高职数学(三)教案首页(新)
- 格式:doc
- 大小:900.50 KB
- 文档页数:63
高职高等数学教案一、教学目标1. 知识与技能:使学生掌握高职高等数学的基本概念、原理和方法,培养学生运用数学知识解决实际问题的能力。
2. 过程与方法:通过教师的引导和学生的自主学习,培养学生分析问题、解决问题的能力,提高学生的数学思维水平。
3. 情感态度与价值观:激发学生学习高等数学的兴趣,培养学生的耐心和毅力,使学生认识到高等数学在实际生活中的重要性。
二、教学内容1. 第一章:函数与极限教学重点:函数的概念、性质,极限的定义及性质,无穷小比较,函数的极限,无穷小求极限。
教学难点:极限的运算,无穷小比较,函数的极限。
2. 第二章:导数与微分教学重点:导数的定义,基本导数公式,导数的应用,微分的概念及计算。
教学难点:导数的运算,高阶导数,隐函数求导,参数方程求导。
3. 第三章:微分中值定理与导数的应用教学重点:微分中值定理,洛必达法则,导数在函数性质分析中的应用。
教学难点:微分中值定理的证明,洛必达法则的运用,函数的单调性、凹凸性及拐点。
4. 第四章:不定积分教学重点:不定积分的概念,基本积分公式,换元积分,分部积分。
教学难点:换元积分的计算,分部积分的运用,有理函数的积分。
5. 第五章:定积分教学重点:定积分的定义,基本定积分公式,定积分的计算,定积分在实际问题中的应用。
教学难点:定积分的运算,反常积分的计算,定积分在实际问题中的应用。
三、教学方法与手段1. 教学方法:采用启发式教学,引导学生主动思考、积极参与,通过实例分析、讨论、练习等方式,巩固所学知识。
2. 教学手段:利用多媒体课件、黑板、教材等教学资源,辅助教学,提高教学效果。
四、教学评价1. 过程评价:关注学生在学习过程中的表现,如参与度、思考能力、合作精神等。
2. 结果评价:通过课后作业、课堂练习、单元测试等方式,检验学生对知识的掌握程度。
五、教学课时安排1. 第一章:10课时2. 第二章:12课时3. 第三章:10课时4. 第四章:12课时5. 第五章:10课时六、第六章:向量代数与空间解析几何教学重点:向量的概念、运算,空间直角坐标系,向量投影,空间向量的运算,线性方程组,空间解析几何的基本概念及应用。
高职高等数学教案一、教学目标1. 知识与技能:使学生掌握高职阶段必要的高等数学基础知识,包括函数、极限、导数、积分等概念和方法,提高学生解决实际问题的能力。
2. 过程与方法:通过实例分析、问题解决、小组讨论等方式,培养学生运用高等数学知识分析和解决问题的能力。
3. 情感态度与价值观:激发学生学习高等数学的兴趣,培养学生的创新意识和团队合作精神,提高学生综合素质。
二、教学内容1. 第四章:导数导数的定义基本导数公式导数的应用单调性极值曲线的凹凸性和拐点2. 第六章:积分不定积分基本积分公式换元积分法分部积分法定积分定积分的定义定积分的性质牛顿-莱布尼茨公式积分的应用面积计算体积计算质心、质矩计算三、教学方法1. 实例分析法:通过实际问题引入数学概念,引导学生运用数学知识解决问题。
2. 问题解决法:设计具有挑战性的问题,激发学生思考,培养学生的解决问题的能力。
3. 小组讨论法:组织学生进行小组讨论,培养学生的团队合作精神和沟通能力。
4. 现代化教学手段:利用多媒体课件、网络资源等,提高教学效果。
四、教学评价1. 平时成绩:考察学生的出勤、作业、小测验等情况,占总评的40%。
2. 期中考试:考察学生对高职高等数学基础知识的理解和运用能力,占总评的30%。
3. 期末考试:全面测试学生的学习成绩,占总评的30%。
五、教学资源1. 教材:选用适合高职学生的权威高等数学教材。
2. 多媒体课件:制作精美、清晰的多媒体课件,便于学生理解和记忆。
3. 网络资源:提供相关的高等数学学习网站、在线课程等,方便学生自主学习。
4. 习题集:提供丰富的习题,帮助学生巩固所学知识。
六、教学资源1. 辅导资料:提供详细的辅导资料,包括学习指南、解题技巧等,帮助学生提高学习效果。
2. 视频讲座:录制高水平教师的高等数学讲座,供学生在线学习和参考。
3. 数学软件:介绍和使用数学软件,如MATLAB、Mathematica等,使学生能够将理论应用于实际问题的解决。
教案-高职高专高等数学一、教学目标1. 知识点:本章主要介绍高职高专高等数学的基本概念、性质和运算规则。
2. 能力点:培养学生掌握高等数学的基本运算方法,提高学生的逻辑思维和解决问题的能力。
3. 情感态度:激发学生对高等数学的兴趣,培养学生的自信心和自主学习能力。
二、教学内容1. 基本概念:实数、整数、有理数、无理数、实数域等。
2. 性质:实数的四则运算、相反数、平方根、立方根等。
3. 运算规则:实数的加法、减法、乘法、除法、乘方等运算规则。
三、教学重点与难点1. 教学重点:实数的基本概念、性质和运算规则。
2. 教学难点:实数的运算规则,特别是乘方和除法的运算规则。
四、教学方法1. 讲授法:讲解实数的基本概念、性质和运算规则。
2. 案例分析法:通过具体的例子,让学生理解和掌握实数的运算方法。
3. 练习法:布置适量的练习题,让学生巩固所学知识。
五、教学过程1. 导入新课:通过引入实际问题,激发学生对高等数学的兴趣,引出实数的概念。
2. 讲解实数的基本概念:介绍实数的概念,解释实数的分类,如整数、有理数、无理数等。
3. 讲解实数的性质:讲解实数的相反数、平方根、立方根等性质。
4. 讲解实数的运算规则:讲解实数的加法、减法、乘法、除法、乘方等运算规则。
5. 案例分析:通过具体的例子,让学生理解和掌握实数的运算方法。
6. 练习巩固:布置适量的练习题,让学生巩固所学知识。
7. 总结与反馈:对本节课的内容进行总结,回答学生的疑问,收集学生的反馈意见。
8. 布置作业:布置课后作业,巩固本节课所学知识。
