新浙教版七年级下册数学期末复习卷
- 格式:doc
- 大小:142.00 KB
- 文档页数:5
浙教版数学七年级下册期末考试试卷一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列方程中,为二元一次方程的是()A .210a +=B .32x y z +=C .9xy =D .325x y -=2.下列运算正确的是()A .236m m m = B .842m m m ÷=C .325m n mn +=D .326()m m =3.分式34x x --无意义的条件是()A .4x =B .4x ≠±C .4x ≠-D .4x >4.下列统计活动中不宜用问卷调查的方式收集数据是()A .七年级同学家中电脑的数量B .星期六早晨同学们起床的时间C .各种手机在使用时所产生的辐射D .学校足球队员的年龄和身高5.下列各项变形式,是因式分解的是()A .2(2)2m m n m mn+=+B .2244(2)a a a -+=-C .211()y y y y -=-D .222438xy x y =⋅6.一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,第5组的频率为0.20,则第6组的频数为()A .20B .22C .24D .307.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程组382x ny mx y +=⎧⎨-=⎩的解,则2m n +的值为()A .52-B .1C .7D .118.如图,已知直线//AB CD ,GEB ∠的平分线EF 交CD 于点F ,130∠=︒,则2∠等于()A .135︒B .145︒C .155︒D .165︒9.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是()A .60080040x x =-B .60080040x x =-C .60080040x x =+D .60080040x x=+10.设m xy =,n x y =+,22p x y =+,22q x y =-,其中20202018x t y t =+⎧⎨=+⎩,①当3n =时,6q =.②当292p =时,214m =.则下列正确的是()A .①正确②错误B .①正确②正确C .①错误②正确D .①错误②错误二.填空题(本大题共8个小题,每小题3分,共24分)11.当x 的值为时,分式4x x +的值为0.12.因式分解:24a a -=.13.对于方程238x y +=,用含x 的代数式表示y ,则可以表示为.14.若等式222(1)3x x a x -+=--成立,则a =.15.已知二元一次方程3510x y -=,请写出它的一个整数解为.16.若方程组213212x y x y -=⎧⎨+=⎩的解也是二元一次方程511x my -=-的一组解,则m 的值等于.17.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD ∠=︒,那么AEC ∠=.18.如图,把三张边长相等的小正方形甲、乙、丙纸片按先后顺序放在一个大正方形ABCD 内,丙纸片最后放在最上面.已知小正方形的边长为a ,如果斜线阴影部分的面积之和为b ,空白部分的面积和为4,那么2b a 的值为.三.解答题(共7小题)19.(6分)计算:(1)322(124)(2)x y x x -÷-(2)2(21)(23)(23)x x x --+-20.(6分)解方程或方程组:(1)24342x y x y +=⎧⎨-=⎩(2)33233x x x-=--21.(6分)如图,已知1BDC ∠=∠,23180∠+∠=︒.(1)AD 与EC 平行吗?试说明理由.(2)若DA 平分BDC ∠,CE AE ⊥于点E ,180∠=︒,试求FAB ∠的度数.22.(6分)我区的数学爱好者申请了一项省级课题--《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名?23.(7分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x 的正方形,乙种纸片是边长为y 的正方形,丙种纸片是长为y ,宽为x 的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展升华】(2)利用(1)中的等式解决下列问题.①已知2210a b +=,6a b +=,求ab 的值;②已知(2021)(2019)1c c --=,求22(2021)(2019)c c -+-的值.24.(7分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.25.(8分)已知,如图①,点D,E,F,G是ABCFG AC,∆三边上的点,且//(1)若EDC FGC∠=∠,试判断DE与BC是否平行,并说明理由.(2)如图②,点M、N分别在边AC、BC上,且//∠=︒,CMN AB,连接GM,若60∠=︒,55A∠的度数.∠=∠,求GMN4FGM MGC(3)点M、N分别在射线AC、BC上,且//∠=,MN AB,连接GM.若Aα∠=,ACBβ∠的度数(用含α,β,n的代数式表示)FGM n MGC∠=∠,直接写出GMN参考答案一.选择题(共10小题)1.解:A .是一元一次方程,不是二元一次方程,故本选项不符合题意;B .是三元一次方程,不是二元一次方程,故本选项不符合题意;C .是二元二次方程,不是二元一次方程,故本选项不符合题意;D .是二元一次方程,故本选项符合题意;故选:D .2.解:23235m m m m +== ,因此选项A 不正确;84844m m m m -÷==,因此选项B 不正确;3m 与2n 不是同类项,因此选项C 不正确;32326()m m m ⨯==,因此选项D 正确;故选:D .3.解: 分式34x x --无意义,40x ∴-=,4x ∴=,故选:A .4.解:A .七年级同学家中电脑的数量,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;B .星期六早晨同学们起床的时间,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;C .各种手机在使用时所产生的辐射,利用问卷调查不能准确得到辐射情况,不适合问卷调查,故此选项错误;D .学校足球队员的年龄和身高,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确.故选:C .5.解:A .等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .等式从左到右的变形属于因式分解,故本选项符合题意;C .等式的右边不是整式的积的形式,不属于因式分解,故本选项不符合题意;D .等式从左到右的变形不属于因式分解,故本选项不符合题意;故选:B .6.解: 一组数据共100个,第5组的频率为0.20,∴第5组的频数是:1000.2020⨯=,一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,∴第6组的频数为:100201014162020-----=.故选:A .7.解:把1x =-,2y =代入方程组,得32822n m -+=⎧⎨--=⎩解得4m =-,112n =,24117m n ∴+=-+=.故选:C .8.解://AB CD ,130GEB ∴∠=∠=︒,EF 为GEB ∠的平分线,1152FEB GEB ∴∠=∠=︒,2180165FEB ∴∠=︒-∠=︒.故选:D .9.解:若设书店第一次购进该科幻小说x 套,由题意列方程正确的是60080040x x =+,故选:C .10.解:当3n =时,即3x y +=,由20202018x t y t =+⎧⎨=+⎩可得,2x y -=,因此,52x =,12y =,22251246444q x y ∴=-==-==,因此①正确;当292p =时,即22292x y +=,又2x y ∴-=,2224x xy y ∴-+=,∴29242xy -=,214m xy ∴==,因此②正确;故选:B .二.填空题(共8小题)11.解:由题意得:40x +=,且0x ≠,解得:4x =-,故答案为:4-.12.解:原式(4)a a =-.故答案为:(4)a a -.13.解:方程238x y +=,解得:823xy -=.故答案为:823xy -=.14.解:22(1)322x x x --=-- ,22222x x a x x ∴-+=--,2a ∴=-.故答案为:2-.15.解:3510x y -=,5310y x -=-,325y x =-,方程的一个整数解是51x y =⎧⎨=-⎩,故答案为:51x y =⎧⎨=-⎩.16.解:根据题意得213212x y x y -=⎧⎨+=⎩①②,∴由①得:21y x =-,代入②用x 表示y 得,32(21)12x x +-=,解得:2x =,代入①得,3y =,∴将2x =,3y =,代入511x my -=-解得,7m =.故答案为:7.17.解:12//l l ,180BAD ABC ∴∠+∠=︒,136BAD ∠=︒ ,44ABC ∴∠=︒,BD 平分ABC ∠,22DBC ∴∠=︒,BD CD ⊥ ,90BDC ∴∠=︒,68BCD ∴∠=︒,CE 平分DCB ∠,34ECB ∴∠=︒,12//l l ,180AEC ECB ∴∠+∠=︒,146AEC ∴∠=︒,故答案为:146︒.18.解:将乙正方形平移至AB 边,如图所示:设AB x =,∴乙的宽()x a =-;甲的宽()x a =-;又 斜线阴影部分的面积之和为b ,2()a x a b ∴-=,空白部分的面积和为4,2()4x a ∴-=,2x a ∴-=,即22a b ⋅=,∴22ba =.三.解答题(共7小题)19.解:(1)原式322(124)431x y x x xy =-÷=-;(2)原式2244149410x x x x =-+-+=-+.20.解:(1)24342x y x y +=⎧⎨-=⎩①②,①2⨯+②得:510x =,解得:2x =,把2x =代入①得:1y =,则方程组的解为21x y =⎧⎨=⎩;(2)分式方程整理得:33233xx x -=---,去分母得:32(3)3x x --=-,去括号得:3263x x -+=-,解得:9x =-,经检验9x =-是分式方程的解.21.(1)AD 与EC 平行,证明:1BDC ∠=∠ ,//AB CD ∴(同位角相等,两直线平行),2ADC ∴∠=∠(两直线平行,内错角相等),23180∠+∠=︒ ,3180ADC ∴∠+∠=︒(等量代换),//AD CE ∴(同旁内角互补,两直线平行);(2)解:1BDC ∠=∠ ,180∠=︒,80BDC ∴∠=︒,DA 平分BDC ∠,1402ADC BDC ∴∠=∠=︒(角平分线定义),240ADC ∴∠=∠=︒(已证),又CE AE ⊥ ,90AEC ∴∠=︒(垂直定义),//AD CE (已证),90FAD AEC ∴∠=∠=︒(两直线平行,同位角相等),2904050FAB FAD ∴∠=∠-∠=︒-︒=︒.22.解:(1)本次调查共抽取学生为:204005%=(名),∴不太了解的学生为:40012016020100---=(名),补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120360108400⨯︒=︒;(3)1208000(40%)5600400⨯+=(名),所以“理解”和“了解”的共有学生5600名.23.解:(1)222()2x y x y xy +=+-.