人染色体与染色体病
- 格式:ppt
- 大小:2.70 MB
- 文档页数:10
第四章人类染色体和染色体病The human chromosome and chromosome disease第一节人类染色体的基本特征染色质和染色体人类染色体的数目、结构和形态性染色体和性别决定染色体的研究方法真核生物的基因大部分存在于位于细胞核内的染色体上,故染色体是遗传物质的载体,是人类细胞遗传学的主要研究对象。
通过细胞分裂,遗传物质随着染色体的传递而传递。
一个生物物种的染色体数目、结构、形态是恒定的,构成了生物的遗传特性。
一、染色质和染色体染色质与染色体是遗传物质在细胞周期的不同阶段的不同表现形式。
化学组成相同:(一) 染色质(chromatin)染色质是DNA和蛋白质的复合体。
基本结构单位是核小体。
1.根据核蛋白分子的螺旋化程度及功能状态不同,细胞间期染色质分成两类:常染色质:螺旋程度低,结构松散,具转录活性,常位于细胞核中央。
异染色质:螺旋程度高,结构紧密,不具转录活性,常位于细胞核边缘。
2.异染色质:分为两种结构性异染色质(constitutive heterochromatin):在各种细胞中总是处于凝缩状态,一般为高度重复的DNA序列。
如着丝粒区,端粒区,次缢痕区等。
兼性异染色质(facultative heterochromatin):即功能性异染色质,在特定细胞的某一特定发育阶段,由常染色质凝缩转变而成。
如X染色质。
(二) 性染色质性染色质(sex chromatin) 是在间期细胞核中性染色体显示的一种特殊结构。
1. X 染色质(X chromatin)(1)1949年,雌猫神经细胞内凝缩的深染小体―Barr小体。
Barr小体普遍存在于雌性哺乳动物(包括人类)的间期细胞核中,是一条发生遗传学失活的X 染色体,呈异固缩状态(浓染小体),贴于核膜内侧缘。
(2) Mary Lyon 假说uX染色质的失活发生在胚胎早期(人类在胚胎第十六天)vX染色体的失活是随机的―父方或母方。
人类染色体和染色体病思考题简述非显带染色体制备的过程及关键步骤。
染色体的分组依据是什么?每组有哪些特征?根据染色体的长度和着丝粒的位置分组。
euploid aberration 整倍体畸变P57如果染色体的数目变化是单倍体(n)的整数倍,即以n为基数,整倍地增加或减少,则称为整倍体(euploid)。
超过二倍体的整倍体被称为多倍体(polyploid)。
这种在胚胎发育过程中造成染色体数目畸变可严重干扰备胎的正常发育而导致流产。
整倍体畸变的机制主要有:双雌受精、双雄受精、核内复制和核内有丝分裂。
mosaic 嵌合体P59一个个体内同时存在两种或两种以上的核型的细胞系,这种个体称为嵌合体,如46,XX/47,XXY;45,X/46,XX等。
嵌合体可以是数目异常之间、结构异常之间以及数目和结构异常之间的嵌合。
translocation 易位P63一条染色体上的断片移接到另一条非同源染色体的臂上,这种结构畸变成为异常。
常见的易位方式有相互易位、罗伯逊易位和插入易位等。
Robertsonian translocation 罗伯逊易位P68又称着丝粒融合(centric fusion),是发生于近端着丝粒染色体的一种易位形式。
当两个近端着丝粒染色体在着丝粒部位或者是着丝粒附近部位发生断裂后,二者的长臂在着丝粒处接合在一起,形成一条衍生染色体。
两者的短臂则构成一个小染色体(往往在第二次分裂时丢失,可能是由于缺乏着丝粒或者是由于其完全由异染色质构成所致)。
(由于丢失的小染色体几乎全是异染色质,而有两条长臂构成的染色体上则几乎包含了两条染色体的全部基因)因此罗伯逊以为携带者虽然只有45条染色体,但表型一般正常,在形成配子的时候会出现异常,造成胚胎死亡而流产或生出先天畸形患儿。
hyperdiploid 超二倍体P58当体细胞中染色体数目多了一条或数条时,称为超二倍体。
在超二倍体的细胞中某一同源染色体的数目不是2条,而是3条、4条……?hypodiploid 亚二倍体P58当体细胞中染色体数目少了一条或数条时,称为亚二倍体。