教案-高职高专高等数学六、教学评价1. 形成性评价:通过课堂提问、练习和小测验,及时了解学生对实数概念、性质和运算规则的理解和掌握情况。
2. 总结性评价:通过课后作业和期中期末考试,评估学生对实数知识的掌握程度和应用能力。
七、教学资源1. 教材:选择适合高职高专学生的高等数学教材,提供系统的知识框架和实例分析。
2. 多媒体课件:制作多媒体课件,通过图形、动画等形式,生动展示实数的性质和运算规则。
高职数学教案课题:高职数学教案一、教学目标1. 知识与技能目标:掌握高职数学中所学内容,包括数学的基本概念、运算方法和应用。
2. 过程与方法目标:培养学生的数学思维能力和解决问题的能力,以及运用数学知识进行分析和推理的能力。
3. 情感态度与价值观目标:培养学生对数学的兴趣和探究精神,认识到数学在现实生活中的应用价值。
二、教学内容1. 数的集合及表示法2. 实数的基本运算3. 几何图形的性质和应用4. 函数及其应用5. 数据的收集与处理三、教学重点与难点1. 教学重点:数的集合及表示法、实数的基本运算。
2. 教学难点:数据的收集与处理、函数及其应用。
四、教学过程与方法1. 教师以教授内容为核心,采用讲解、示范、讨论等多种教学方法。
2. 学生通过课堂讨论、小组合作等形式,加深对数学知识的理解与应用能力。
3. 在课堂上,教师注重培养学生的问题意识和解题能力,鼓励学生积极思考和独立解决问题。
五、教学评价与反馈1. 教师在教学过程中及时进行评价和反馈,对学生的学习情况进行跟踪。
2. 学生通过课堂表现、小组讨论、考试等形式,对自己的学习情况进行评估。
3. 教师与学生进行互动,查漏补缺,帮助学生解决问题,促进学生的全面发展。
六、教学资源与环境1. 教学资源:教科书、教学PPT、学习资料等。
2. 教学环境:教室、实验室等。
七、教学时间安排1. 每周2-3节课,每节课45分钟。
2. 教学内容根据教学计划安排,灵活调整教学进度。
八、教学效果评估1. 考试测试:针对每个章节的知识点进行考试,评价学生的理解掌握情况。
2. 作业和实践:布置与课程内容相关的作业和实践任务,检验学生的应用能力。
3. 评价记录:记录学生的课堂表现、参与情况和作业完成情况,为学生提供个性化评价和指导。
九、教学参考书目1. 《高职数学》教科书2. 《高职数学考试指导教程》3. 《高职数学习题集》以上为高职数学教案的大致框架,具体教学内容、方法和资源可根据实际情况进行调整和推敲,以提高教学效果。
高职高专高等数学教案一、教案内容:1. 教学目标:(1) 掌握函数、极限、导数、积分等基本概念和运算方法。
(2) 培养学生的逻辑思维能力和解决实际问题的能力。
(3) 提高学生运用数学知识分析和解决专业问题的能力。
2. 教学内容:(1) 函数的定义与性质(2) 极限的定义与计算(3) 导数的定义与计算(4) 积分的定义与计算(5) 应用举例3. 教学方法:(1) 采用讲授法,系统地讲解基本概念和运算方法。
(2) 利用数学软件或图形计算器,进行实时演示和验证。
(3) 开展小组讨论和问题解答,提高学生的参与度和合作意识。
(4) 结合实际案例,培养学生的应用能力。
4. 教学手段:(1) 教材:高职高专高等数学教材(2) 课件:采用PowerPoint或其他多媒体软件制作(3) 数学软件:如MATLAB、Mathematica等(4) 图形计算器:如图形计算器、平板电脑等5. 教学评价:(1) 平时成绩:包括课堂表现、作业完成情况、小组讨论等(2) 考试成绩:包括期末考试、期中考试等(3) 应用能力:结合实际案例,进行问题分析和解决二、教案内容:1. 教学目标:(1) 掌握微分方程的基本概念和解法。
(2) 培养学生的抽象思维能力和解决实际问题的能力。
(3) 提高学生运用数学知识分析和解决专业问题的能力。
2. 教学内容:(1) 微分方程的定义与分类(2) 常微分方程的解法(3) 线性微分方程的解法(4) 非线性微分方程的解法(5) 应用举例3. 教学方法:(1) 采用讲授法,系统地讲解基本概念和解法。
(2) 利用数学软件或图形计算器,进行实时演示和验证。
(3) 开展小组讨论和问题解答,提高学生的参与度和合作意识。
(4) 结合实际案例,培养学生的应用能力。
4. 教学手段:(1) 教材:高职高专高等数学教材(2) 课件:采用PowerPoint或其他多媒体软件制作(3) 数学软件:如MATLAB、Mathematica等(4) 图形计算器:如图形计算器、平板电脑等5. 教学评价:(1) 平时成绩:包括课堂表现、作业完成情况、小组讨论等(2) 考试成绩:包括期末考试、期中考试等(3) 应用能力:结合实际案例,进行问题分析和解决三、教案内容:1. 教学目标:(1) 掌握线性代数的基本概念和运算方法。
教案高职高专高等数学第一章:函数与极限1.1 函数的概念与性质理解函数的定义掌握函数的性质,如单调性、奇偶性、周期性等学会运用函数的性质解决问题1.2 极限的概念与性质理解极限的定义掌握极限的性质,如保号性、传递性等学会运用极限的性质解决问题1.3 函数的极限理解函数的极限定义掌握函数极限的性质,如保号性、存在性等学会运用函数极限的性质解决问题第二章:导数与微分2.1 导数的概念与性质理解导数的定义掌握导数的性质,如保号性、单调性等学会运用导数的性质解决问题2.2 微分的概念与性质理解微分的定义掌握微分的性质,如微分与导数的关系等学会运用微分解决问题2.3 求导法则掌握常见函数的求导法则,如幂函数、指数函数等学会运用求导法则求解函数的导数第三章:积分与微分方程3.1 不定积分与定积分的概念与性质理解不定积分与定积分的定义掌握不定积分与定积分的性质,如保号性、可加性等学会运用不定积分与定积分的性质解决问题3.2 常见积分公式掌握常见积分公式,如幂函数、指数函数等学会运用积分公式求解不定积分与定积分3.3 