(2)①由题意得:222()()2a b a b ab +-+=,把2210a b +=,6a b +=代入上式得,2610132ab -==.②由题意得:2222(2021)(2019)(20212019)2(2021)(2019)2212c c c c c c -+-=-+----=-⨯=.24.解:(1)设1辆A 型车载满脐橙一次可运送x 吨,1辆B 型车载满脐橙一次可运送y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车载满脐橙一次可运送3吨,1辆B 型车载满脐橙一次可运送4吨.(2)依题意,得:3431a b +=,a ,b 均为正整数,∴17a b =⎧⎨=⎩或54a b =⎧⎨=⎩或91a b =⎧⎨=⎩.∴一共有3种租车方案,方案一:租A 型车1辆,B 型车7辆;方案二:租A 型车5辆,B 型车4辆;方案三:租A 型车9辆,B 型车1辆.(3)方案一所需租金为10011207940⨯+⨯=(元);方案二所需租金为10051204980⨯+⨯=(元);方案三所需租金为100912011020⨯+⨯=(元).9409801020<< ,∴最省钱的租车方案是方案一,即租A 型车1辆,B 型车7辆,最少租车费为940元.25.解:(1)//DE BC ,理由如下://FG AC ,FGB C ∴∠=∠,180EDC ADE ∠+∠=︒ ,180FGC FGB ∠+∠=︒,EDC FGC ∠=∠,ADE FGB ∴∠=∠,ADE C ∴∠=∠,//DE BC ∴;(2)60A ∠=︒ ,55C ∠=︒,180180605565B A C ∴∠=︒-∠-∠=︒-︒-︒=︒,//FG AC ,55FGB C ∴∠=∠=︒,4FGM MGC ∠=∠ ,555180FGM MGC FGB MGC ∴∠+∠+∠=∠+︒=︒,25MGN ∴∠=︒,//MN AB ,65MNC B ∴∠=∠=︒,MNC MGN GMN ∠=∠+∠,652540GMN MNC MGN ∴∠=∠-∠=︒-︒=︒;(3)①如图②所示:A α∠= ,ACB β∠=,180180B A ACB αβ∴∠=︒-∠-∠=︒--,//FG AC ,FGB C β∴∠=∠=,FGM n MGC ∠=∠ ,(1)180FGM MGC FGB n MGC β∴∠+∠+∠=+∠+=︒,1801MGN n β︒-∴∠=+,//MN AB ,180MNC B αβ∴∠=∠=︒--,MNC MGN GMN ∠=∠+∠,180180(180)11nGMN MNC MGN n n βαββα︒-∴∠=∠-∠=︒---=︒--++.②如图③所示:设MGN x ∠=,则180GMN GMA NMC nx α∠=∠+∠=+︒-,(1)180n x β-+=︒ ,111801x n β︒-∴=-,18018018018011n GMN nx n n n ββααα︒--︒∴∠=+︒-=+︒-⋅=+--.。
浙教版数学七年级下册期末考试试题一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.下列实数中,为无理数的是()A.B.C.5 D.π2.下列采用的调查方式中,不合适的是()A.了解永安溪的水质,采用抽样调查B.检测神州十二号飞船的零部件质量,采用抽样调查C.了解我县中学生视力情况,采用抽样调查D.了解某班同学的数学成绩,采用全面调查3.﹣1介于下列哪两个整数之间()A.﹣1与0 B.0与1 C.1与2 D.2与34.已知二元一次方程4x+5y=5,用含x的代数式表示y,则可表示为()A.y=﹣x+1 B.y=﹣x﹣1 C.y=x+1 D.y=x﹣1 5.已知a>b,则下列不等式成立的是()A.a+3>b+4 B.2a<2b C.a﹣1>b﹣1 D.﹣4a>﹣4b 6.如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A.96°B.94°C.104°D.106°7.已知x,y满足方程组,则x+3y的值为()A.3 B.C.5 D.68.小敏妈妈为小敏爸爸购买了一双运动鞋.小敏、哥哥和爸爸都想知道这双鞋的价格,妈妈让他们猜.爸爸说“至少300元.”哥哥说:“至多260元.”小敏说:“至多200元.”妈妈说:“你们三个人都说错了.”则这双鞋的价格x(元)所在的范围是()A.200<x<260 B.260<x<300 C.200≤x≤260D.260≤x≤300 9.在螳螂的示意图中,AB∥DE,∠ABC=126°,∠CDE=70°,则∠BCD=()A.14°B.16°C.18°D.20°10.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x(x≠0)时输出的运算结果为P,输入的数是3x时输出的运算结果为Q,则()A.P:Q=3 B.Q:P=3C.(Q﹣1):(P﹣1)=3 D.(Q+1):(P+1)=3二、填空题(本大题有6小题,每小题3分,共18分)11.9的平方根是.12.如图,三角形ABC中,AC⊥BC,则边AC与边AB的大小关系是,依据是.13.在平面直角坐标系中,若点A(m﹣2,m+3)在第三象限,则m的取值范围是.14.某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x个,足球y个,则可列方程组为.15.关于x的不等式组的解集为﹣1<x<2,则a+b的值为.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为.三、解答题(本大题有8小题,17题4分,18~21题每题6分,22~24题每题8分,共52分)17.计算:|﹣|﹣+.18.解不等式<,并把它的解集在数轴上表示出来.19.小明同学解方程组的过程如下:解:①×2,得2x﹣6y=2③③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以这个方程组的解是你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.20.如图,在方格纸中,三角形ABC的三个顶点均为格点,当三角形ABC平移后,得到三角形A1B1C1,其中点A与A1(2,﹣2),点B与B1,点C与C1对应.(1)画出三角形A1B1C1,并写出点B1,C1的坐标;(2)F(a,b)是边BC上一点,请写出点F的对应点F1的坐标.21.已知:如图,三角形ABC中,AC⊥BC.F是边AC上的点,连接BF,作EF∥BC且交AB于点E.过点E作DE⊥EF,交BF于点D.求证:∠1+∠2=180°.下面是证明过程,请在横线上填上适当的推理结论或推理依据.证明:∵AC⊥BC(已知),∴∠ACB=90°(垂直的定义).∵EF∥BC(已知),∴∠AFE==90°().∵DE⊥EF(已知),∴∠DEF=90°(垂直的定义).∴∠AFE=∠DEF(等量代换),∴∥().∴∠2=∠EDF().又∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).22.近年来,随着人们健康睡眠的意识不断提高,社会各界对于初中生的睡眠时间是否充足越发关注,近日某学校从全校1600人中随机抽取了部分同学,调查他们平均每日睡眠时间,将得到的数据整理后绘制了如图所示的不完整的扇形统计图和频数分布直方图:(1)本次接受调查的人数为;(2)补全直方图;(3)教育部《关于进一步加强中小学生睡眠管理工作的通知》文件指出,初中生睡眠时间应达到9小时,试估计该校学生睡眠时间达标人数,并评价该校初中生睡眠时间情况.23.已知:在三角形ABC和三角形DEF中,AB∥DE.(1)如图1,若三角形DEF的顶点F在三角形ABC的边AB上,且DF∥AC.求证:∠A=∠D;(2)如图2,若三角形DEF的顶点F在三角形ABC的内部,∠A=∠D,则DF与AC 有怎样的位置关系?请说明理由.24.某杨梅经销商以每千克40元的价格分三批向果农购进杨梅,均分拣成“特优”和“普通”两类销售,分拣和包装费用为每千克6元.每批杨梅中最差的10%不能销售,为损耗,其余杨梅均能售完.“特优”杨梅售价是每千克110元,“普通”杨梅售价为每千克30元.(1)该经销商购进的第一批杨梅为500千克,分拣出“特优”杨梅150千克,则他获得的利润是元;(2)该经销商购进的第二批杨梅为800千克,获利4800元,求其中售出“特优”和“普通”杨梅各多少千克?(3)该经销商希望自己第三批杨梅的销售的利润率不少于35%,他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到多少(精确到1%)?(利润=销售收入﹣总成本,利润率=×100%)参考答案一、选择题(本大题有10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项)1.下列实数中,为无理数的是()A.B.C.5 D.π解:A.是有理数,不是无理数,故本选项不符合题意;B.=3,是有理数,不是无理数,故本选项不符合题意;C.5是有理数,不是无理数,故本选项不符合题意;D.π是无理数,故本选项符合题意;故选:D.2.下列采用的调查方式中,不合适的是()A.了解永安溪的水质,采用抽样调查B.检测神州十二号飞船的零部件质量,采用抽样调查C.了解我县中学生视力情况,采用抽样调查D.了解某班同学的数学成绩,采用全面调查解:A.了解永安溪的水质,无法普查,适合采用抽样调查,此选项不符合题意;B.检测神州十二号飞船的零部件质量,事关安全,需要普查,此选项符合题意;C.了解我县中学生视力情况,工作量大,适合采用抽样调查,此选项不符合题意;D.了解某班同学的数学成绩,工作量不大,而且普查能得到准确数据,适合采用全面调查,此选项不符合题意;故选:B.3.﹣1介于下列哪两个整数之间()A.﹣1与0 B.0与1 C.1与2 D.2与3解:∵4<5<9,∴,∴2<<3,∴1<﹣1<2,故选:C.4.已知二元一次方程4x+5y=5,用含x的代数式表示y,则可表示为()A.y=﹣x+1 B.y=﹣x﹣1 C.y=x+1 D.y=x﹣1 解:∵4x+5y=5,∴5y=5﹣4x.∴y=.∴y=1﹣.即y=.故选:A.5.已知a>b,则下列不等式成立的是()A.a+3>b+4 B.2a<2b C.a﹣1>b﹣1 D.﹣4a>﹣4b 解:A、根据不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变,故本选项不成立;B、∵a>b,∴2a>2b,故本选项不成立;C、∵a>b,∴a﹣1>b﹣1,故本选项成立;D、∵a>b,∴﹣4a<﹣4b,故本选项不成立.故选:C.6.如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A.96°B.94°C.104°D.106°解:∵∠AOC=∠BOD,∠BOD=42°,∴∠AOC=42°,∵OA平分∠EOC,∴∠AOE=∠AOC=42°,∴∠EOD=180°﹣(∠AOE+∠BOD)=180°﹣(42°+42°)=96°.故选:A.7.已知x,y满足方程组,则x+3y的值为()A.3 B.C.5 D.6解:,①﹣②,得x+3y=3.故选:A.8.小敏妈妈为小敏爸爸购买了一双运动鞋.小敏、哥哥和爸爸都想知道这双鞋的价格,妈妈让他们猜.爸爸说“至少300元.”哥哥说:“至多260元.”小敏说:“至多200元.”妈妈说:“你们三个人都说错了.”则这双鞋的价格x(元)所在的范围是()A.200<x<260 B.260<x<300 C.200≤x≤260D.260≤x≤300解:依题意得:,∴260<x<300.故选:B.9.在螳螂的示意图中,AB∥DE,∠ABC=126°,∠CDE=70°,则∠BCD=()A.14°B.16°C.18°D.20°解:如图,延长CD交AB于点M.