矩阵论研究生复习题
- 格式:docx
- 大小:16.65 KB
- 文档页数:4
武汉大学2018-2019第一学期研究生《矩阵论》期末考试题
一、(15分)设W={(x 1,x 2,x 3,x 4)|x 1-x 2+x 3-x 4=0},其中(x 1,x 2,x 3,x 4)∈R 4
(1)证明W 是线性空间;
(2)求W 的一组基和维数;
(3)将W 的基扩充为R 4的基。
二、(15分)设V 是欧氏空间,W 是V 的任意一个子空间,令W ⊥={α∈V|α⊥W}
证明:(1)W ⊥也是V 的子空间;
(2)V=W ⊕W ⊥。
三、(15分)在R 3中定义变换σ(x 1,x 2,x 3)丅=(x 1+x 2,x 1-x 2,x 3)
丅(1)证明σ是线性变换;
(2)求σ的像lmσ和σ的核kerσ;
(3)求σ在基β1=(1.0.0)丅,β2=(1.1.0)丅,β3=(1.1.1)丅下的矩阵表示。
四、(15分)设σ是n 维线性空间,
V (F )上的一个线性变换,关于基α1,α2,...,αn 和基β1,β2,...,βn 的矩阵分别为A 和B 。
证明:存在可逆矩阵P 使得B=P -1AP 。
五、(15分)已知A=⎪⎪⎪⎭
⎫ ⎝⎛0 2 21- 2 21- 1 3(1)求A 的最小多项式;
(2)求A 所有的行列式因子、不变因子和初等因子;(3)求可逆矩阵P 使得P -1AP 为对角矩阵或Jordan 矩阵。
六、(25分)设A ∈R m ×n ,B ∈R n ×p
(1)证明:秩(AB )≤秩(A ),秩(AB )≤秩(B )(2)证明:秩(AB )≥秩(A )+秩(B )-n。
中国矿业大学2014~2015学年第1学期研究生《矩阵论》试卷答题时间:120分钟 考试方式:闭卷姓名_ _____学号____________院系__________任课老师____________得分______ 【一】(10分)已知矩阵a b A c d ⎛⎫=⎪⎝⎭,定义22R ⨯上的线性变换 (),T X AX X =∈22R ⨯求T 在基11122122,,,E E E E 下的矩阵。
【二】(15分) 已知矩阵313729214A -⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭(1)求A 的不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=。
【三】(15分)已知矩阵010865A ⎪=- ⎪ ⎪-⎝⎭(1)求A 的特征多项式; (2)求A 的最小多项式;(3)把矩阵Ate 表示成关于A 的多项式。
【四】(10分)已知矩阵111032A ⎪= ⎪ ⎪⎝⎭,求A 的QR 分解。
【五】(10分) 已知矩阵0.20.70.30.6A ⎛⎫= ⎪⎝⎭(1)求1,A A ∞; (2)讨论矩阵幂级数0kk A∞=∑的敛散性;若收敛,求其和。
【六】(15分)已知下面矛盾方程组123131311221x x x x x x x ++=⎧⎪+=⎨⎪+=⎩ (1)求系数矩阵A 的满秩分解; (2)求A 的广义逆矩阵A +;(3)求该方程组的极小范数最小二乘解。
【七】(15分)()n n ij A a R ⨯=∈,证明:2,,max max ij ij i ji ja An a ≤≤⋅【八】(10分)假设A 是n 阶方阵,若A 不与任何对角阵相似,证明:存在多项式()f λ及正整数k ,使得()f A O ≠但[()]k f A O =。
参 考 答 案【一】(10分)已知矩阵a b A c d ⎛⎫=⎪⎝⎭,定义22R ⨯上的线性变换 (),T X AX X =∈22R ⨯求T 在基11122122,,,E E E E 下的矩阵。
武汉大学数学与统计学院2005-2006学年工科硕士研究生学位课程期末考试《矩阵论》 试题 (A 卷,150分钟)专业 电气工程 班号 姓名 学号注:所有的答题内容必须写在答题纸上,凡写在其它地方的一律无效;交卷时将试卷连同答题纸、草稿纸一并上交。
一、 是非题(满分12“√”,否则打“×”)(√A 是n m ⨯的实矩阵,x 为n 维向量,则⇔=0Ax A T 0=Ax ;()()212200*0*000T T T m j mjm ji A Ax x A Ax Ax a a a Y Ax ⨯=∴==⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭⇔=⇔==∑∑Tij m n j=1j=1令Y=(y ),则Y Y=0,即 ( × ) 2.设n 阶方阵A 满足E A =2,则A 的特征值只能是1;也可能是-1,如令1001A ⎛⎫= ⎪-⎝⎭证明:21111111A E A AAx x A Ax A x x A x Ax Ax x λλλλλλλλ----=⇒==⇒=⇒==⇒=⇒=⇒=±(√ ) 3.欧氏空间n R 上的任意两种向量范数都是等价的; 在线性空间中所任意两种范数等价而欧氏空间是一种特殊的线性空间(√ ) 4.设A 为n m ⨯矩阵,B 为n 阶可逆方阵,则---=A B AB 1)(.