,++表示以O为顶点,以1a,2b,3c为相邻三边的长方体对角线,a b c23绕此对角线长方体旋转,基底也变为另一基底{a',b',}c',都满足2323++='+'+',所以D错误.a b c a b c故选:BC37.ACD【解析】【分析】利用空间向量共面定理及数量积运算,逐一分析判断即可.【详解】解:对于A ,空间任意向量,a b 都是共面向量,所以A 正确;对于B ,已知P ,A ,B ,C 四点共面,对空间任意一点O ,若2OP OA OB tOC =++, 则211t ++=,解得2t =-,所以B 错误;对于C ,在四面体中P ABC -,若0PA BC ⋅=,0PC AB ⋅=,则()()2PA BC PB BA PC PB PB PC PB BA PC BA PB ⋅=+⋅-=⋅-+⋅-⋅ ()2PB PC PB BA PB PB PC PB BA =⋅--⋅=⋅--0PB AC =⋅=,所以C 正确; 对于D ,因为向量,,,a b b c c a +++是空间一组基底,则对于空间任一向量()d x y z =,,,都存在实数m ,n ,p ,使得()()()()d x y z m a b n b c p c a ==+++++,,,即()()()d m p a m n b n p c =+++++,所以,,a b c 也是空间的一组基底,所以D 正确. 故选:ACD .38.AC【解析】【分析】根据基底的性质,结合各选项中向量的线性关系、空间向量基本定理判断M 、A 、B 、C 是否共面,即可知{,,}MA MB MC 是否能成为空间基底.【详解】A :因为111345OM OA OB OC =++,且1111345++≠,利用平面向量基本定理知:点M 不在平面ABC 内,向量,,MA MB MC 能构成一个空间基底;B :因为2MA MB MC =+,利用平面向量基本定理知:向量,,MA MB MC 共面,不能构成一个空间基底;C :由23,1231OM OA OB OC =++++≠,利用平面向量基本定理和空间平行六面体法知:OM 是以点O 为顶点的对角线,向量,,MA MB MC 能构成一个空间基底;D :由32MA MB MC =-,根据平面向量的基本定理知:向量,,MA MB MC 共面,不能构成空间的一个基底.故选:AC.39.1122a b c -++ 【解析】【分析】利用空间向量的线性运算,结合题意,求解即可.【详解】根据题意,()1111111122BM BA AA A M AB AA AC AB AA AB BC =++=-++=-+++ 11122AB BC AA =-++=1122a b c -++. 故答案为:1122a b c -++.40.0【解析】 【分析】由2=PM MC 可得出BM 关于{},BP BC 的表达式,再利用空间向量的减法可求得x 、y 、z 的值,即可得解.【详解】因为2=PM MC ,则()2BM BP BC BM -=-, 所以,()()121221333333BM BP BC AP AB AC AB AB AC AP =+=-+-=-++, 所以,1x =-,23y =,13z =,因此,0x y z ++=.故答案为:0.41.④【解析】【分析】通过反例可知①②错误;根据平面向量基本定理、空间向量基本定理可判断出③④正误.【详解】对于①,若0a b ==,则对于平面内任意一个向量p ,无法得到(),p a b R λμλμ=+∈,①错误;对于②,若0a b ==,则,λμ为任意实数,②错误;对于③,若p 与,a b 不共面,则对于空间任意一个向量p ,无法得到p a b λμ=+(),R λμ∈,③错误;对于④,由平面向量基本定理可知④正确.故答案为:④.42.13-【解析】连接OD ,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接OD∵四面体OABC 中,D ,E 分别在AB ,OC 上,且AD DB =,2OE EC = ∴()2111232223DE OE OD OC OA OB OA OB OC =-=-+=--+∴121223αβγ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩∴13αβγ++=-.