∵∠CDE+∠EDM=180°,∠CDE=70°,∴∠EDM=180°﹣∠CDE=110°.∵AB∥DE,∴∠AMD=∠EDM=110°.又∵∠ABC=∠BMC+∠BCD,∴∠BCD=∠ABC﹣∠BMC=126°﹣110°=16°.故选:B.10.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x(x≠0)时输出的运算结果为P,输入的数是3x时输出的运算结果为Q,则()A.P:Q=3 B.Q:P=3C.(Q﹣1):(P﹣1)=3 D.(Q+1):(P+1)=3解:∵输入3时输出的运算结果是5,输入4时输出的运算结果是7.∴3a+b=5,4a+b=7,∴a=2,b=﹣1,∴P=2x﹣1,Q=6x﹣1,∴(Q+1):(P+1)=(6x):(2x)=3,故选:D.二、填空题(本大题有6小题,每小题3分,共18分)11.9的平方根是±3.解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.12.如图,三角形ABC中,AC⊥BC,则边AC与边AB的大小关系是AC<AB,依据是垂线段最短.解:∵AC⊥BC,∴边AC与边AB的大小关系是AC<AB,依据为垂线段最短.故答案为:AC<AB,垂线段最短.13.在平面直角坐标系中,若点A(m﹣2,m+3)在第三象限,则m的取值范围是m<﹣3.解:∵A(m﹣2,m+3)在第三象限,∴,解得m<﹣3.故答案为:m<﹣3.14.某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x个,足球y个,则可列方程组为.解:设购买篮球x个,购买足球y个,根据题意可列方程组:,故答案为:.15.关于x的不等式组的解集为﹣1<x<2,则a+b的值为5.解:解不等式3x﹣a<2,得:x<,解不等式x+2b>1,得:x>1﹣2b,∵不等式组的解集为﹣1<x<2,∴1﹣2b=﹣1,=2,解得a=4,b=1,∴a+b=5,故答案为:5.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为(﹣19,8).解:观察图形可知:A3(﹣2,1),A6(﹣5.2),A9(﹣8,3),•••,∵﹣5=﹣2﹣3,﹣8=﹣2+2×(﹣3),∴﹣2+6×(﹣3)=﹣19,∴A18(﹣17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(﹣19,8).故答案为:(﹣19,8)三、解答题(本大题有8小题,17题4分,18~21题每题6分,22~24题每题8分,共52分)17.计算:|﹣|﹣+.解:原式=﹣3+2=﹣1.18.解不等式<,并把它的解集在数轴上表示出来.解:去分母得:2(x﹣1)<3x+1,去括号得:2x﹣2<3x+1,移项得:2x﹣3x<1+2,合并得:﹣x<3,解得:x>﹣3.19.小明同学解方程组的过程如下:③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以这个方程组的解是你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.解:错误;理由如下:①×2,得2x﹣6y=2③,③﹣②,得﹣6y+y=2﹣7,∴﹣5y=﹣5,∴y=1,把y=1代入①得x﹣3×1=1,x=4,∴这个方程组的解为.20.如图,在方格纸中,三角形ABC的三个顶点均为格点,当三角形ABC平移后,得到三角形A1B1C1,其中点A与A1(2,﹣2),点B与B1,点C与C1对应.(1)画出三角形A1B1C1,并写出点B1,C1的坐标;(2)F(a,b)是边BC上一点,请写出点F的对应点F1的坐标.解:(1)如图所示,三角形A1B1C1即为所求;点B1、C1的坐标分别为(3,1),(1,﹣1).(2)点F的对应点F1的坐标为(a+6,b﹣3).21.已知:如图,三角形ABC中,AC⊥BC.F是边AC上的点,连接BF,作EF∥BC且交AB于点E.过点E作DE⊥EF,交BF于点D.求证:∠1+∠2=180°.下面是证明过程,请在横线上填上适当的推理结论或推理依据.证明:∵AC⊥BC(已知),∴∠ACB=90°(垂直的定义).∵EF∥BC(已知),∴∠AFE=∠ACB=90°(两直线平行,同位角相等).∵DE⊥EF(已知),∴∠DEF=90°(垂直的定义).∴∠AFE=∠DEF(等量代换),∴DE∥AC(内错角相等,两直线平行).∴∠2=∠EDF(两直线平行,内错角相等).又∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).【解答】证明:∵AC⊥BC(已知),∴∠ACB=90°(垂线的定义).∵EF∥BC(已知),∴∠AFE=∠ACB=90°(两直线平行,同位角相等).∵DE⊥EF(已知),∴∠DEF=90°(垂线的定义).∴∠AFE=∠DEF(等量代换).∴DE∥AC(内错角相等,两直线平行).∴∠2=∠EDF(两直线平行,内错角相等).∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).故答案为:∠ACB;两直线平行,同位角相等;DE;AC;内错角相等,两直线平行;两直线平行,内错角相等,22.近年来,随着人们健康睡眠的意识不断提高,社会各界对于初中生的睡眠时间是否充足越发关注,近日某学校从全校1600人中随机抽取了部分同学,调查他们平均每日睡眠时间,将得到的数据整理后绘制了如图所示的不完整的扇形统计图和频数分布直方图:(1)本次接受调查的人数为100;(2)补全直方图;(3)教育部《关于进一步加强中小学生睡眠管理工作的通知》文件指出,初中生睡眠时间应达到9小时,试估计该校学生睡眠时间达标人数,并评价该校初中生睡眠时间情况.解:(1)27÷27%=100(人);故答案为:100;(2)100﹣27﹣8﹣30=35(人),补全频数分布直方图如下:(3)1600×=480(人),答:估计该校1600名学生中睡眠时间达标人数约为480人,睡眠达标人数占总人数的30%,该校学生睡眠时间不足.23.已知:在三角形ABC和三角形DEF中,AB∥DE.(1)如图1,若三角形DEF的顶点F在三角形ABC的边AB上,且DF∥AC.求证:∠A=∠D;(2)如图2,若三角形DEF的顶点F在三角形ABC的内部,∠A=∠D,则DF与AC 有怎样的位置关系?请说明理由.【解答】证明:(1)如图1,∵AB∥DE,∴∠D=∠BFO.∵DF∥AC,∴∠FOB=∠ACB.又∵∠A+∠B+∠ACB=180°,∠BFO+∠B+∠FOB=180°,∴∠BFO=∠A.∴∠A=∠D.(2)DF∥AC,理由如下:如图2,延长AC交DE于点M.∵AB∥DE,∴∠A=∠AMD.又∵∠A=∠D,∴∠AMD=∠D.∴AM∥DF,即AC∥DF.24.某杨梅经销商以每千克40元的价格分三批向果农购进杨梅,均分拣成“特优”和“普通”两类销售,分拣和包装费用为每千克6元.每批杨梅中最差的10%不能销售,为损耗,其余杨梅均能售完.“特优”杨梅售价是每千克110元,“普通”杨梅售价为每千克30元.(1)该经销商购进的第一批杨梅为500千克,分拣出“特优”杨梅150千克,则他获得的利润是2500元;(2)该经销商购进的第二批杨梅为800千克,获利4800元,求其中售出“特优”和“普通”杨梅各多少千克?(3)该经销商希望自己第三批杨梅的销售的利润率不少于35%,他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到多少(精确到1%)?(利润=销售收入﹣总成本,利润率=×100%)解:(1)110×150+(500﹣150﹣500×10%)×30﹣6×500﹣40×500=2500;(2)设售出“特优”杨梅x千克,“普通”杨梅y千克,则解得;答:售出“特优”杨梅250千克,“普通”杨梅470千克.(3)设收购总量为m千克,“特优”杨梅占收购总量的百分比为a,则≥35%,解得a≥43.875%,即a≥44%.答:他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到44%.。
浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠2=50°,那么∠1的度数为()A.50°B.60°C.70°D.80°2、下列计算:①()2=2;②=2;③(–2 )2=12;④(+)(–)=–1.其中正确的有()A.1个B.2个C.3个D.4个3、若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②(2a﹣b)(2a+b);③a(a+b).其中是完全对称式的是()A.③B.①③C.②③D.①4、下列式子中,不能用平方差公式计算的是()A.(m﹣n)(n﹣m)B.(x 2﹣y 2)(x 2+y 2)C.(﹣a﹣b)(a ﹣b)D.(a 2﹣b 2)(b 2+a 2)5、下列计算正确的是()A. B. C. D.6、下列运算正确的是( )A. B. C. D.7、如果方程组的解是方程3x+my=8的一个解,则m=()A.1B.2C.3D.48、下列生活中的现象,属于平移的是()A.升降电梯从底楼升到顶楼B.闹钟的钟摆的运动C.DVD片在光驱中运行D.秋天的树叶从树上随风飘落9、如图,已知AB∥CD,∠1=∠2,那么下列结论中不成立的是()A.∠3=∠2B.∠1=∠5C.∠3=∠5D.∠1+∠2+∠3=180°10、(﹣3)100×()100等于()A.﹣3B.3C.D.111、某微生物的直径用科学记数法表示为5035×10-9m.购连微生物的直径的原数可以是()A.0.000005035mB.0.00005035mC.503500000mD.0.05035m12、为满足学生业余时间读书,学校图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书,已知科普书的单价比文学书的单价高出一半,所以购进的文学书比科普书多4本.若设这种文学书的单价为x元,下列所列方程正确的是( )A. B. C. D.13、下列运算结果为的是()A. B. C. D.14、下列运算,正确的是()A.x 3·x 3 = 2x 3B.x 5÷x = x 5C.x 2 = x 5 - x 3D.(-x 2)3 = -x 615、把分式中的a、b都扩大2倍,则分式的值是( )A.扩大4倍B.扩大2倍C.缩小2倍D.不变二、填空题(共10题,共计30分)16、小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.17、a,b,c是直线,且a∥b,b∥c,则________ .18、在半径为5的中,弦AB=8,弦CD=6,且AB||CD,则AB与CD间的距离为________.19、已知,(为正整数),则________.20、如图,写出一个能判定AD∥BC的条件:________.21、若的乘积中不含项,则m的值是________.22、王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择________统计图.23、化简:=________.24、如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B=________°.25、如图,在△ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=________°.三、解答题(共5题,共计25分)26、先化简,再求值:(+ )•,其中x= ﹣3.27、已知二元一次方程:①x+y=4;②2x-y=2;③x-2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.28、已知y=ax2+bx+c.当x=﹣1时,y=0;当x=2时,y=﹣3;当x=3时,y=0.求a、b、c的值.29、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?30、先化简,再求值:,其中m满足一元二次方程.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、A5、D6、D7、B8、A9、D10、D11、A12、C13、C14、D15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