人类染色体及染色体病1.染色质和染色体:是细胞核内易被碱性染料染成深色的物质,是遗传物质的存在形式。
●染色质:存在于细胞周期的间期,DNA的螺旋结构松散呈细丝状,形态不规则,弥散在细胞核内。
●染色体:细胞分裂期,染色质高度螺旋折叠而缩短变粗,形成条状或棒状。
组成成分:DNA、组蛋白、非组蛋白、RNA。
●从DNA到染色体的四级结构模型:DNA→核小体→螺线管→超螺线管→染色单体●人的46条染色体中,23条来自父亲,23条来自母亲,为23对染色体,称为二倍体(2×23),精子和卵子称为单倍体。
●人类染色体的结构:主要结构包括染色体臂,着丝粒,初级缢痕,次缢痕,核仁组织区(异染色质区),随体,端粒。
2.分裂中的染色体行为●细胞周期:细胞从前一次有丝分裂结束到下一次有丝分裂完成所经历的全过程。
●有丝分裂期的染色体行为:有丝分裂过程中,体细胞染色体复制1次,细胞分裂1次,得到2个染色体数目与亲代细胞完全相同的子代细胞。
●减数分裂期的染色体行为Ⅰ:Ⅱ:减数分裂过程中,精原细胞或卵母细胞染色体复制1次,细胞分裂2次,最后形成4个精子或1个卵子,细胞内染色体数目减少一半。
3.人类染色体分析技术●人类染色体研究常用技术的发展:低渗法制片技术:1952年,美籍华人徐道觉(T.C.Hsu);使细胞遗传学进入低渗时期。
秋水仙素处理法:1956年,华裔学者蒋有兴(Tjio J.H)和Levan A应用秋水仙素和压片技术,在流产胎儿肺组织中发现人类染色体数是2n=46条,标志着现代细胞遗传学的诞生。
目前国际认可的三大细胞遗传学技术共存:染色体显带技术、FISH、ACMG &ISCA 共同推荐芯片技术。
●人类染色体检测技术:核型分析、荧光原位杂交(Fluorescence in situ hybridization,FISH)、微阵列比较基因组杂交(Array-based Comparative Genomic Hybridization, aCGH)4.核型分析●核型(Karyotype):指一个体细胞中的全部染色体,按其大小、形态特征顺序排列所构成的图像。
染色体异常与疾病发生的关系染色体异常是指在生命的发育过程中,染色体的结构或数量发生异常,从而导致一系列与染色体相关的疾病。
人类有23对染色体,其中22对自动体染色体和1对性染色体。
任何对染色体结构和数量的微小改变都可能对人类的健康产生不利影响。
通常来讲,染色体异常可以分为两类:数目异常和结构异常。
数目异常是指染色体数量发生变化,可以分为染色体多余和缺失两种情况。
染色体多余通常会导致染色体疾病,如唐氏综合症,而染色体缺失则可能造成先天畸形和智力障碍等。
结构异常是指染色体上某个区域的结构发生了改变,如染色体倒位、易位、缺失和重复,这些异常可能会造成基因失活、激活、变异和重排等后果。
现代医学技术已经可以准确地检测染色体异常,比如不孕症和儿童智力低下等生殖和遗传类疾病就与染色体异常密切相关。
不孕症是指不良的生育健康状况,常见的原因是男性和女性生殖系统的结构和功能方面的问题。
对于染色体问题导致的不孕症,常常表现为精子数量减少或出生缺陷,此时可以通过人工受孕等技术来临床治疗。
而智力低下则与染色体异常的关系也非常密切。
例如唐氏综合症就是由染色体21三体引起的一种常见的例子。
唐氏综合症患者因为21号染色体出现异常,造成神经管发育和智力障碍等严重后果,因此需要接受长期的医疗管理。
此外,染色体异常还会导致其他智力障碍,如10号染色体Ⅲ臂倒位患者之间因失活的基因而导致智商低下。
此外,染色体异常还会引起许多遗传性疾病,如多囊肾病、肾上腺白质萎缩症和胰岛素依赖型糖尿病等。
这些疾病的发病率高,症状复杂多样,同时通常与遗传结构有关,因此需要对患者进行精细的鉴定和管理。
同时,近年来一些致癌因素,如放射线和致癌化学物质等也与染色体结构改变有关。
总之,染色体异常是一种常见的疾病,它一般会影响人体的身心健康,如智力低下、不孕症和遗传性疾病等。
目前,卫生机构为了达到较好的治疗效果,需要提高对染色体异常的监测水平,全面提高对染色体异常的治疗技术和医学管理水平。