微分方程的概念与解法理解微分方程的定义掌握微分方程的解法,如常系数线性微分方程等学会运用微分方程的解法解决问题第四章:级数4.1 数列的概念与性质理解数列的定义掌握数列的性质,如收敛性、发散性等学会运用数列的性质解决问题4.2 级数的概念与性质理解级数的定义掌握级数的性质,如收敛性、发散性等学会运用级数的性质判断级数的收敛性4.3 常见级数求和法掌握常见级数求和法,如等比级数、等差级数等学会运用求和法求解级数的和第五章:向量与线性方程组5.1 向量的概念与运算理解向量的定义掌握向量的运算,如加法、减法、数乘等学会运用向量的运算解决问题5.2 线性方程组的概念与解法理解线性方程组的定义掌握线性方程组的解法,如高斯消元法等学会运用线性方程组的解法解决问题5.3 矩阵的概念与运算理解矩阵的定义掌握矩阵的运算,如加法、减法、数乘等学会运用矩阵的运算解决问题第六章:概率论与数理统计6.1 随机事件与概率理解随机事件的概念掌握概率的计算方法,如古典概率、条件概率等学会运用概率论解决问题6.2 随机变量及其分布理解随机变量的概念掌握随机变量的分布,如均匀分布、正态分布等学会运用随机变量的分布解决问题6.3 数理统计的基本概念理解数理统计的基本概念,如样本、总体等掌握数理统计的基本方法,如描述性统计、推断性统计等学会运用数理统计的方法解决问题第七章:线性代数7.1 线性空间与线性变换理解线性空间的概念掌握线性变换的定义与性质学会运用线性变换解决问题7.2 特征值与特征向量理解特征值与特征向量的概念掌握特征值与特征向量的计算方法学会运用特征值与特征向量解决问题7.3 矩阵的特殊类型理解对称矩阵、正交矩阵等特殊矩阵的概念掌握特殊矩阵的性质与运算学会运用特殊矩阵解决问题第八章:微分几何8.1 微分几何的基本概念理解微分几何的基本概念,如曲线、曲面等掌握微分几何的基本方法,如切线、法线等学会运用微分几何的方法解决问题8.2 微分几何的方程理解微分几何方程的概念掌握微分几何方程的求解方法学会运用微分几何方程解决问题8.3 微分几何的应用理解微分几何在现实生活中的应用,如曲面拟合等学会运用微分几何解决实际问题第九章:常微分方程9.1 常微分方程的基本概念理解常微分方程的定义掌握常微分方程的解法,如分离变量法、积分因子法等学会运用常微分方程的解法解决问题9.2 常微分方程的应用理解常微分方程在现实生活中的应用,如人口增长模型等学会运用常微分方程解决实际问题9.3 常微分方程组的解法理解常微分方程组的概念掌握常微分方程组的解法,如消元法、矩阵法等学会运用常微分方程组的解法解决问题第十章:复变函数与积分变换10.1 复变函数的基本概念理解复变函数的定义掌握复变函数的性质,如解析性、奇偶性等学会运用复变函数的性质解决问题10.2 积分变换的概念与方法理解积分变换的定义掌握常见积分变换的方法,如傅里叶变换、拉普拉斯变换等学会运用积分变换解决问题10.3 复变函数的应用理解复变函数在现实生活中的应用,如信号处理等学会运用复变函数解决实际问题重点和难点解析重点环节1:函数的极限性质需要重点关注函数极限的保号性和传递性。
中职高三数学教案中职高三数学教案中职高三数学教案1圆(三)——点的轨迹教学目标1、在了解用集合的观点定义圆的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;2、培养学生从形象思维向抽象思维的过渡;3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的认识。
重点、难点1、重点:对圆点的轨迹的认识。
2、难点:对点的轨迹概念的认识,因为这个概念比较抽象。
教学活动设计(在老师与学生的交流对话中完成教学目标)(一)创设学习情境1、对“圆”的形成观察——理解——引出轨迹的概念(使学生在老师的引导下从感性知识到理性知识)观察:圆是到定点的距离等于定长的的点的集合;(电脑动画)理解:圆上的点具有两个性质:(1)圆上各点到定点(圆心O)的距离都等于定长(半径的长r);(2)到定点距离等于定长的的点都在圆上;(结合下图)引出轨迹的概念:我们把符合某一条件的所有的点所组成的图形,叫做符合这个条件的点的轨迹.这里含有两层意思:(1)图形是由符合条件的那些点组成的,就是说,图形上的任何一点都符合条件;(2)图形包含了符合条件的所有的点,就是说,符合条件的任何一点都在图形上.(轨迹的概念非常抽象,是教学的难点,这里教师要精讲,细讲) 上面左图符合(1)但不符合(2);中图不符合(1)但符合(2);只有右图(1)(2)都符合.因此“到定点距离等于定长的点的轨迹”是圆.轨迹1:“到定点距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆”。
(研究圆是轨迹概念的切入口、基础和关键)(二)类比、研究1(在老师指导下,通过电脑动画,学生归纳、整理、概括、迁移,获得新知识)轨迹2:和已知线段两个端点距离相等的点的轨迹,是这条线段的垂直平分线;轨迹3:到已知角两边的距离相等的点的轨迹,是这个角的平分线;(三)巩固概念练习:画图说明满足下列条件的点的轨迹:(1)到定点A的距离等于3cm的点的轨迹;(2)到∠AOC的两边距离相等的点的轨迹;(3)经过已知点A、B的圆O,圆心O的轨迹.(A层学生独立画图,回答满足这个条件的轨迹是什么?归纳出每一个题的点的轨迹属于哪一个基本轨迹;B、C层学生在老师的指导或带领下完成)(四)类比、研究2(这是第二次“类比”,目的:使学生的知识和能力螺旋上升.这次通过电脑动画,使A层学生自己做,进一步提高学生归纳、整理、概括、迁移等能力)轨迹4:到直线l的距离等于定长d的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的两条直线;轨迹5:到两条平行线的距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线.