初一下册数学期末考试卷浙教版一、精心选一选:(本大题共8小题,每题2分,共16分)1.下列运算中,正确的是……………………………………………………………()A.a2+a2=2a4 B.a2 a3=a6 C.(-3x)3÷(-3x)=9x2 D.(-ab2)2=-a2b4 2. 下列多项式中,能运用公式法因式分解的是……………………………………()A.x2-xy B.x2+xy C.x2+y2 D.x2-y23.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=12∠AOC,则∠BOC=…………………………………………………………………………() A.120° B.130° C.140° D.150°4.下列不等式变形中,一定正确的是()A、若 ac>bc,则a>bB、若a>b,则ac >bcC、若ac >bc ,则a>bD、若a>0 ,b>0,且,则a>b5.等腰三角形的两边长分别为5和11,则它的周长为()A、21B、21或27C、27D、256.已知方程组的解满足x + y = 2 ,则k 的值为()A、4B、- 4C、2D、- 27.如图,直角△ADB中,∠D=90°, C为AD上一点,且∠ACB的度数为(5x-10)°,则x的值可能是()A、10B、20C、30D、408. 如图,周长为34cm的长方形ABCD被分成7个形状大小完全相同的小长方形,则长方形ABCD的面积为……………………………………………… ………………………………() A.49cm2 B.68cm2 C.70cm2 D.74cm2二、细心填一填:(本大题共9小题,每空2分,共18分)9. 某种生物细胞的直径约为0.00056米,用科学记数法表示为米.10.已知一个多边形的内角和比它的外角和的3倍少180 ,则此多边形的边数为 .11.内角和与外角和之比是5∶1的多边形是______边形。
浙教版七年级下册数学期末试卷及参考答案一、填空题1、大于2、1/43、y=(10-3x)/2,x=(10-2y)/34、1x10^-75、x=1/46、4cm²7、x≠1,x=08、60°9、-1/210、x(y-9)11、吊桥、塔吊等12、x=-3,x=213、①、③、④14、B15、C16、C17、5㎝二、选择题14、B15、C16、C17、D18、B二、选择题。
(20分)14.选B。
由题意可知,当x=0时,y=1;当x=1时,y=0;当x=2时,y=-1;当x=3时,y=-2,可得出y=-x+1,故选B。
15.选C。
将y=2x-1代入2x-y=1中,得2x-(2x-1)=1,解得y=-1,故选C。
16.选D。
将y=2x+1代入x-y+1=0中,得x-(2x+1)+1=0,解得x=-2,故选D。
17.选D。
由题意可得,当x=1时,y=2;当x=2时,y=3;当x=3时,y=4,可得出y=x+1,故选D。
18.选D。
解方程组得x=1,y=4,将其代入选项中可得2x+3y=14,故选D。
19.选B。
由题意可得,x+3y=6,3x+5y=12,解得x=3,y=1,代入选项中可得3x+y=12,故选B。
20.选B。
将y=2x-1代入4x+3y=9中,得4x+3(2x-1)=9,解得x=2,代入y=2x-1中,得y=3,故选B。
21.选B。
解方程组得x=2,y=1,代入选项中可得x2+y2=5,故选B。
22.选A。
将y=-2x+1代入x2+y2=5中,得x2+(-2x+1)2=5,化简得5x2-4x-4=0,解得x=-1或x=0.8,代入y=-2x+1中,得y=3或y=-0.6,故选A。
23.选C。
将y=3x-1代入2x-y=1中,得2x-(3x-1)=1,解得x=2,代入y=3x-1中,得y=5,故选C。
三、计算题。
(23分)24.(1)解:将2x+1作为分母,得frac{3x-2}{2x+1}=\frac{2x+4}{2x+1}$$化简,得3x-2=2x+4$$解得x=3,将x=3代入原方程检验,左边=3*3-2=7,右边=2*3+1=7,故x=3是原方程的根。
一、选择题1.下列说法中,正确的是( ) A .不可能事件发生的概率为0 B .随机事件发生的概率为12C .“明天要降雨的概率为12”,表示明天有半天时间都在降雨 D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次2.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是( ) A .1B .67C .12D .03.用一枚质地均匀的硬币做抛掷试验,前10次掷的结果都是正面向上,如果下一次掷得的正面向上的概率为P(A),则( ) A .P(A)=1B .P(A)=12C .P(A)>12D .P(A)<124.“最美佳木斯”五个字中,是轴对称图形的有( ) A .1个B .2个C .3个D .4个5.如图,弹性小球从点P 出发,沿所示方向运动,每当小球碰到长方形的边时反弹,反弹时人射角等于反射角(即:∠1=∠2,∠3=∠4).小球从P 点出发第1次碰到长方形边上的点记为A 点,第2次碰到长方形边上的点记为B 点,……第2020次碰到长方形边上的点为图中的( )A .A 点B .B 点C .C 点D .D 点6.以下是某中学初二年级的学生在学习了轴对称图形之后设计的.下面这四个图形中,不是轴对称图形的是( )A .B .C .D .7.如图,12AB =,CA AB ⊥于A ,DB AB ⊥于B ,且4AC cm =,P 点从B 向A 运动,每分钟走1m ,Q 点从B 向D 运动,每分钟走2m ,P ,Q 两点同时出发,运动______分钟后CAP 与PQB △全等( )A .4或6B .4C .6D .5 8.若a ,b ,c 为△ABC 的三边长,且满足|a ﹣5|+(b ﹣3)2=0,则c 的值可以为( ) A .7B .8C .9D .109.给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ; ②AB=DE ,∠B=∠E .BC=EF ; ③∠B=∠E ,AC =DF ,∠C=∠F ; ④AB=DE ,AC=DF ,∠B=∠E . 其中,能使△ABC ≌△DEF 的条件共有( ) A .1组B .2组C .3组D .4组10.百货大楼进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其长度x与售价y 如下表: 长度x/m 1 2 3 4 … 售价y/元8+0.316+0.624+0.932+1.2…下列用长度x 表示售价y 的关系式中,正确的是( ) A .y=8x+0.3 B .y=(8+0.3)x C .y=8+0.3xD .y=8+0.3+x11.下面的语句,不正确的是( )A .对顶角相等B .相等的角是对顶角C .两直线平行,内错角相等D .在同一平面内,经过一点,有且只有一条直线与已知直线垂直 12.下列计算正确的是( ) A .326a a a ⋅= B .()()2122a a a +-=-C .()333ab a b =D .623a a a ÷=二、填空题13.任意掷一枚骰子,面朝上的点数大于2的可能性是_____.14.从﹣3,π,|﹣4|35这五个实数中随机取出一个数,这个数大于2的概率是___.15.如图,将直线y x =-沿y 轴向下平移后的直线恰好经过点()1,2A -,且与y 轴交于点B ,在x 轴上存在一点P 使得PA PB +的值最小,则点P 的坐标为______________.16.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是________.17.已知ABC 的三边长分别为a ,b ,c ,则a b c b c a c a b --+--+-+=______.18.在函数121y x =--中,自变量x 的取值范围是________ .19.将一副直角三角板如图放置,点E 在AC 边上,且ED//BC ,∠C=30°,∠F=∠DEF=45°,则∠AEF=_____度.20.2007200820092()(1.5)(1)3⨯÷-=_____.三、解答题21.有5张形状、大小和质地都相同的卡片,正面分别写有字母:A ,B ,C ,D ,E 和一个等式,背面完全一致.现将5张卡片分成两堆,第一堆:A ,B ,C ;第二堆:D ,E ,并从第一堆中抽出第一张卡片,再从第二堆中抽出第二张卡片,背面向上洗匀.(1)请用画树形图或列表法表示出所有可能结果;(卡片可用A ,B ,C ,D ,E 表示) (2)将“第一张卡片上x 的值是第二张卡片中方程的解”记作事件M ,求事件M 的概率. 22.我们已学习了角平分线的概念,那么你会用他们解决有关问题吗?(1)如图1所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A 落在A′处,BC为折痕.若∠ABC =50°,求∠A′BD 的度数.(2)在(1)条件下,如果又将它的另一个角也斜折过去,并使BD 边与BA′重合,折痕为BE ,如图2所示,求∠2和∠CBE 的度数.(3)如果将图2中改变∠ABC 的大小,则BA′的位置也随之改变,那么(2)中∠CBE 的大小会不会改变?请说明.23.如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB // DE ,AB = DE ,∠A = ∠D .(1)求证:ABC DEF ≌; (2)若BF = 11,EC = 5,求BE 的长.24.为了解某品牌轿车的耗油情况,将油箱加满后进行了耗油实验,得到如下数据: 轿车行驶的路程()s km10 20 30 40 ···油箱剩余油量()w L 50 49.2 48.4 47.6 46.8 ···(1)该轿车油箱的容量为 L ,行驶100km 时,油箱剩余油量为 L(2)根据上表的数据,写出油箱剩余油量()w L 与轿车行驶的路程()s km 之间的表达式w = .(3)某人将油箱加满后,驾驶该轿车从A 地前往B 地,到达B 地时油箱剩余油量为26L ,求,A B 两地之间的距离?25.如图,已知直线AB ,CD 相交于点O ,AOE ∠与AOC ∠互余.(1)若32BOD ∠=︒,求AOE ∠的度数; (2)若:05:1AOD A C ∠∠=,求∠BOE 的度数.26.某超市有线上和线下两种销售方式,与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的销售总额、线上销售额、线下销售额(直接在表格中填写结果); 时间 销售总额(元) 线上销售额(元) 线下销售额(元)2019年4月份a xa x -2020年4月份【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】直接利用概率的意义分别分析得出答案. 