()()()111()AB B A AB ABB A AB AA AB ABAB B A--------===∴=二、 填空题(本题满分12分,每空3分).设有三个四维向量T T T Z Y X )3,1,1,2(,)1,1,1,1(,)1,1,1,1(=--=-=.则它们的2-范数分别为=2X2 ; =2Y2 ;2Z 且与Z Y X ,,都正交的所有向量为 (4013)k -. 即求1234111101111021130x x x x ⎛⎫-⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪--= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的解。
09级-研-矩阵论试题及参考答案一(15分)设实数域上的多项式321()223p x x x x =+++,322()23p x x x x =+++ 323()45p x x x x =-+--,324()367p x x x x =-++(1)求线性空间()1234span ,,,W p p p p =的一组基和维数; (2)求多项式32()41p x x x =++在你所求基下的坐标。
解:(1)111110021130101224600123357000r A -⎛⎫⎛⎫⎪⎪-- ⎪ ⎪=−−→⎪ ⎪-- ⎪⎪-⎝⎭⎝⎭123,,p p p 是W 的一组基,dim 3W =;(2)123()()()()p x p x p x p x =++,p 的坐标为(1,1,1)T x =。
或:x^3+1 , x^2 , x+1.这三个基形式是最简单的。
坐标为(1,4,0)。
二(15分)(1)设2T ()tr()Ff X XX X ==,其中()m n ij m n X x R ⨯⨯=∈是矩阵变量,求dfdX ; (2)设()m nij m n A a R ⨯⨯=∈,12(,,,)T n n x x x x R =∈ 是向量变量,()F x Ax =,求T dF dx.解 (1)211()m nij i j f X x ===∑∑,2ij ijfx x ∂=∂, ()22ij m n ijm ndf f x X dX x ⨯⨯⎛⎫∂=== ⎪ ⎪∂⎝⎭;(2) 111()n k k k n mk k k a x F x Ax a x ==⎛⎫⎪ ⎪==⎪ ⎪ ⎪⎪⎝⎭∑∑ ,1,1,2,,i i mi a F i n x a ⎛⎫∂ ⎪== ⎪∂ ⎪⎝⎭ , 11111(,,)n T nm mn a a dF F F A dx x x a a ⎛⎫∂∂ ⎪=== ⎪∂∂ ⎪⎝⎭。
三(15分)已知微分方程组0d d (0)xAx t x x ⎧=⎪⎪⎨⎪⎪=⎩,200031011A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,0111x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, (1)求矩阵A 的Jordan 标准形J 和可逆矩阵P 使1P AP J -= (2)求矩阵A 的的最小多项式)(λA m (3)计算矩阵函数Ate ; (4)求该微分方程组的解。
1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ⋅=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为k x x k =⊗问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为),(112211y x y x y x y x +++=⊕对于任意的数R k ∈,定义k 与x 的数乘为)2)1(,(2121x k k kx kx x k -+=⊗ 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim .4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间,)}()(,0)0(|)({R P x f f x f S n ∈='=证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设T 是2R 上的线性变换,对于基向量i 和j 有j i i T +=)( j i j T -=2)(1)确定T 在基},{j i 下的矩阵;2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=1)确定T 在基},,{k j i 下的矩阵; 2)求T 的零空间和像空间的维数.7.设线性空间3R 的两个基为(I):321,,x x x , (II):321,,y y y , 由基(I)到基(II)的过度矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=101010101C , 3R 上的线性变换T 满足21321)32(y y x x x T +=++ 12323(24)T x x x y y ++=+31321)43(y y x x x T +=++ 1)求T 在基(II)下的矩阵; 2)求)(1y T 在基(I)下的坐标. 8.