故答案为:13-43.111444a b c ++【解析】【分析】利用空间的基底结合空间向量的线性运算计算即可得解.,,OA a OB b OC c ===,而M 是四面体OABC 的棱BC 的中点,则1()2OM OB OC =+1122b c =+, 因AP =3PN ,23ON OM =,则33()44OP OA AP OA AN OA ON OA =+=+=+-132111443444OA OM a b c =+⋅=++, 所以111444OP a b c =++. 故答案为:111444a b c ++44.()12c a b -- 【解析】【分析】根据给定条件利用空间向量的线性运算即可得解.【详解】三棱锥O ABC -,点M ,N 分别为线段AB ,OC 的中点,则()11112222MN MB BO ON AB OB OC OB OA OB OC =++=-+=--+()11112222OC OA OB c a b =--=--, 所以MN 等于()12c a b --. 故答案为:()12c a b --. 45.(1)(4)【解析】根据共线向量,向量垂直,向量的基本定理,向量数量积的定义与性质,逐一分析5个命题的真假,即可得解.【详解】(1)若a b a b -=+,则a ,b 反向共线,即满足充分条件,但当非零向量a ,b 同向共线时,不存在a b a b -=+,即满足不必要条件,故(1)正确;(2)若向量a ,b 中有一个零向量,则存在无数个实数λ,使a b λ=,即(2)错误;(3)若0a b ⋅=,0b c ⋅=,说明a b ⊥,b c ⊥,不一定存在a c =,即(3)错误;(4)令()()a b b c c a λμ+=+++,则()a b a b c μλλμ+=+++,所以110λμλμ=⎧⎪=⎨⎪+=⎩,无解,即a b +,b c +,c a +不共面,所以{},,a b b c c a +++构成空间的另一基底,即(4)正确; (5)()()cos ,a b c a b c a b c a b ⋅⋅=⋅⋅=⋅⋅,即(5)错误.命题(1)(4)正确.故答案为:(1)(4).46.(1)111333OG OA OB OC =++(2)73【解析】【分析】(1)根据空间向量线性运算法则计算可得;(2)由(1)可得111()()333OG AB OA OB OC OB OA ⋅=++⋅-,根据空间向量数量积的运算律及定。
2020年山东省东营市第二中学高二数学理下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数,,当时,不等式恒成立,则实数a的取值范围为( )A. B. C. D.参考答案:A【分析】根据,可以把不等式变形为:构造函数,知道函数的单调性,进而利用导数,可以求出实数的取值范围.【详解】因为,所以,设函数,于是有,而,说明函数当时,是单调递增函数,因为,所以,,因此当时,恒成立,即,当时恒成立,设,当时,,函数单调递增,当时,,函数单调递减,故当时,函数有最小值,即为,因此不等式,当时恒成立,只需,故本题选A.【点睛】本题考查了通过构造函数,得知函数的单调性,利用导数求参问题,合理的恒等变形是解题的关键.2. 已知数列是公比为的等比数列,且,,则的值为( )A. B. C.或D.或参考答案:D略3. 已知定义在上的函数,为其导数,且恒成立,则()A. B.C. D.参考答案:A【分析】通过,可以联想到导数运算的除法,这样可以构造新函数,,这样就可以判断出函数在上的单调性,把四个选项变形,利用单调性判断出是否正确.【详解】通过,这个结构形式,可以构造新函数,,而,所以当时,,所以函数在上是单调递增函数,现对四个选项逐一判断:选项A. ,可以判断是否正确,也就是判断是否正确,即判断是否成立,因为,在上是单调递增函数,所以有,故选项A正确;选项B.,也就是判断是否正确,即判断是否成立,即判断是否成立,因为,在上是单调递增函数,所以有,故选项B不正确;选项C. ,也就是判断是否正确,即判断是否成立,即判断是否成立,因为,在上是单调递增函数,所以有,故选项C不正确;选项D.,也就是判断,是否成立,即判断是否成立,因为,在上是单调递增函数,所以有,因此选项D不正确,故本题选A.【点睛】本题考查了根据给定的已知不等式,联想到导数的除法运算法则,构造新函数,利用新函数的单调性,对四个选项中不等式是否成立作出判断.重点考查了构造思想.关键是熟练掌握一些基本的模型结构特征.4. 