【详解】A 、不可能事件发生的概率为0,正确;B 、随机事件发生的概率为:0<P <1,故此选项错误;C 、“明天要降雨的概率为12”,表示明天有50%的可能降雨,故此选项错误; D 、掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次,错误. 故选A . 【点睛】此题主要考查了概率的意义,正确掌握概率的意义是解题关键.2.C解析:C【解析】【分析】根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),时间确定了则概率是不变的,而频率是改变的,根据此特点可得答案.【详解】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是1 2 .故选C.【点睛】本题考查概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).3.B解析:B【解析】【分析】根据概率的基本性质进行作答.【详解】下一次掷得的正面向上的概率与前10次掷的结果都是正面向上无关,一直是12,所以,选B.【点睛】本题考查了概率的基本性质,熟练掌握概率的基本性质是本题解题关键.4.B解析:B【分析】根据轴对称图形的概念解答即可.【详解】解:“最美佳木斯”五个字中,是轴对称图形的是“美”、“木”,共2个.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.D解析:D【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】解:如图所示,经过6次反弹后动点回到出发点P,∵2020÷6=336…4,∴当点P第2020次碰到矩形的边时为第337个循环组的第4次反弹,∴第2020次碰到矩形的边时的点为图中的点D;故选:D.【点睛】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.6.C解析:C【分析】根据轴对称图形的概念判断即可.【详解】A、是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、是轴对称图形.故选:C.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.B解析:B【分析】分当△CPA≌△PQB时和当△CPA≌△PQB时,两种情况进行讨论,求得BQ和BP的长,分别求得P和Q运动的时间,若时间相同即可,满足全等,若不等,则不能成立.【详解】解:当△CPA≌△PQB时,BP=AC=4(米),则BQ=AP=AB-BP=12-4=8(米),A的运动时间是:4÷1=4(分钟),Q的运动时间是:8÷2=4(分钟),则当t=4分钟时,两个三角形全等;当△CPA≌△QPB时,BQ=AC=4(米),AP=BP=12AB=6(米),则P运动的时间是:6÷1=6(分钟),Q运动的时间是:4÷2=2(分钟),故不能成立.总之,运动4分钟后,△CPA与△PQB全等,故选B.【点睛】本题考查了全等三角形的判定,注意分△CPA≌△PQB和△CPA≌△QPB两种情况讨论是关键.8.A解析:A【分析】根据非负数的性质列方程求出a、b的值,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出c的取值范围,然后解答即可.【详解】解:∵|a﹣5|+(b﹣3)2=0,∴a﹣5=0,b﹣3=0,解得a=5,b=3,∵5﹣3=2,5+3=8,∴2<c<8,∴c的值可以为7.故选:A.【点睛】本题考查了非负数的性质以及三角形的三边关系.注意:几个非负数的和为0时,这几个非负数都为0.9.C解析:C【分析】根据全等三角形的判定方法逐一判断即得答案.【详解】解:①若AB=DE,BC=EF,AC=DF,则根据SSS能使△ABC≌△DEF;②若AB=DE,∠B=∠E,BC=EF,则根据SAS能使△ABC≌△DEF;③若∠B=∠E,AC=DF,∠C=∠F,则根据AAS能使△ABC≌△DEF;④若AB=DE,AC=DF,∠B=∠E,满足有两边及其一边的对角对应相等,不能使△ABC≌△DEF;综上,能使△ABC≌△DEF的条件共有3组.故选:C.【点睛】本题考查了全等三角形的判定,属于基础题型,熟练掌握判定三角形全等的方法是解题的关键.10.B解析:B 【分析】本题通过观察表格内的x 与y 的关系,可知y 的值相对x=1时是成倍增长的,由此可得出方程. 【详解】解:依题意得y =(8+0.3)x . 故选B . 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.11.B解析:B 【分析】根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案. 【详解】A 、根据对顶角的性质可知,对顶角相等,故本选项正确;B 、相等的角不一定是对顶角,故本选项错误;C 、两直线平行,内错角相等,故本选项正确;D 、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确. 故选:B . 【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.12.C解析:C 【分析】分别用同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式来进行判断即可; 【详解】A 、325a a a = ,故该选项错误;B 、()()2212222a a a a a a a +-=-+-=-- ,故该选项错误;C 、()333ab a b = ,故该选项正确; D 、624a a a ÷= ,故该选项错误; 故选:C .【点睛】本题考查了同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式,正确掌握公式是解题的关键;二、填空题13.【分析】根据掷得面朝上的点数大于2情况有4种进而求出概率即可【详解】解:掷一枚均匀的骰子时有6种情况出现点数大于2的情况有4种掷得面朝上的点数大于2的概率是=;故填:【点睛】此题考查了概率的求法:如解析:2 3【分析】根据掷得面朝上的点数大于2情况有4种,进而求出概率即可.【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于2的情况有4种,掷得面朝上的点数大于2的概率是46=23;故填:23.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.【解析】【分析】首先找出大于2的数字个数进而利用概率公式求出答案【详解】∵在﹣3π|﹣4|5这五个数中π|﹣4|5这3个数大于2∴随机取出一个数这个数大于2的概率是:故答案为:【点睛】本题考查了概率解析:3 5【解析】【分析】首先找出大于2的数字个数,进而利用概率公式求出答案.【详解】∵在﹣3,π,|﹣4|,,5这五个数中,π,|﹣4|,5这3个数大于2,∴随机取出一个数,这个数大于2的概率是:,故答案为:.【点睛】本题考查了概率公式,正确应用概率公式是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】先作点B 关于x 轴对称的点B 连接AB 交x 轴于P 则点P 即为所求根据待定系数法求得直线为y=-x-1进而得到点B 的坐标以及点B 的坐标再根据待定系数法求得直线AB 的解析式即可得到点P 的坐标【详解】作 解析:1,03⎛⎫ ⎪⎝⎭【分析】先作点B 关于x 轴对称的点B',连接AB',交x 轴于P ,则点P 即为所求,根据待定系数法求得直线为y=-x-1,进而得到点B 的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P 的坐标.【详解】作点B 关于x 轴对称的点B ',连接AB ',交x 轴于P ,则点P 即为所求,设直线y x =-沿y 轴向下平移后的直线解析式为y x a =-+把()1,2A -代入可得,1a =-,则平移后的直线为1y x =--,令0x =,则1y =-,即()01B -,所以()0,1B设直线AB 的解析式为y kx b =+,把()1,2A -,()0,1B 代入可得,3k =-,1b =所以31y x =-+令0y =,则13x =所以P 1,03⎛⎫ ⎪⎝⎭.故答案为:1,03⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数图象上点的坐标特征,轴对称-最短路线问题,涉及到待定系数法求解析式,解题的关键是利用轴对称找出所求的点P 的位置.16.45°【分析】根据折叠过程可知在折叠过程中角一直是轴对称的折叠【详解】在折叠过程中角一直是轴对称的折叠故答案为45°【点睛】考核知识点:轴对称理解折叠的本质是关键解析:45°【分析】根据折叠过程可知,在折叠过程中角一直是轴对称的折叠.【详解】在折叠过程中角一直是轴对称的折叠,22.5245AOB ︒︒∠=⨯=故答案为45°【点睛】考核知识点:轴对称.理解折叠的本质是关键.17.【分析】三角形三边满足的条件是:两边和大于第三边两边的差小于第三边根据此条件来确定绝对值内的式子的正负从而化简计算即可【详解】解:∵△ABC 的三边长分别是abc ∴必须满足两边之和大于第三边两边的差小 解析:3c b a +-【分析】三角形三边满足的条件是:两边和大于第三边,两边的差小于第三边,根据此条件来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:∵△ABC 的三边长分别是a 、b 、c ,∴必须满足两边之和大于第三边,两边的差小于第三边,∴0,0,0a b c b c a c a b --<--<-+>, ∴a b c b c a c a b --+--+-+=()()()a b c b c a c a b ------+-+=++++a b c b c a c a b --+-+=3c b a +-故答案为:3c b a +-.【点睛】此题考查了三角形三边关系,此题的关键是先根据三角形三边的关系来判定绝对值内式子的正负.18.x≥2且x≠3【解析】【分析】根据二次根式的性质和分式的意义被开方数大于等于0可知x ﹣2≥0;分母不等于0可知:x ﹣2≠1则可以求出自变量x 的取值范围【详解】根据题意得:即解得:x≥2且x≠3故答案解析:x≥2且x≠3【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,可知x ﹣2≥0;分母不等于0,可知:x ﹣2≠1,则可以求出自变量x 的取值范围.【详解】根据题意得:2010x -≥⎧⎪≠,即2021x x -≥⎧⎨-≠⎩,解得:x ≥2且x ≠3. 故答案为:x ≥2且x ≠3.【点睛】本题考查了函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.19.165【分析】根据两直线平行内错角相等求出∠DEC 然后由角的和差关系求得∠CEF 最后由邻补角的性质求得结果【详解】解:∵ED ∥BC ∠C=30°∴∠DEC=∠C=30°∵∠DEF=45°∴∠CEF=∠解析:165【分析】根据两直线平行,内错角相等求出∠DEC ,然后由角的和差关系求得∠CEF ,最后由邻补角的性质求得结果.【详解】解:∵ED ∥BC ,∠C=30°∴∠DEC=∠C=30°,∵∠DEF=45°,∴∠CEF=∠DEF-∠DEC=45°-30°=15°.∴∠AEF=180°-∠CEF=165°,故答案为:165.【点睛】本题考查了角的和差,平行线的性质,邻补角的性质,熟记性质是解题的关键. 20.