(五)巩固训练练习题1:画图说明满足下面条件的点的轨迹:1.到直线l的距离等于2cm的点的轨迹;2.已知直线AB∥CD,到AB、CD距离相等的点的轨迹.(A层学生独立画图探索;然后回答出点的轨迹是什么,对B、C层学生回答有一定的困难,这时教师要从规律上和方法上指导学生) 练习题2:判断题1、到一条直线的距离等于定长的点的轨迹,是平行于这条直线到这条直线的距离等于定长的直线.( )2、和点B的距离等于5cm的点的轨迹,是到点B的距离等于5cm的圆.( )3、到两条平行线的距离等于8cm的点的轨迹,是和这两条平行线的平行且距离等于8cm的一条直线.( )4、底边为a的等腰三角形的顶点轨迹,是底边a的垂直平分线.( )(这组练习题的目的,训练学生思维的准确性和语言表达的正确性.题目由学生自主完成、交流、反思)(教材的练习题、习题即可,因为这部分知识属于选学内容,而轨迹概念又比较抽象,不要对学生要求太高,了解就行、理解就高要求)(六)理解、小结(1)轨迹的定义两层意思;(2)常见的五种轨迹。
高职高专高等数学教案第一章:函数与极限1.1 函数的概念与性质教学目标:理解函数的概念,掌握函数的性质,如单调性、奇偶性、周期性等。
教学内容:介绍函数的定义,讨论函数的性质,举例说明。
教学方法:通过讲解和示例,让学生掌握函数的基本概念和性质。
1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质,如保号性、夹逼性等。
教学内容:介绍极限的定义,讨论极限的性质,举例说明。
教学方法:通过讲解和示例,让学生理解极限的概念和性质。
第二章:导数与微分2.1 导数的定义与计算教学目标:理解导数的定义,掌握基本函数的导数计算。
教学内容:介绍导数的定义,讲解基本函数的导数计算法则。
教学方法:通过讲解和练习,让学生掌握导数的定义和计算方法。
2.2 微分的概念与计算教学目标:理解微分的概念,掌握微分的计算方法。
教学内容:介绍微分的定义,讲解微分的计算法则。
教学方法:通过讲解和练习,让学生理解微分的概念和计算方法。
第三章:积分与微分方程3.1 定积分的定义与计算教学目标:理解定积分的概念,掌握定积分的计算方法。
教学内容:介绍定积分的定义,讲解定积分的计算法则。
教学方法:通过讲解和练习,让学生掌握定积分的概念和计算方法。
3.2 微分方程的基本概念与解法教学目标:理解微分方程的概念,掌握基本的微分方程解法。
教学内容:介绍微分方程的定义,讲解常见的微分方程解法。
教学方法:通过讲解和练习,让学生理解微分方程的概念和解法。
第四章:级数与常微分方程4.1 数项级数的概念与收敛性教学目标:理解数项级数的概念,掌握级数的收敛性判断。
教学内容:介绍数项级数的定义,讲解级数的收敛性判断方法。
教学方法:通过讲解和练习,让学生掌握数项级数的概念和收敛性判断。
4.2 常微分方程的解法与应用教学目标:理解常微分方程的概念,掌握常见的解法及其应用。
教学内容:介绍常微分方程的定义,讲解常见的解法及其应用。
教学方法:通过讲解和练习,让学生理解常微分方程的概念和解法及其应用。
《高职高等数学》课程教学大纲一、课程性质、任务《高职高等数学》是高职院校相关专业的一门重要的基础课。
通过教学,使学生掌握一元及多元微积分、常微分方程、级数等基础知识,学会用运动和变化的观点思考问题,拓展学生分析问题和处理问题的能力;初步学会应用数学思想和方法去分析、处理某些实际问题。
二、课程在专业中的地位和作用《高职高等数学》是研究自然科学和工程技术的重要工具之一,是提高学生文化素质和学习有关专业知识的重要基础。
本课程要使学生在学习初等数学的基础上进一步学习和掌握高等数学的基础知识和思维方式,为学生学习专业基础课和相关专业课程提供必需的数学基础知识和数学工具。
三、课程教学目标和基本教学要求教学目标:重视与高中(职高)知识的衔接及各专业知识的必需,以掌握概念,强化应用为重点,贯彻拓宽基础、强化能力、立足应用的原则。
教学容应由浅入深、由易到难,循序渐进,既兼顾数学本身的系统性,又要贯彻理论联系实际的原则,强调应用性和实用性。
逐步培养学生具有初步抽象概括问题的能力、一定的逻辑推理能力、比较熟练的运算能力以及自学能力。
教学要求:1、在重点讲清基本概念和基本方法的基础上,适度淡化基础理论的严密论证和推导,加强与实际联系较多的基础知识和基本方法教学。
注重基本运算的训练,简化过分复杂的计算和变换;2、结合数学建模突出“以应用为目的,以必需够用为度”的教学原则,加强对学生应用意识、兴趣、能力的培养;让学生学会利用常用的数学软件,完成必要的计算、分析或判断;教学过程中,逐步使用现代教学手段,尽量结合使用电子教案进行日常教学;3、教学中以极限、导数、积分、微分方程及应用等知识为主线,着力培养学生利用数学原理和方法消化吸收工程概念和工程原理的能力。
四教学容(单元、课题或章节)、教学目标与学时分配总体模块学时分配:微积分模块56学时;应用模块52学时。
模块(1)线性代数基础模块(2)微积分四、考核方案《高职高等数学》课程的教学分两期完成, 期末考试成绩占总成绩的70%, 平时成绩占30%。
课题§3.1 函数的概念(1)【教学目标】1. 培养从图表中获得函数关系的能力,明确自变量、因变量;2. 理解函数的“集合式”定义及符号表达;3. 理解函数的定义域和值域 .【教学重点】函数的概念:对应法则、定义域和值域【教学难点】从集合的观点对函数概念的理解。
【教学过程】一、引入同学们,我们生活的这个世界,有各种各样的事物,而每个事物间又是相互联系、相互依赖的。
如:随着时间的变化,太阳东升日落,气温也在悄悄变化,我国的国民生产总值在不断增长等等。