在线性空间)(3R P 中321)(x x x a x f +++= 3221)(x x ax x f +++= 32321)(x x x x f +++=讨论)(),(),(321x f x f x f 的线性相关性.9.在22R ⨯中求由基(I) 12101A ⎛⎫= ⎪⎝⎭ 20122A ⎛⎫= ⎪⎝⎭ 32112A -⎛⎫= ⎪⎝⎭ 41312A ⎛⎫= ⎪⎝⎭到基(II) 11210B ⎛⎫= ⎪-⎝⎭ 21111B -⎛⎫= ⎪⎝⎭ 32211B -⎛⎫= ⎪⎝⎭ 41101B --⎛⎫= ⎪⎝⎭的过渡矩阵.10.已知 1(1,2,1,0)α= 2(2,1,0,1)α=- 1(1,1,1,1)β=- 2(1,1,3,7)β=- 设1212(,)(,)V L L ααββ=⋂, 求线性空间V 的维数和基. 11.在)(2R P 中, 对任意的)()(),(2R P x g x f ∈定义内积为⎰=1)()())(),((dx x g x f x g x f若取)(2R P 的一组基},,1{2x x ,试用Schmidt Gram -正交化方法,求)(2R P 的一组正交基.12.(1) 设x 和y 是Eucild 空间V 的非零元,它们的夹角是θ,试证明θcos ||||||||2||||||||||||222y x y x y x ⋅-+=-12.(2) 求矩阵10002i A i +⎛⎫= ⎪⎝⎭的奇异值分解.13.设A 为n 阶实矩阵,证明A 可表示为一对称矩阵和一反对称矩阵之和. (提示:若A A T =,称A 为对称矩阵。
矩阵论复习题1设A 、B 均为n 阶正规矩阵,试证A 与B 酉相似的充分必要条件是A 与B 的特征值相同。
证明: 充分性:A 与B 的特征值相同,A 、B 均为n 阶正规矩阵,则有11,A P IP B Q IQ --== 故11111,,A P QIQ P R Q P R P Q -----==令= A 与B 酉相似 必要性:A,B 为n 阶正规矩阵,存在初等变换R,1A RBR -=11,,,I E PQ A P IP B Q EQ --==为对角矩阵,存在初等变换111,I PAP E QRAR Q ---== ,因为I,E 为对角矩阵,故I=E 。
因此A 与B 的特征值相同。
#2 作出下列矩阵的奇异值分解10(1)A 0111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦011(2)A 200-⎡⎤=⎢⎥⎣⎦ (1)632- 6 3 2101263011,130 2 6 311206333T B AA ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 2221 2 2,131222 2 2TC A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应故263 2 6 32210263 2 203 2 6 3220063 2 20 33HA ⎡⎤-⎢⎥⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦(2) 2010,240401T B AA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应, 0040012201-1,2-400- 2 20-11022- 2 2T C A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 0101022200A 001 2202022022H⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦3.求下列矩阵A 的满秩分解123002111021A ⎛⎫⎪=- ⎪⎪⎝⎭112211001230010,021110102111001230010,021101100001001230=010021-11-11L L A L L L A A ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦故4 设A 、B 均为n 阶Hermite 正定矩阵,证明:若B A ≥且BA AB =,则33B A ≥.证明:由于A 、B 均为n 阶Hermite 正定矩阵,且BA AB =,则AB 与BA 均为n 阶Hermite 正定矩阵。
矩阵论研究生复习题
矩阵理论及应用证明题复习题
正规矩阵(包括Hermite 矩阵;Hermite 正定矩阵等)
1. 设()ij n n A a ?=是n 阶Hermite 矩阵,12,,,n λλλ 是A 的特征值,且12n λλλ≥≥≥ ,
证明:(1)1H n H x Ax
x x
λλ≤≤ ;(2){}11max n kk k n a λλ≤≤≤≤.