-15【分析】首先把分解成再根据积的乘方的性质的逆用解答即可【详解】解:原式===﹣15故答案为-15【点睛】本题考查有理数的乘方运算逆用积的乘方法则是解题关键解析:-1.5【分析】首先把20081.5分解成20071.5 1.5⨯,再根据积的乘方的性质的逆用解答即可.【详解】 解:原式=()200720072 1.5 1.513⎛⎫⨯⨯÷- ⎪⎝⎭=()20072 1.5 1.513⎛⎫⨯⨯⨯- ⎪⎝⎭=﹣1.5,故答案为-1.5 .【点睛】 本题考查有理数的乘方运算,逆用积的乘方法则是解题关键.三、解答题21.(1)见解析画图;(2).【解析】试题分析:( 1)利用列表法列举出符合题意的各种情况即可;(2)由(1)可知总数n ,再找到第一张卡片上x 的值是第二张卡片中方程的解的个数m ,利用概率公式计算即可. 试题(1)画树形图得:共有6种等可能情况,(A ,D )(A ,E )(B ,D )(B ,E )(C ,D )(C ,E ); (2)共有6种等可能的情况,由(1)中的树形图可知符合条件的有2种,P (事件M )=.考点:列表法与树状图法22.(1)∠A′BD=80°;(2)∠2=40°、∠CBE=90°;(3)不变,理由见解析.【分析】 (1)由折叠的性质可得50A BC ABC ∠=∠='︒,由平角的定义可得∠A′BD=180°-∠ABC-∠A′BC ,可得结果;(2)由(1)的结论可得∠DBD′=80°,由折叠的性质可得∠2=12∠DBD′=12×80°=40°,由角平分线的性质可得∠CBE=∠A′BC+∠D′BE=12×180°=90°; (3)由折叠的性质可得,∠1=∠ABC=12∠ABA′,∠2=∠EBD=12∠DBD′,可得结果. 【详解】解:(1)∵∠ABC=50°∴∠A′BC=∠ABC=50°∴∠A′BD=180°-∠ABC-∠A′BC=180°-50︒-50°=80°(2)由(1)的结论可得∠DBD′=80°∴∠2=12∠DBD′=12×80°=40° 由角平分线的性质可得 ∴∠CBE=∠A′BC+∠D′BE=12×180°=90° (3)不变由折叠的性质可得∠1=∠ABC=12∠ABA′,∠2=∠EBD=12∠DBD′ ∴∠1+∠2=12 (∠ABA′+∠DBD′)=12×180°=90° 不变,永远是平角的一半.【点睛】此题主要考查折叠问题,熟练掌握折叠的性质和角平分线的性质是解题关键.23.(1)见解析;(2)BE =3.【分析】(1)根据平行线的性质由AB ∥DE 得到∠ABC =∠DEF ,然后根据“ASA”可判断△ABC ≌△DEF ;(2)根据三角形全等的性质可得BC =EF ,由此可求出BE =CF ,则利用线段的和差关系求出BE .【详解】(1)证明:∵AB ∥DE ,∴∠ABC =∠DEF ,在△ABC 和△DEF 中A D AB DEABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DEF (ASA );(2)解:∵△ABC ≌△DEF ,∴BC =EF ,∴BC -EC =EF -EC ,即BE =CF ,∵BF =11,EC =5,∴BF -EC =6.∴BE +CF =6.∴BE =3.【点睛】本题考查了全等三角形的判定与性质,掌握全等三角形的判定与性质是解答此题的关键. 24.(1)50,42;(2)500.08w s =-;(3)A 、B 两地之间的距离是300km.【分析】(1)由表格中的数据可知,该轿车的油箱容量为50L ,汽车每行驶10km ,油量减少0.8L ,据此可求油箱剩余油量;(2)由表格中的数据可知汽车每行驶10km ,油量减少0.8L ,据此可求w 与s 的关系式; (3)把w =26代入(2)中的关系式求得相应的s 值即可.【详解】解:(1)由表格中的数据可知,该轿车的油箱容量为50L ,行驶100km 时,油箱剩余油量为100500.84210-⨯=(L ); 故答案是50,42; (2)观察表格在的数据可知,汽车每行驶10km ,油量减少0.8L ,据此可得w 与s 的关系式为500.08w s =-;故答案为500.08w s =-;(3)当w =26时,50-0.08s =26,解得s =300.答:A 、B 两地之间的距离是300km.【点睛】本题考查的是一次函数的应用,关键是读懂题意,找出规律,正确列出w 与s 的关系式,明确行驶路程为0时,即为油箱的容量.25.(1)58°;(2)120°【分析】(1)先根据对顶角的性质证得32AOC BOD ∠=∠=︒,根据AOE ∠与AOC ∠互余计算即可得到答案;(2)根据:5:1AOD AOC ∠∠=,180AOC AOD ∠+∠=︒,求得30AOC ∠=︒,得到30BOD AOC ∠=∠=︒,由90COE DOE ∠=∠=︒即可求出结果.【详解】解(1)因为AOC ∠与BOD ∠是对顶角,所以32AOC BOD ∠=∠=︒,因为AOE ∠与AOC ∠互余,所以90AOE AOC ∠+∠=︒,所以90AOE AOC ∠=︒-∠9032=︒-︒58=︒;(2)因为:5:1AOD AOC ∠∠=,所以5AOD AOC ∠=∠,因为180AOC AOD ∠+∠=︒,所以6180AOC ∠=︒,30AOC ∠=︒,又30BOD AOC ∠=∠=︒,90COE DOE ∠=∠=︒,所以BOE DOE BOD ∠=∠+∠9030=︒+︒120=︒.【点睛】此题考查几何图形中角度计算,余角的定义及求一个角的余角,邻补角的定义及求一个角的邻补角的度数,对顶角的性质,掌握图形中各角度的位置关系是解题的关键. 26.(1)1.1a ;1.43x ,1.04()a x -;(2)0.8.【分析】(1)2019年4月份的销售总额为a 元乘以(1+10%)即可得到2020年4月份销售总额,用2019年4月线上销售额为x 元乘以(1+43%)即可得到2020年4月份线上销售额,用2019年的销售总额减去线上销售额再乘以(14%)+即可2020年4月份线下销售额; (2)根据2020年销售总额与线上线下销售额的关系得到213x a =,再列式比较即可得到答案.【详解】解:(1)与2019年4月份相比,该超市2020年4月份线下销售额增长4%, ∴该超市2020年4月份线下销售额为()(14%)a x -+=1.04()a x -元.∵2019年4月线上销售额为x 元,2020年4月份,线上销售额增长43%, ∴2020年4月份线上销售额(1+43%)x=1.43x ,∵2019年4月份的销售总额为a 元,该超市2020年4月份销售总额增长10%, ∴2020年4月份的销售总额(1+10%)a = 1.1a ,()依题意,得:,解得:213x a =, ∴()21.041.040.88130.81.1 1.1 1.1a a a x a a a a⎛⎫- ⎪-⎝⎭===. 答:2020年4月份线下销售额与当月销售总额的比值为0.8.【点睛】本题考查整式与实际问题的应用,一元一次方程与实际问题,列代数式,整式的除法计算,正确理解题意是解题的关键.。
2022-2023学年浙教新版七年级下册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.计算20( )A.0B.1C.2D.﹣22.北斗卫星导航系统(BDS)是中国自行研制的全球卫星导航系统,未来全球定位精度将优于10米,测速精度将优于0.2米/秒,授时精度将优于0.00000002秒,将数字0.00000002用科学记数法表示为( )A.2×10﹣7B.2×10﹣8C.0.2×10﹣7D.0.2×10﹣83.下列多项式中,能用完全平方公式分解因式的是( )A.a2+4B.x2+6x+9C.x2﹣2x﹣1D.a2+ab+b24.下列调查最适合用抽样调查的是( )A.调查某校的卫生死角B.调查中学生网课期间的睡眠情况C.审核书稿中的错别字D.调查七(1)班同学的身高情况5.下列运算中正确的是( )A.x12÷x3=x4B.a•a2=a2C.(a3)2=a6D.(3a)3=9a3 6.已知M是一个整式,若是最简分式,则M可以是( )A.3B.6a C.a2+a D.2y7.下列四组数中,是方程4x﹣y=10的解的是( )A.B.C.D.8.如图,将直尺与30°角的三角尺叠放在一起,若∠1=55°,则∠2的大小是( )A.65°B.70°C.75°D.80°9.某校开展社团活动,参加活动的同学要分组活动,若每组7人,则余3人;若每组8人,则少5人;求课外活动小组的人数x和分成的组数y,可列方程组为( )A.B.C.D.10.如图,一个大正方形的两个角被两个大小相同的小正方形覆盖,设覆盖部分(白色表示)的面积为M,未覆盖部分(阴影表示)的面积为N,则用图中所给的a,b来表示M﹣N 可得( )A.3b2﹣4ab B.b2﹣2a2C.2ab﹣3a2D.a2+b2﹣4ab 二.填空题(共6小题,满分24分,每小题4分)11.分解因式:y2+2y= .12.若分式无意义,则x的取值是 .13.若长方形的面积是6a3+5ab+3a,长为3a,则它的宽为 .14.在一个样本中有50个数据,它们分别落在5个组内,已知第一、二、三、四、五组数据的个数分别有3,9,17,x,6,则第四组的频数为 .15.如图,长方形ABCD沿OG折叠后,点C、D分别落在点C'、D'处,若∠AOD′=70°,则∠DOG的度数为 °.16.已知方程组的解满足方程x+y=2m,则m= .三.解答题(共7小题,满分66分)17.(6分)判断下列各式是否可以用平方差公式分解因式?(1)﹣x4+16;(2)﹣1﹣y6;(3)0.36m2﹣5n2;(4)25a2﹣9y.18.(8分)已知a=﹣2,b=3时,求[3(a﹣b)2﹣5(a2+b2)+(2a+b)(a﹣4b)]÷2b的值.19.(8分)以下是小明同学解方程﹣2的过程:解:方程两边同时乘(x﹣2),得1﹣x=﹣1﹣2 …第一步解得x=4 …第二步检验:当x=4时,x﹣2=4﹣2=2≠0 …第三步所以x=4是原方程的根…第四步(1)小明的解法从第 步开始出现错误;(2)写出正确的解方程﹣2的过程.20.(10分)2021年4月,教育部办公厅做出了《关于进一步加强中小学生体质健康管理工作》的通知,确保2030年《国家学生体质健康标准》达到规定要求.我校学生会随机抽取了部分学生,就“平均每天开展体育锻炼所用时长”进行了调查,如图是根据相关数据绘制的统计图的一部分:根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的样本容量为 ;(2)m= ,n= ;(3)补全频数分布直方图;(4)如果该校共有学生2000人,请你估计“平均每天开展体育锻炼的时长不少于30分钟”的学生大约有多少人?21.(10分)已知关于x、y的方程中,x与y的值互为相反数.求m的值及方程组的解.22.(12分)毕业季即将到来,某礼品店准备购进一批适合学生的毕业纪念品.已知购进2件A礼品和6件B礼品共需180元,购进4件A礼品和3件B礼品共需135元.(1)设A,B两种礼品每件的进价分别是m元,n元,依题意可列方程组 ,解得m= ,n= .(2)该店计划将2500元全部用于购进A,B这两种礼品,设购进A礼品x件,B礼品y件.①则y关于x的关系式为 ;②该店进货时,厂家要求A礼品的购进数量不少于60件.已知A礼品每件售价为20元,B礼品每件售价为35元.设该店全部售出这两种礼品可获利W元,则W关于x的关系式为 ,该店所获利润最大值为 .#ZFH23.(12分)如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC.∠ADC 的平分线.(1)求证:∠1+∠2=90°.(2)BE与DF有什么位置关系?请说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:20=1.故选:B.2.解:根据科学记数法的定义,将一个较大或较小的数字写成a×10n的形式,其中1≤a<10且n为整数.