从2,4中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为A.6 B.12 C.18 D.24参考答案:D5. 将一枚质地均匀的硬币随机抛掷两次,出现一次正面向上,一次反面向上的概率为()A.B.C.D.参考答案:A【考点】古典概型及其概率计算公式.【分析】出现一次正面向上,一次反面向上的情况有两种:第一次正面向上第二次反面向上和第一次反面向上第二次正面向上.【解答】解:将一枚质地均匀的硬币随机抛掷两次,出现一次正面向上,一次反面向上的概率为:p==.故选:A.6. 正三棱锥A-BCD中,侧棱AB、AC、AD两两垂直,且AB=AC=AD=a,则以A为球心、正三棱锥的高为半径的球夹在正三棱锥内的球面部分的面积是A. B. C.D.参考答案:B7. 若,则等于()A. B. C. D.以上都不是参考答案:A8. 已知F是双曲线的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,若ΔABE是锐角三角形,则该双曲线的离心率e的取值范围为( )A.(1,+∞) B.(2,1+) C.(1,1+) D.(1,2)参考答案:D略9. 如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是(A)AC⊥SB(B)AB∥平面SCD(C)SA与平面SBD所成的角等于SC与平面SBD所成的角(D)AB与SC所成的角等于DC与SA所成的角参考答案:D10. 某人射击一发子弹的命中率为0.8,现在他射击19发子弹,理论和实践都表明,在这19发子弹中命中目标的子弹数X的概率满足P(X=k)=C·0.8k·0.219-k(k=0,1,2,…,19),则他射完19发子弹后,击中目标的子弹最可能是()A.14发B.15发C.16发D.15发或16发参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11. 某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 (用数字作答)参考答案:60略12. 在△ABC中,已知a=2bcosC,那么这个三角形一定是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形参考答案:C【考点】余弦定理的应用.【分析】先根据余弦定理表示出cosC,代入整理即可得到b=c从而知是等腰三角形.【解答】解:∵a=2bcosC=2b×=∴a2=a2+b2﹣c2∴b2=c2因为b,c为三角形的边长∴b=c∴△ABC是等腰三角形.故选C.13. 若函数f(x)=x2﹣lnx+1在其定义域内的一个子区间(a﹣2,a+2)内不是单调函数,则实数a的取值范围.参考答案:[2,)【考点】利用导数研究函数的单调性.【分析】函数f(x)的定义域为(0,+∞),f′(x)=2x﹣,根据题意可得到,0<a﹣2<<a+2从而可得答案.【解答】解:∵f(x)的定义域为(0,+∞),f′(x)=2x﹣,f′(x)>0得,x>,f′(x)<0得,0<x<,∵函数f(x)定义域内的一个子区间[a﹣2,a+2]内不是单调函数,∴0≤a﹣2<<a+2,∴2≤a<,故答案为:[2,).【点评】点评:本题考查利用导数研究函数的单调性,依题意得到0≤a﹣2<是关键,也是难点所在,属于中档题.14. 已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:y=x-1被圆C所截得的弦长为2,则过圆心且与直线l垂直的直线的方程为________.参考答案:x+y-3=015. 展开式中奇数项的二项式系数和等于.参考答案:8略16. 已知点及椭圆上任意一点,则最大值为。
高二上册期末考数学知识点高二上册数学是一个非常重要的学科,它是我们日常生活中不可或缺的一部分。
在高二上册期末考试中,我们需要对数学知识点进行系统的总结和复习。
本文将介绍高二上册期末考数学知识点,帮助同学们更好地备考。
1. 函数与方程函数与方程是数学中的基础概念,也是我们学习数学的起点。
在高二上册期末考试中,我们需要对函数与方程的性质、图像、性质等进行深入理解。
其中包括一次函数、二次函数、指数函数、对数函数等等。
2. 三角函数三角函数是高中数学中的重点内容,也是数学与物理等学科的重要联系点。