试问:我们如何刻画这些变化着的现象?怎样找到这些现象中变量之间的关系?二、探究活动在现实生活中,我们会遇到下列问题:1.⑴上午8时的气温约是多少?图中的A点表示了什么信息?⑵请指出这一天气温相同的两对时间点。
⑶这一天的最高气温是多少?最低气温是多少?分别在几时?⑷图3-1表示了该城市什么时间段的气温变化情况?这一天的温差是多少?气温从最低上升到最高经过了多长时间?⑸这段时间段内气温在上升?哪些时间段内气温在下降?#对任一时刻t ,都有惟一的温度θ与之对应。
2.(书P39)问题解决上述三个问题中,都反映出两个变量之间的关系,当一个变量的取值确定后,另一个变量的值也随之惟一确定。
回忆初中学习的函数的概念?(书P39页脚)考察上述函数关系,回答下列问题:⑴各个函数关系中自变量取值的集合分别是什么?其中有空集?● 每个问题均涉及两个非空数集A ,B 。
⑵各个函数关系中对于自变量的每一个取值,按什么规则找到唯一的因变量值与之对应?● 存在某种对应法则,对于A 中任意元素x ,B 中总有一个元素y 与之对应。
〖单值对应〗 对于A 中的任一个元素x ,B 中有惟一的元素y 与之对应。
或一个输入值对应到惟一的输出值。
【练习1】1. 问题1中的对应t →θ,是否为单值对应? θ→t 是否为单值对应? 2. 完成教材第39页练习,这些对应是单值对应吗? 3. 完成教材第40页例题1,这些对应是单值对应吗? 〖总结1〗单值对应为一对一,多对一,而不能一对多。
中职高三数学教案5篇最新设计丰富多彩的数学活动,激发学生的学习兴趣。
通过学生喜闻乐见的游戏、童话、故事、卡通等形式,丰富学生的感性积累,发展学生的数感和空间观念。
通过说一说、做一做、比一比等形式,让学生在生动有趣的活动中体验数学并学习数学。
今天小编在这里整理了一些中职高三数学教案5篇最新,我们一起来看看吧!中职高三数学教案1数学教案-圆1、教材分析(1)知识结构(2)重点、难点分析重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备.难点:① 圆的集合定义,学生不容易理解为什么必须满足两个条件,内容本身属于难点;②点的轨迹,由于学生形象思维较强,抽象思维弱,而这部分知识比较抽象和难懂.2、教法建议本节内容需要4课时第一课时:圆的定义和点和圆的位置关系(1)让学生自己画圆,自己给圆下定义,进行交流,归纳、概括,调动学生积极主动的参与教学活动;对于高层次的学生可以直接通过点的集合来研究,给圆下定义(参看教案圆(一));(2)点和圆的位置关系,让学生自己观察、分类、探究,在“数形”的过程中,学习新知识.第二课时:圆的有关概念(1)对(A)层学生放开自学,对(B)层学生在老师引导下自学,要提高学生的学习能力,特别是概念较多而没有很多发挥的内容,老师没必要去讲;(2)课堂活动要抓住:由“数”想“形”,由“形”思“数”,的主线.第三、四课时:点的轨迹条件较好的学校可以利用电脑动画来加深和帮助学生对点的轨迹的理解,一般学校可让学生动手画图,使学生在动手、动脑、观察、思考、理解的过程中,逐步从形象思维较强向抽象思维过度.但我的观点是不管怎样组织教学,都要遵循学生是学习的主体这一原则.第一课时:圆(一)教学目标:1、理解圆的描述性定义,了解用集合的观点对圆的定义;2、理解点和圆的位置关系和确定圆的条件;3、培养学生通过动手实践发现问题的能力;4、渗透“观察→分析→归纳→概括”的数学思想方法.教学重点:点和圆的关系教学难点:以点的集合定义圆所具备的两个条件教学方法:自主探讨式教学过程设计(总框架):一、创设情境,开展学习活动1、让学生画圆、描述、交流,得出圆的第一定义:定义1:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.记作⊙O,读作“圆O”.2、让学生观察、思考、交流,并在老师的指导下,得出圆的第二定义.从旧知识中发现新问题观察:共性:这些点到O点的距离相等想一想:在平面内还有到O点的距离相等的点吗?它们构成什么图形?(1) 圆上各点到定点(圆心O)的距离都等于定长(半径的长r);(2) 到定点距离等于定长的点都在圆上.定义2:圆是到定点距离等于定长的点的集合.3、点和圆的位置关系问题三:点和圆的位置关系怎样?(学生自主完成得出结论)如果圆的半径为r,点到圆心的距离为d,则:点在圆上d=r;点在圆内d点在圆外d>r.“数”“形”二、例题分析,变式练习练习:已知⊙O的半径为5cm,A为线段OP的中点,当OP=6cm时,点A在⊙O________;当OP=10cm时,点A在⊙O________;当OP=18cm时,点A在⊙O___________.例1 求证:矩形的四个顶点在以对角线的交点为圆心的同一个圆上.已知(略)求证(略)分析:四边形ABCD是矩形A=OC,OB=OD;AC=BDOA=OC=OB=OD要证A、B、C、D 4个点在以O为圆心的圆上证明:∵ 四边形ABCD是矩形∴ OA=OC,OB=OD;AC=BD∴ OA=OC=OB=OD∴ A、B、C、D 4个点在以O为圆心,OA为半径的圆上.符号“”的应用(要求学生了解)证明:四边形ABCD是矩形OA=OC=OB=ODA、B、C、D 4个点在以O为圆心,OA为半径的圆上.小结:要证几个点在同一个圆上,可以证明这几个点与一个定点的距离相等.问题拓展研究:我们所研究过的基本图形中(平行四边形,菱形,,正方形,等腰梯形)哪些图形的顶点在同一个圆上.(让学生探讨) 练习1 求证:菱形各边的中点在同一个圆上.(目的:培养学生的分析问题的能力和逻辑思维能力.A层自主完成) 练习2 设AB=3cm,画图说明具有下列性质的点的集合是怎样的图形.(1)和点A的距离等于2cm的点的集合;(2)和点B的距离等于2cm的点的集合;(3)和点A,B的距离都等于2cm的点的集合;(4)和点A,B的距离都小于2cm的点的集合;(A层自主完成)三、课堂小结问:这节课学习的主要内容是什么?在学习时应注意哪些问题?在学生回答的基础上,强调:(1)主要学习了圆的两种不同的定义方法与圆的三种位置关系;(2)在用点的集合定义圆时,必须注意应具备两个条件,二者缺一不可;(3)注重对数学能力的培养四、作业 82页2、3、4.中职高三数学教案2圆(三)——点的轨迹教学目标1、在了解用集合的观点定义圆的基础上,进一步使学生了解轨迹的有关概念以及熟悉五种常用的点的轨迹;2、培养学生从形象思维向抽象思维的过渡;3、提高学生数学来源于实践,反过来又作用于实践的辩证唯物主义观点的认识。