∴0.00000002=2×10﹣8.故选:B.3.解:x2+6x+9=(x+3)2.故选:B.4.解:A、调查某校的卫生死角,适合用全面调查,本选项不符合题意;B、调查中学生网课期间的睡眠情况,适合用抽样调查,本选项符合题意;C、审核书稿中的错别字,适合用全面调查,本选项不符合题意;D、调查七(1)班同学的身高情况,适合用全面调查,本选项不符合题意;故选:B.5.解:A、x12÷x3=x9,故原题计算错误,不符合题意;B、a•a2=a3,故原题计算错误,不符合题意;C、(a3)2=a6,故原题计算正确,符合题意;D、(3a)3=27a3,故原题计算错误,不符合题意;故选:C.6.解:A、当M=3时,原式=,分子分母含有公因数3,则不是最简分式,故此选项不符合题意;B、当M=6a时,原式=,分子分母含有公因式3a,则不是最简分式,故此选项不符合题意;C、当M=a2+a时,原式=,分子分母含有公因式a,则不是最简分式,故此选项不符合题意;D、当M=2时,原式=,分子分母不含有公因式,则是最简分式,故此选项符合题意;故选:D.7.解:将A选项代入得4×1﹣6=﹣2,所以此选项不合题意;将B选项代入得4×3.5﹣(﹣4)=18,所以此选项不合题意;将C选项代入得4×15﹣4=56,所以此选项不合题意;将D选项代入得4×0﹣(﹣10)=10,所以此选项符合题意,故选:D.8.解:∵∠3=60°,∠1=55°,∴∠1+∠3=115°,∵AD∥BC,∴∠1+∠3+∠2=180°,∴∠2=180°﹣(∠1+∠3)=180°﹣115°=65°.故选:A.9.解:由题意可得,,故选:A.10.解:设小正方形的边长为x,a+x=b+2x,解得x=a﹣b,M﹣N=2x2﹣[(a+x)2﹣2x2]=2x2﹣a2﹣2ax﹣x2+2x2=3x2﹣a2﹣2ax=3(a﹣b)2﹣a2﹣2a(a﹣b)=3a2﹣6ab+3b2﹣a2﹣2a2+2ab=3b2﹣4ab.故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:y2+2y=y(y+2).故答案为:y(y+2).12.解:∵分式无意义,∴1﹣2x=0,解得:x=,故答案为:.13.解:(6a3+5ab+3a)÷3a=2a2+b+1,故答案为:2a2+b+1.14.解:由各组频数之和等于样本容量可得,3+9+x+17+6=50,解得x=15,故答案为:15.15.解:∵∠AOD'=70°,∴∠DOD'=110°,∵长方形ABCD沿OG折叠后,点C、D分别落在点C'、D'处,∴∠DOG=∠D'OG,∴∠DOG=∠DOD'=55°.故答案为:55.16.解:,①+②,得3x+3y=8.∴x+y=.∵x+y=2m,∴2m=.∴m=.故答案为:.三.解答题(共7小题,满分66分)17.解:(1)原式=(4+x2)(4﹣x2)=(4+x2)(2+x)(2﹣x),能用平方差公式分解;(2)原式=﹣(y6+1)=﹣(y2+1)(y4﹣y2+1),不能利用平方差公式分解;(3)原式=(0.6m+n)(0.6m﹣n),能用平方差公式分解;(4)原式不能利用平方差公式分解.18.解:原式=[3(a2﹣2ab+b2)﹣5a2﹣5b2+2a2﹣8ab+ab﹣4b2]÷2b =(3a2﹣6ab+3b2﹣5a2﹣5b2+2a2﹣8ab+ab﹣4b2)÷2b=(﹣6b2﹣13ab)÷2b=﹣3b﹣a,当a=﹣2,b=3时,原式=﹣3×3﹣×(﹣2)=﹣9+13=4.19.解:(1)小明的解法从第一步开始出现错误;故答案为:一;(2)去分母得:1﹣x=﹣1﹣2(x﹣2),去括号得:1﹣x=﹣1﹣2x+4,解得:x=2,检验:把x=2代入得:x﹣2=0,∴x=2是增根,分式方程无解.20.解:(1)60÷30%=200(人),故答案为:200;(2)锻炼时长在30﹣40分的人数所占的百分比:50÷200=25%,因此n=25,锻炼时长为10﹣20分钟的人数:200×20%=40(人),锻炼时长在20﹣30分钟的人数:200﹣50﹣40﹣60﹣10=40(人),锻炼时长在20﹣30分钟的人数所占的百分比:40÷200=20%,因此m=20,故答案为:20,25;(3)补全频数分布直方图如下:(4)2000×(25%+5%)=600(人),答:估计该校2000名学生中“平均每天开展体育锻炼的时长不少于30分钟”的大约有600人.21.解:,①+②,得:5x+5y=2m+2,∴x+y=,又∵x与y的值互为相反数,∴x+y=0③,∴,解得:m=﹣1,①﹣②,得:x﹣y=2④,③+④,得:2x=2,解得:x=1,把x=1代入③,得y=﹣1,∴方程组的解为.∴m的值为﹣1,方程组的解为.22.解:(1)设A礼品每个的进价是m元,B礼品每个的进价是n元,依题意,,解得;故答案为:,15,25;(2)①依题意,15x+25y=2500,所以,,故答案为:;②=﹣x+1000,因为W随x的增大而减小,且x≥60,所以当x=60,W取得最大值.即A礼品进货60件时,该店获利最大.最大利润为:﹣60+1000=940.故答案为:w=﹣x+1000,940.23.(1)证明:∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)解:BE∥DF,理由如下:在△FCD中,∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.。
一、选择题1.抛掷一枚质地均匀、六个面上分别刻有点数1~6的正方体骰子2次,则“向上一面的点数之和为10”是( )A .必然事件B .不可能事件C .确定事件D .随机事件 2.下列事件中,是必然事件的是( )A .任意掷一枚骰子一定出现奇数点B .彩票中奖率20%,买5张一定中奖C .晚间天气预报说明天有小到中雪D .在13同学中至少有2人生肖相同3.下列说法中错误的是( )A .掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是16B .从装有10个红球的袋子中,摸出1个白球是不可能事件C .为了解一批日光灯的使用寿命,可采用抽样调查的方式D .某种彩票的中奖率为1%,买100张彩票一定有1张中奖4.如图,ABC 与111A B C △关于直线MN 对称,点P 为MN 上任一点,下列结论中错误的是( )A .1AA P 是等腰三角形B .MN 垂直平分1AAC .ABC 与111A B C △面积相等D .直线AB ,11A B 的交点不一定在MN 上 5.如图,图①是四边形纸条ABCD ,其中//AB CD ,E ,F 分别为AB ,CD 上的两个点,将纸条ABCD 沿EF 折叠得到图②,再将图②沿DF 折叠得到图③,若在图③中,24FEM ∠=︒,则EFC ∠为( )A .48°B .72°C .108°D .132°6.有下列说法:①轴对称的两个三角形形状相同;②面积相等的两个三角形是轴对称图形;③轴对称的两个三角形的周长相等;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的.其中正确的有( )A .4个B .3个C .2个D .1个7.如图,两座建筑物AB ,CD 相距160km ,小月从点B 沿BC 走向点C ,行走ts 后她到达点E ,此时她仰望两座建筑物的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知建筑物AB 的高为60m ,小月行走的速度为1/m s ,则小月行走的时间t 的值为( )A .100B .80C .60D .508.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .79.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB = B .EA EC = C .AF CB =D .AFE B ∠=∠ 10.对于关系式y =3x +5,下列说法:①x 是自变量,y 是因变量;②x 的数值可以任意选择;③y 是变量,它的值与x 无关;④这个关系式表示的变量之间的关系不能用图象表示;⑤y 与x 的关系还可以用表格和图象表示,其中正确的是( )A .①②③B .①②④C .①③⑤D .①②⑤ 11.如图,∠1=20º,AO ⊥CO ,点B 、O 、D 在同一条直线上,则∠2的度数为( )A .70ºB .20ºC .110ºD .160º12.若()()23515x x x mx +-=+-,则m 的值为( )A .2B .2-C .5D .5-二、填空题13.必然事件发生的概率是____.14.“同时抛掷两枚普通的骰子,向上一面的点数之和为13”是_____(选填“必然事件”,“不可能事件”,或“随机事件”).15.如图,△ABC 中,∠ACB =90°,∠A =30°,AC =6,点P 在边AB 上运动(不与端点重合),点P 关于直线AC ,BC 对称的点分别为P 1,P 2.则在点P 的运动过程中,线段P 1P 2的长度m 的取值范围是_____.16.如图,在三角形纸片中,8,5,6AB cm BC cm AC cm ===,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则AED ∆的周长等于_________________cm .17.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.添加的条件是:____.(写出一个即可)18.一个弹簧,不挂物体时长为10厘米,挂上物体后弹簧会变长,每挂上1千克物体,弹簧就会伸长1.5cm .如果挂上的物体的总质量为x 千克时,弹簧的长度为为ycm ,那么y 与x 的关系可表示为y =______.19.如图,已知://AB DE ,80B ∠=︒,CM 平分BCD ∠,CN CM ⊥,则NCE ∠的度数是______.20.若x 2+4x-4=0,则3(x-2)2-6(x+1)(x-1)的值为_________.三、解答题21.一个不透明的袋中装有红、黄、白三种颜色的球共10个,它们除了颜色外完全相同,其中黄球个数比白球个数的3倍少2个,从袋中摸出一个球是黄球的概率为0.4. (1)求袋中红、黄、白三种颜色的球的个数;(2)向袋中放入若干个红球,使摸出一个球是红球的概率为0.7,求放入红球的个数; (3)在(2)的条件下,求摸出一个球是白球的概率.22.认真观察如图的四个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个特征特征1: _____________;特征2: _______________.(2)请在图中设计出你心中最美的图案,使它也具备你所写出的上述特征.23.如图,点B 、E 、C 、F 四点在一条直线上,∠A =∠D ,AB //DE ,老师说:再添加一个条件就可以使△ABC ≌△DEF .下面是课堂上三个同学的发言,甲说:添加AB =DE ;乙说:添加AC //DF ;丙说:添加BE =CF .(1)甲、乙、丙三个同学说法正确的是________;(2)请你从正确的说法中选择一种,给出你的证明.24.如图,在一个半径为10cm 的圆面上,从中心挖去一个小圆面,当挖去小圆的半径()x cm 由小变大时,剩下的圆环面积()2y cm 也随之发生变化.(结果保留π).(1)在这个变化过程中,自变量、因变量各是什么?(2)求圆环的面积y 与x 的关系式.(3)当挖去圆的半径x 为9cm 时,剩下圆环面积y 为多少?25.