在高二上册期末考试中,我们需要对正弦函数、余弦函数和正切函数的定义、性质、图像等进行全面的掌握。
同时,还需要进行三角函数之间的关系、解三角方程等应用题的练习与复习。
3. 平面向量平面向量是高二上册期末考试中的重要知识点之一。
我们需要了解平面向量的定义、性质、运算规则等,并且能够灵活运用平面向量解决几何问题。
同时,还需要掌握平面向量的夹角、共线与垂直等关系,并能够运用到空间向量的计算中。
4. 概率与统计概率与统计是高二上册期末考试中的一大重点内容。
我们需要了解概率的基本概念、计算方法,掌握概率事件的概念、运算规则,并能够运用到生活实践中。
同时,还需要对统计学的基本概念、统计图表的绘制与分析等进行深入学习与练习。
5. 解析几何解析几何是高二上册期末考试中的重要知识点之一。
我们需要掌握直线、圆的方程及其性质,学会通过方程解决几何问题。
同时,还需要了解二次曲线的方程和性质,并能够灵活运用解析几何解决平面几何问题。
6. 导数与微分导数与微分是高二上册期末考试中的重点内容之一。
我们需要掌握导数的定义、导数计算法则,理解导数与函数的关系,并能运用导数解决极值、曲线图像和相关率等问题。
同时,还需要学习微分的概念、微分计算法则,并能够运用微分解决函数的局部性质、增减性和凹凸性等问题。
7. 数列与数学归纳法数列与数学归纳法是高二上册期末考试中的重要知识点之一。
2021-2022学年山东省临沂市大学第二附属中学高二数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知在等比数列中,有,,则A.7B.5C.-5D.-7参考答案:D略2. 命题“,使得”的否定形式是()A.,使得B.,使得C.,使得D.,使得参考答案:D命题“,使得”的否定形式是,使得故选:D3. 函数y=xlnx在区间()A.(0,+∞)上单调递减B.(,+∞)上单调递减C.(0,)上单调递减D.(0,+∞)上单调递增参考答案:C【考点】利用导数研究函数的单调性.【分析】先求出函数的导数,从而得到函数的单调区间.【解答】解:∵y′=x′lnx+x(lnx)′=lnx+1,令y′>0,解得:x>,令y′<0,解得:0<x<,∴函数在(0,)递减,在(,+∞)递增,故选:C.4. 已知函数,则()A. B. 1 C. D.参考答案:B【分析】求出导函数,由,可得,从而可得结果.【详解】,又因为,所以,解得,故选B.5. 如果双曲线的两个焦点分别为、,一条渐近线方程为,那么它的两条准线间的距离是()A、 B、2 C、4 D、1参考答案:B略6. 设是函数的导函数,的图象如图所示,则的图象最有可能的是( )参考答案:C7. 设计用32m2的材料制造某种长方体形状的无盖车厢,按交通部门的规定车厢宽度为2m,则车厢的最大容积是()A.(38-3m2 B.16 m2 C. 4m2 D.14 m2参考答案:B解析:设长方体的长为xm,高为hm,则V=2xh而2x+2h×2+xh×2=32∴可求得B。
8. 复数z=(1﹣i)(4﹣i)的共轭复数的虚部为()A.﹣5i B.5i C.﹣5 D.5参考答案:D【考点】A5:复数代数形式的乘除运算.【分析】直接利用复数代数形式的乘除运算化简,进一步求得的答案.【解答】解:∵z=(1﹣i)(4﹣i)=3﹣5i,∴,则复数z=(1﹣i)(4﹣i)的共轭复数的虚部为5.故选:D.9. 如图,长方体ABCD-A1B1C1D1中,,点P在线段B1D1上,的方向为正(主)视方向,当AP最短时,棱锥P-AA1B1B的左(侧)视图为()A. B. C. D.参考答案:B【分析】在中,根据最短距离得到,确定的位置,在得到左视图.【详解】在中:当最短时,最短即在中通过长度关系知道P靠近B1:左视图为B故答案选B【点睛】本题考查了最短距离,三视图,意在考查学生的计算能力和空间想象能力.10. 在如图的程序图中,输出结果是()A. 5 B. 10 C. 15 D. 20参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 已知复数名(i为虚数单位),则_________.参考答案:1012. 若过椭圆内一点(2,1)的弦被该点平分,则该弦所在直线的方程是_______________.参考答案:设弦AB的两个端点,则,两式作差变形可得,所以该弦所在直线的方程为,即.13. 