2.假设n 阶Hermite 矩阵A 是正定的。
证明:(1)存在正定矩阵S 使得2
A S =;
(2)对任意n 维列向量,X Y ,有2
H
H H Y AX
X AX Y AY
≤,并且,等号成立当
且仅当,X Y 线性相关。
3.证明:设,A B 都是Hermite 矩阵,A 的特征值都大于a ,B 的特征值都大于b ,则A B +的特征值都大于a b +。
4.设A 为n 阶正定Hermite 矩阵,证明(1)H
nn A
G a ββ??
=
是正定的的充分必要条件为1H nn a A ββ->,(2)H
nn A
G a ββ
=
正定时有不等式:nn G a A ≤. 5.A 是n 阶Hermite 矩阵,证明:
2
46A A I -+是正定Hermite 矩阵
6.A 、B 都为n 阶正定Hermite 矩阵,且AB BA =,则AB 亦为正定Hermite 矩阵
范数
1.设?为n n
C ?上的矩阵范数,λ为复矩阵A 的特征值,证明:m
m A λ
≤(m 为正整数)
2.设λ是n 阶可逆矩阵A 的特征值,A 是A 的任意一种范数证明:1
1
A λ
-≥
3.设A 是n 阶可逆矩阵,A 是A 的任意一种范数.证明:A 的谱半径()1
1A A
ρ-≥
4.A 是n 阶复矩阵,证明22
1A
A A
∞
≤
5.假设A 是s n ?矩阵,,U V 分别是s s ?、n n ?酉矩阵。
证明:F
F
A
UAV
=,
22A UAV =。
6.设()
ij
n n
A a ?=为n 阶Hermite 矩阵,证明:(1)2()A A ρ=;(2)()ij a
A ρ≤.
7.设A 为n 阶方阵,A 是从属于任何向量范数的矩阵范数, 证明:1)1I =; 2) 1A <时,I A -可逆,且
()1
1111I A A A
-≤-≤+-.
矩阵分解
1. A 为秩为r 的半正定Hermite 矩阵,则存在列满秩矩阵P ,使得H
A P P =∑,其中
1(0,1,2,,),H i r r i r P P λλλ??
∑=>== ?
I (其中r I 为r 阶单位矩阵) 2.设A 是n 正定Hermite 矩阵,利用矩阵的QR 分解证明:存在一个上三角形矩阵T ,使得
H A T T =
3.设矩阵,A B 都是m n ?矩阵,利用矩阵的满秩分解证明:()rank
A B ran kA rankB +≤+.
4.A 为秩为r 的半正定Hermite 矩阵,则存在行满秩矩阵P ,使得H
A P P =∑,其中
1(0,1,2,,),H i r r i r PP I λλλ?? ?∑=>== ?
. 5.A 、B 都为n 阶Hermite 矩阵,其中B 为n 阶正定矩阵,证明:存在可逆矩阵Q ,使
=H Q BQ E ,H Q AQ 为对角矩阵(这里E 为n 阶单位矩阵)
6.A 是n 阶可逆矩阵,则A 可以分解为一个酉矩阵与一个正定矩
阵的乘积
7.设m n A C ?∈,证明A 的秩为r 的充分必要条件是存在,m r
r m r
r F C G C ??∈∈,使得
A FG =.
8.设A 为n 阶可逆方阵,证明:存在酉矩阵,Q P 使得QAP 为对角线元素都是正数的对角矩阵.。