高职数学教案教案标题:高职数学教案教案目标:1. 确保学生掌握高职数学的基本概念和技巧。
2. 培养学生的数学思维和解决问题的能力。
3. 提高学生对数学的兴趣和学习动力。
教学内容:1. 数列与数学归纳法- 数列的概念和表示方法- 数列的通项公式和递推关系式- 数学归纳法的原理和应用2. 函数与方程- 函数的定义和性质- 一次函数、二次函数和指数函数的图像和性质- 方程的解法和应用3. 三角函数- 三角函数的定义和性质- 三角函数的图像和周期性- 三角函数的应用4. 概率与统计- 概率的基本概念和计算方法- 统计的基本概念和数据处理方法- 概率与统计在实际问题中的应用教学步骤:步骤一:导入- 引入数学问题或现象,激发学生的兴趣和思考。
- 简要介绍本节课的教学内容和目标。
步骤二:知识讲解- 通过讲解和示范,介绍数学概念、公式和解题方法。
- 结合具体例题,引导学生理解和掌握相关知识点。
步骤三:练习与巩固- 提供一定数量的练习题,让学生进行个人或小组练习。
- 在学生解题过程中,及时给予指导和反馈,帮助他们理解和掌握知识。
步骤四:拓展与应用- 提供一些拓展性的问题或案例,让学生运用所学知识解决实际问题。
- 鼓励学生思考和讨论,培养他们的数学思维和解决问题的能力。
步骤五:总结与评价- 总结本节课的重点和难点,强调学生应掌握的核心知识和技能。
- 对学生的表现进行评价,提出进一步改进和提高的建议。
教学资源:- 教材:根据教学内容选择适当的教材和教辅材料。
- 多媒体设备:使用投影仪或电子白板展示教学内容和示范解题过程。
- 练习题和案例:准备一定数量的练习题和实际问题,以帮助学生巩固和应用所学知识。
教学评估:- 在课堂上观察学生的参与度和理解程度。
- 收集学生的作业和练习题,检查他们的答案和解题过程。
- 组织小测验或考试,评估学生对教学内容的掌握程度。
教学反思:- 分析学生在学习过程中的问题和困难。
- 总结教学方法和策略的有效性,并提出改进的建议。
教案高职高专高等数学一、教学目标1. 知识点:本章主要介绍高职高专高等数学的基本概念、性质和运算方法。
2. 能力点:培养学生掌握基本的数学运算能力,提高逻辑思维和解决问题的能力。
3. 情感态度:激发学生对高等数学的兴趣,培养学生的耐心和自信心。
二、教学内容1. 第一节:函数的概念与性质教学重点:函数的定义、图像、性质及其应用。
教学难点:函数的连续性和导数的应用。
2. 第二节:极限与无穷小教学重点:极限的定义、性质和运算方法。
教学难点:无穷小的概念及其比较。
3. 第三节:导数与微分教学重点:导数的定义、计算方法和应用。
教学难点:高阶导数和隐函数的导数。
4. 第四节:积分与面积教学重点:积分的定义、计算方法和应用。
教学难点:不定积分和定积分的计算。
5. 第五节:级数与方程教学重点:级数的概念、收敛性和应用。
教学难点:级数求和的方法和级数解方程。
三、教学方法1. 采用讲授法,系统地讲解高职高专高等数学的基本概念、性质和运算方法。
2. 利用多媒体辅助教学,展示函数图像、极限和积分计算等,增强学生的直观理解。
3. 提供适量习题,引导学生进行自主学习和合作交流,巩固所学知识。
四、教学评估1. 课堂问答:通过提问学生,了解学生对教学内容的理解和掌握程度。
2. 习题练习:布置课堂习题,评估学生对基本概念和运算方法的掌握情况。
3. 单元测试:进行定期的单元测试,全面评估学生的学习成果和不足之处。
五、教学资源1. 教材:选用合适的高职高专高等数学教材,为学生提供系统的学习材料。
2. 多媒体课件:制作精美的多媒体课件,辅助教学,提高学生的学习兴趣。
3. 习题库:提供丰富的习题库,供学生进行自主练习和巩固所学知识。
教案高职高专高等数学(续)六、第六节:多元函数与微分教学重点:多元函数的定义、图像和性质。
教学难点:多元函数的偏导数和全微分。
七、第七节:重积分与向量分析教学重点:二重积分、三重积分的定义和计算方法。
教学难点:向量场的概念、散度和平移旋度。
高职高专高等数学教案教案标题:高职高专高等数学教案教案目标:1. 确保学生掌握高等数学的基本概念、原理和方法。
2. 培养学生分析和解决实际问题的能力。
3. 提高学生的数学思维和逻辑推理能力。
教学内容:1. 函数与极限2. 导数与微分3. 积分与不定积分4. 微分方程5. 无穷级数与级数应用教学步骤:第一课:函数与极限1. 引入函数的概念,讲解函数的定义及性质。
2. 介绍极限的概念和基本性质。
3. 给出一些典型的函数极限计算例题,引导学生掌握极限的计算方法。
第二课:导数与微分1. 介绍导数的概念和基本性质。
2. 讲解导数的计算方法和常见函数的导数。
3. 引导学生通过实例理解导数的几何意义和物理意义。
第三课:积分与不定积分1. 介绍积分的概念和基本性质。
2. 讲解不定积分的计算方法和常见函数的积分。
3. 给出一些典型的积分计算例题,引导学生掌握积分的计算方法。
第四课:微分方程1. 引入微分方程的概念和基本形式。
2. 讲解一阶微分方程的求解方法。
3. 给出一些典型的微分方程求解例题,引导学生掌握微分方程的求解方法。