已知某种新产品的编号由1个英文字母和1个数字组成,且英文字母在前,数字在后.已知英文字母是A,B,C,D,E这5个字母中的1个,数字是1,2,3,4,5,6,7,8,9这9个数字中的一个,则共有__________个不同的编号(用数字作答).参考答案:45【分析】通过分步乘法原理即可得到答案.【详解】对于英文字母来说,共有5种可能,对于数字来说,共有9种可能,按照分步乘法原理,即可知道共有个不同的编号.【点睛】本题主要考查分步乘法原理的相关计算,难度很小.14. 已知数列为,依它的前10项的规律,则____.参考答案:略15. ______参考答案:【分析】利用定积分的几何意义可求的值,再由微积分基本定理求得的值,从而可得结果.【详解】根据题意,,等于半径为1的圆的面积的四分之一,为,所以,,则;故答案为.【点睛】本题主要考查定积分的几何意义,属于中档题.一般情况下,定积分的几何意义是介于轴、曲线以及直线之间的曲边梯形面积的代数和,其中在轴上方的面积等于该区间上的积分值,在轴下方的面积等于该区间上积分值的相反数,所以在用定积分求曲边形面积时,一定要分清面积与定积分是相等还是互为相反数;两条曲线之间的面积可以用两曲线差的定积分来求解.16. 若z1=1﹣3i,z2=6﹣8i,且z=z1z2,则z的值为.参考答案:﹣18﹣26i【考点】复数代数形式的乘除运算.【分析】利用复数的乘法的运算法则化简求解即可.【解答】解:z1=1﹣3i,z2=6﹣8i,z=z1z2=(1﹣3i)(6﹣8i)=6﹣8i﹣18i+24i2=﹣18﹣26i.故答案为:﹣18﹣26i.17. 如图所示,正方形OABC 的边长为1,则对角线OB 与函数y=x 3围成的阴影部分的面积为.参考答案:考点:定积分在求面积中的应用. 专题:导数的综合应用.分析:首先由图形利用定积分表示阴影部分的面积,然后计算定积分.解答: 解:依题意可知,阴影部分面积为S==()|=;故答案为:.点评:本题考查了利用定积分求曲边梯形的面积;关键是利用定积分正确表示面积.三、 解答题:本大题共5小题,共72分。
山东高二数学期末考知识点
一、函数与方程
1. 定义函数:函数是一种对应关系,每个自变量对应唯一的因变量
2. 函数的表示方法:显式函数、隐式函数、参数方程
3. 函数的性质:奇偶性、单调性、周期性、奇函数与偶函数的性质
4. 函数的运算:和、差、积、商、复合函数等
5. 一次函数与二次函数:定义、性质、图像、根、性质等
6. 指数和对数函数:定义、性质、图像、对数运算等
7. 三角函数与反三角函数:定义、性质、图像、三角函数的基本关系式等
8. 方程与不等式:一元一次方程、一元二次方程及复根情况、二次函数与一元二次方程的关系、绝对值方程、绝对值不等式等
二、数列与数列极限
1. 数列的定义:按照一定规则排列的一串数
2. 数列的性质:通项公式、前n项和、等差数列与等比数列的性质等
3. 数列极限的定义:当n趋于无穷大时,数列逐渐趋于某个确定的值
4. 数列极限的计算方法:夹逼准则、单调有界准则、等差数列与等比数列的极限等
三、平面向量与解析几何
1. 平面向量的定义与性质:向量的表示方法、向量的模、零向量、向量的加法与减法、数量积与向量积等
2. 平面向量的坐标表示:向量在直角坐标系中的表示方法、向量的投影等
3. 平面解析几何:点、直线、圆的方程、两直线的位置关系、两圆的位置关系等
四、三角函数与三角恒等式
1. 三角函数的定义:正弦、余弦、正切等
2. 三角函数的性质:周期性、奇偶性、函数值的范围等
3. 三角恒等式的证明与应用:基本恒等式、倍角公式、半角公式等
五、导数与微分
1. 导数的定义与性质:导数的几何意义、导数的四则运算、高阶导数等
2. 导函数与原函数的关系:微分的定义与计算、微分中值定理等
3. 函数的极值与最值:最值问题的求解、函数图像的特点等
4. 函数的单调性与凹凸性:导数与函数单调性的关系、导数与函数凹凸性的关系等
六、概率与统计
1. 概率的基本概念:样本空间、事件、概率等
2. 事件的计算方法:加法原理、乘法原理、全概率公式、贝叶斯公式等
3. 随机变量与概率分布:离散型随机变量、连续型随机变量、正态分布、二项分布等
4. 统计与抽样调查:总体与样本、抽样方法、频数分布表、统计量等
以上是山东高二数学期末考的知识点概览。
希望同学们能够认真复习、掌握这些知识,并在考试中取得好成绩。
祝愿大家顺利通过期末考试!。