第五课:无穷级数与级数应用1. 介绍无穷级数的概念和基本性质。
2. 讲解级数收敛的判定方法。
3. 引导学生通过实例掌握级数求和的方法。
教学方法:1. 结合理论讲解和例题演练,注重理论与实际问题的联系。
2. 引导学生进行思维训练和逻辑推理,培养学生的问题解决能力。
3. 利用多媒体教学手段,提高教学效果和学生的学习兴趣。
评估方式:1. 课堂练习:通过课堂上的小组讨论和解题演练,检查学生对知识点的理解和掌握程度。
2. 作业批改:及时批改学生的作业,指出错误并给予指导。
3. 期中考试和期末考试:对学生进行综合性的考核,检验他们对高等数学知识的掌握情况。
教学资源:1. 高等数学教材和参考书籍。
2. 多媒体教学设备。
3. 针对高职高专高等数学的在线教学资源。
教学反思:1. 及时总结和分析学生的学习情况,调整教学策略和方法。
高职高专高等数学教案第一章:函数与极限1.1 函数的概念与性质教学目标:理解函数的基本概念,掌握函数的性质。
教学内容:函数的定义,函数的单调性,奇偶性,周期性。
教学方法:通过实例讲解函数的概念,利用图形演示函数的性质。
1.2 极限的概念与性质教学目标:理解极限的基本概念,掌握极限的性质。
教学内容:极限的定义,极限的性质,无穷小,无穷大。
教学方法:通过实际问题引入极限的概念,利用数学推理证明极限的性质。
第二章:导数与微分2.1 导数的概念与计算教学目标:理解导数的基本概念,掌握基本函数的导数计算。
教学内容:导数的定义,导数的计算规则,基本函数的导数。
教学方法:通过实际问题引入导数的概念,利用公式计算基本函数的导数。
2.2 微分的概念与计算教学目标:理解微分的概念,掌握微分的计算方法。
教学内容:微分的定义,微分的计算规则,微分在实际问题中的应用。
教学方法:通过实际问题引入微分的概念,利用公式计算微分。
第三章:积分与面积3.1 积分的概念与计算教学目标:理解积分的基本概念,掌握基本函数的积分计算。
教学内容:积分的定义,积分的计算方法,基本函数的积分。
教学方法:通过实际问题引入积分的概念,利用公式计算基本函数的积分。
3.2 面积的概念与计算教学目标:理解面积的概念,掌握面积的计算方法。
教学内容:面积的定义,面积的计算方法,平面图形面积的计算。
教学方法:通过实际问题引入面积的概念,利用公式计算平面图形的面积。
第四章:级数与级数求和4.1 级数的概念与性质教学目标:理解级数的基本概念,掌握级数的性质。
教学内容:级数的定义,级数的性质,收敛级数,发散级数。
教学方法:通过实际问题引入级数的概念,利用数学推理证明级数的性质。
4.2 级数求和的方法教学目标:掌握级数求和的方法。
教学内容:等差级数的求和,等比级数的求和,交错级数的求和。
教学方法:利用数学推理和实例讲解级数求和的方法。
第五章:常微分方程5.1 微分方程的基本概念教学目标:理解微分方程的基本概念。
一、教材简析本节课选自人教版职高数学教材第三章《方程与不等式》第一节《一元二次方程的解法》。
一元二次方程是中学数学中的基础内容,本节课旨在让学生掌握一元二次方程的解法,为后续学习打下基础。
二、学情分析职高学生数学基础参差不齐,部分学生对一元二次方程的解法理解困难。
因此,本节课要注重基础知识的讲解,并结合实例,让学生在实际操作中掌握解题方法。
三、教学目标1. 知识与技能:(1)掌握一元二次方程的定义;(2)熟练运用公式法、配方法、因式分解法解一元二次方程。
2. 过程与方法:(1)通过实例分析,培养学生观察、分析问题的能力;(2)通过小组合作,提高学生的团队协作能力。
3. 情感态度与价值观:(1)激发学生学习数学的兴趣,树立信心;(2)培养学生严谨、求实的科学态度。
四、教学重难点1. 教学重点:一元二次方程的定义和解法。
2. 教学难点:因式分解法解一元二次方程。
五、教学准备1. 多媒体课件;2. 教学用书;3. 练习题。
六、教学过程1. 导入新课通过回顾一元一次方程的解法,引导学生思考一元二次方程的解法,激发学生的学习兴趣。
2. 新课讲授(1)讲解一元二次方程的定义,结合实例说明;(2)介绍公式法、配方法、因式分解法解一元二次方程,并举例说明;(3)对比三种方法的优缺点,引导学生选择合适的方法解题。
3. 小组合作将学生分成若干小组,每组选择一种解法,共同完成一道一元二次方程的练习题。
4. 展示交流各小组展示解题过程,教师点评并总结。
5. 巩固练习布置课后作业,巩固所学知识。
七、教学反思本节课通过实例讲解、小组合作等方式,帮助学生掌握一元二次方程的解法。
在教学过程中,要注意关注学生的个体差异,针对不同层次的学生给予适当的指导。
同时,要加强课堂互动,激发学生的学习兴趣,提高教学质量。
(注:以上教案仅供参考,具体教学过程可根据实际情况进行调整。
)。
中职高三数学教案2022中职高三数学教案范文1整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗3数轴上的任意两点与对应的两实数具有怎样的关系4任意两个实数具有怎样的关系用逻辑用语怎样表达这个关系活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则某A实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2某≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用某表示一个非负数,则某≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v≤40km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(某)=3某2-某+1,g(某)=2某2+某-1,则f(某)与g(某)的大小关系是()A.f(某)>g(某)B.f(某)=g(某)C.f(某)答案:A解析:f(某)-g(某)=某2-2某+2=(某-1)2+1≥1>0,∴f(某)>g(某).2.已知某≠0,比较(某2+1)2与某4+某2+1的大小.解:由(某2+1)2-(某4+某2+1)=某4+2某2+1-某4-某2-1=某2.∵某≠0,得某2>0.从而(某2+1)2>某4+某2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)] =-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.∴a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知某>y,且y≠0,比较某y与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:某y-1=某-yy.∵某>y,∴某-y>0.当y<0时,某-yy<0,即某y-1<0.∴某y<1;当y>0时,某-yy>0,即某y-1>0.∴某y>1.点评:当字母y取不同范围的值时,差某y-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m b-a b b+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.课堂小结2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3—1A组3;习题3—1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.2022中职高三数学教案范文2教学目标(1)掌握向量的有关概念:向量及其表示法、向量的模、向量的相等、零向量;(2)理解并掌握复数集、复平面内的点的集合、复平面内以原点为起点的向量集合之间的一一对应关系;(3)掌握复数的模的定义及其几何意义;(4)通过学习,培养学生的数形结合的数学思想;(5)通过本节内容的学习,培养学生的观察能力、分析能力,帮助学生逐步形成科学的思维习惯和方法.教学建议一、知识结构本节内容首先从物理中所遇到的一些矢量出发引出向量的概念,介绍了向量及其表示法、向量的模、向量的相等、零向量的概念,接着介绍了复数集与复平面内以原点为起点的向量集合之间的一一对应关系,指出了复数的模的定义及其计算公式.二、重点、难点分析本节的重点是复数与复平面的向量的一一对应关系的理解;难点是复数模的概念.复数可以用向量表示,二者的对应关系为什么只能说复数集与以原点为起点的向量的集合一一对应关系,而不能说与复平面内的向量一一对应,对这一点的理解要加以重视.在复数向量的表示中,从复数集与复平面内的点以及以原点为起点的向量之间的一一对应关系是本节教学的难点.复数模的概念是一个难点,首先要理解复数的绝对值与实数绝对值定义的一致性质,其次要理解它的几何意义是表示向量的长度,也就是复平面上的点到原点的距离.三、教学建议1.在学习新课之前一定要复习旧知识,包括实数的绝对值及几何意义,复数的有关概念、现行高中物理课本中的有关矢量知识等,特别是对于基础较差的学生,这一环节不可忽视.2.理解并掌握复数集、复平面内的点集、复平面内以原点为起点的向量集合三者之间的关系如图所示,建立复平面以后,复数与复平面内的点形成—一对应关系,而点又与复平面的向量构成—一对应关系.因此,复数集与复平面的以为起点,以为终点的向量集形成—一对应关系.因此,我们常把复数说成点Z或说成向量.点、向量是复数的另外两种表示形式,它们都是复数的几何表示.相等的向量对应的是同一个复数,复平面内与向量相等的向量有无穷多个,所以复数集不能与复平面上所有的向量相成—一对应关系.复数集只能与复平面上以原点为起点的向量集合构成—一对应关系.2.这种对应关系的建立,为我们用解析几何方法解决复数问题,或用复数方法解决几何问题创造了条件.3.向量的模,又叫向量的绝对值,也就是其有向线段的长度.它的计算公式是,当实部为零时,根据上面复数的模的公式与以前关于实数绝对值及算术平方根的规定一致.这些内容必须使学生在理解的基础上牢固地掌握.4.讲解教材第182页上例2的第(1)小题建议.在讲解教材第182页上例2的第(1)小题时.如果结合提问的图形,可以帮助学生正确理解教材中的“圆”是指曲线而不是指圆面(曲线所包围的平面部分).对于倒2的第(2)小题的图形,画图时周界(两个同心圆)都应画成虚线.2022中职高三数学教案范文3教学目标(1)掌握复数加法与减法运算法则,能熟练地进行加、减法运算;(2)理解并掌握复数加法与减法的几何意义,会用平行四边形法则和三角形法则解决一些简单的问题;(3)能初步运用复平面两点间的距离公式解决有关问题;(4)通过学习平行四边形法则和三角形法,培养学生的数形结合的数学思想;(5)通过本节内容的学习,培养学生良好思维品质(思维的严谨性,深刻性,灵活性等).教学建议一、知识结构二、重点、难点分析本节的重点是复数加法法则。
教案
教案
教案
}是递增数列,
教案
教案
1n a +=
教案
教案
教案
教案
教案
教案
教案
教案
教案
教案
南通科技职业学院教案
授课主要内容或板书设计
南通科技职业学院教案
授课主要内容或板书设计
南通科技职业学院教案
授课主要内容或板书设计
南通科技职业学院教案
授课主要内容或板书设计
南通科技职业学院教案
授课主要内容或板书设计
南通科技职业学院教案
授课主要内容或板书设计
南通科技职业学院教案
授课主要内容或板书设计
南通科技职业学院教案
授课主要内容或板书设计
南通科技职业学院教案
授课主要内容或板书设计
南通科技职业学院教案
授课主要内容或板书设计。