如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,1∠与2∠互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由;(2)如图2,BEF ∠与EFD ∠的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且GH EG ⊥,求证://PF GH ;(3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使PHK HPK ∠=∠,作PQ 平分EPK ∠,问HPQ ∠的大小是否发生变化?若不变,请求出其值;若变化,说明理由.26.(1)若x 满足(30)(20)10x x --=-,求22(30)(20)x x -+-的值;(2)若x 满足22(2017)(2015)4036x x -+-=,求(2017)(2015)x x --的值;(3)如图,正方形ABCD 的边长为x ,10,20AE CG ==,长方形EFGD 的面积是500,四边形 NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积.(结果必须是一个具体的数值)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及事件发生的可能性大小判断即可.【详解】解:因为抛掷2次质地均匀的正方体骰子,正方体骰子的点数和应大于或等于2,而小于或等于12.显然,向上一面的点数之和为10”是随机事件.故选:D.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.D解析:D【解析】【分析】根据概率的相关知识,判断出一定会发生的事情即可解出本题答案.【详解】A. 任意掷一枚骰子一定出现奇数点,可能出现偶数点,错误;B. 彩票中奖率20%,买5张一定中奖,是总票数的20%,那五张有可能在80%不中奖的里面,错误;C. 晚间天气预报说明天有小到中雪,天气预报预测的是可能的天气,并不确定,错误;D. 在13同学中至少有2人生肖相同,生肖一共十二个,正确.故答案为:D.【点睛】本题考查了概率的相关知识,熟练掌握该知识点是本题解题的关键.3.D解析:D【分析】根据概率的意义、随机事件、调查方法的选择和概率公式对各选项作出判断即可.【详解】A 、掷一枚普通的正六面体骰子,共有6种等可能的结果,则出现向上一面点数是2的概率是16,所以A 选项的说法正确; B 、从装有10个红球的袋子中,摸出的应该都是红球,则摸出1个白球是不可能事件,所以B 选项的说法正确;C 、为了解一批日光灯的使用寿命,可采用抽样调查的方式,而不应采用普查的方式,所以C 选项的说法正确;D 、某种彩票的中奖率为1%,是中奖的频率接近1%,所以买100张彩票可能中奖,也可能没中奖,所以D 选项的说法错误;故选D .【点睛】本题考查概率的意义、随机事件、调查方法的选择和概率的公式,掌握概率的意义是解题的关键.4.D解析:D【分析】据对称轴的定义,△ABC 与111A B C △关于直线MN 对称,P 为MN 上任意一点,可以判断出图中各点或线段之间的关系.【详解】解:∵△ABC 与111A B C △关于直线MN 对称,P 为MN 上任意一点,∴△A 1A P 是等腰三角形,MN 垂直平分A 1A ,C 1C ,这两个三角形的面积相等,故A 、B 、C 选项正确,直线AB ,11A B 关于直线MN 对称,因此交点一定在MN 上,故D 错误,故选:D .【点睛】本题考查了轴对称的性质与运用,掌握对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等是解题的关键. 5.C解析:C【分析】如图②,由折叠的性质和平行线的性质可求得∠EFM ,根据三角形的外角性质可求得∠BMF ,再根据平行线的性质可求得∠CFM ,如图③中,再根据折叠的性质和角的差即可求得答案.【详解】解:如图②,由折叠得:∠B'EF=∠FEM=24°,∵AE∥DF,∴∠EFM=∠B'EF=24°,∴∠BMF=∠MEF+∠MFE=48°,∵BM∥CF,∴∠CFM+∠BMF=180°,∴∠CFM=180°﹣48°=132°,如图③,由折叠得∠MFC=132°,∴∠EFC=∠MFC﹣∠EFM=132°﹣24°=108°,故选:C.【点睛】本题考查了折叠的性质、平行线的性质、三角形的外角性质以及角的和差计算等知识,正确理解题意、熟练掌握上述是解题的关键.6.B解析:B【分析】根据平移、翻折或旋转的性质逐项判断可求解.【详解】解:①轴对称的两个三角形形状相同,故正确;②面积相等的两个三角形形状不一定相同,故不是轴对称图形,故错误;③轴对称的两个三角形的周长相等,故正确;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的,故正确.故选:B.【点睛】本题考查了图形的变换,掌握平移、翻折或旋转的性质是解题的关键.7.A解析:A【分析】首先证明∠A=∠DEC ,然后可利用AAS 判定△ABE ≌△ECD ,进而可得EC=AB=60m ,再求出BE 的长,然后利用路程除以速度可得时间.【详解】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵∠ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC ,在△ABE 和△DCE 中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ECD (AAS ),∴EC=AB=60m ,∵BC=160m ,∴BE=100m ,∴小华走的时间是100÷1=100(s ),故选:A .【点睛】本题主要考查了全等三角形的应用,关键是正确判定△ABE ≌△ECD .8.C解析:C【分析】先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.9.D解析:D【分析】根据垂直关系,可以判断△AEF 与△CEB 有两对角相等,就只需要添加一对边相等就可以了.【详解】解:∵AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,∴∠AEF=∠CEB=90°,∠ADB=∠ADC=90°,∴∠EAF+∠B=90°,∠BCE+∠B=90°,∴∠EAF=∠BCE .A.在Rt △AEF 和Rt △CEB 中AEF CEB EAF BCE EF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;B.在Rt △AEF 和Rt △CEB 中 AEF CEB EA ECEAF BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEF ≌CEB △(ASA ),故正确;C.在Rt △AEF 和Rt △CEB 中 AEF CEB EAF BCE AF CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;D.在Rt △AEF 和Rt △CEB 中 由AEF CEB EAF BCE AFB B ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩不能证明AEF ≌CEB △,故不正确;故选D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.10.D解析:D【解析】【分析】根据一次函数的定义可知,x 为自变量,y 为函数,也叫因变量;x 取全体实数;y 随x 的变化而变化;可以用三种形式来表示函数:解析法、列表法和图象法.【详解】①x 是自变量,y 是因变量;正确;②x 的数值可以任意选择;正确;③y 是变量,它的值与x 无关;而y 随x 的变化而变化;错误;④用关系式表示的不能用图象表示;错误;⑤y 与x 的关系还可以用列表法和图象法表示,正确.故选D .【点睛】本题考查了一次函数的定义,是基础知识,比较简单.11.C解析:C【分析】由AO ⊥CO 和∠1=20º求得∠BOC =70º,再由邻补角的定义求得∠2的度数.【详解】∵AO ⊥CO 和∠1=20º,∴∠BOC =90 º-20 º=70º,又∵∠2+∠BOC =180 º(邻补角互补),∴∠2=110º.故选:C .【点睛】考查了邻补角和垂直的定义,解题关键是利用角的度数之间的和差的关系求未知的角的度数.12.B解析:B【分析】先根据多项式乘以多项式法则展开,合并后即可得出答案.【详解】解:()()22355315215x x x x x x x +-=-+-=--,∵()()23515x x x mx +-=+-,∴m=-2,故选:B .【点睛】本题考查了多项式乘以多项式,能够灵活运用法则进行计算是解此题的关键.二、填空题13.1【分析】必然事件就是一定会发生的事件它的概率为1【详解】必然事件发生的概率是1即P(必然事件)=1故答案为1【点睛】本题考查了随机事件解决本题需要正确理解必然事件不可能事件随机事件的概念必然事件指解析:1【分析】必然事件就是一定会发生的事件,它的概率为1.【详解】必然事件发生的概率是1,即P(必然事件)=1.故答案为1.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.14.不可能事件【分析】直接利用不可能事件的定义分析得出答案【详解】解:同时抛掷两枚质地均匀的骰子最多只能两枚都是6点数和最多是12所以向上一面的点数之和是13是不可能事件故答案为不可能事件【点睛】此题考解析:不可能事件【分析】直接利用不可能事件的定义分析得出答案.【详解】解:同时抛掷两枚质地均匀的骰子,最多只能两枚都是6,点数和最多是12,所以向上一面的点数之和是13,是不可能事件.故答案为不可能事件.【点睛】此题考查不可能事件,正确把握相关定义是解题关键.15.6≤m<12【分析】如图连接PC作CH⊥AB于H首先证明P1P2=2PC求出PC的取值范围即可解决问题【详解】解:如图连接PC作CH⊥AB于H∵点P关于直线ACBC对称的点分别为P1P2∴CP=CP解析:6≤m<12【分析】如图,连接PC,作CH⊥AB于H.首先证明P1P2=2PC,求出PC的取值范围即可解决问题.【详解】解:如图,连接PC,作CH⊥AB于H.∵点P关于直线AC,BC对称的点分别为P1,P2,∴CP=CP1=CP2,∴P1P2=2PC,在Rt△ACH中,∵∠AHC=90°,AC=6,∠A=30°,∴CH=12AC=3,∵点P在边AB上运动(不与端点重合),∴3≤PC<6,∴线段P1P2的长度m的取值范围是6≤m<12,故答案为6≤m<12.【点睛】本题考查轴对称,直角三角形的性质,垂线段最短等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.16.9【分析】根据翻折变换的性质可得DE=CDBE=BC然后求出AE再根据三角形的周长列式求解即可【详解】∵BC沿BD折叠点C落在AB边上的点E处∴DE=CDBE=BC∵AB=8cmBC=6cm∴AE=解析:9【分析】根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.【详解】∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB−BE=AB−BC=8−5=3cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=6+3,=9cm.故答案为9.【点睛】本题考查了翻折变换的性质,熟记翻折前后两个图形能够完全重合得到相等的线段是解题的关键.17.AF=CB或EF=EB或AE=CE【分析】根据垂直关系可以判断△AEF与△CEB有两对对应角相等就只需要找它们的一对对应边相等就可以了【详解】∵AD⊥BCCE⊥AB垂足分别为DE∴∠BEC=∠AEC解析:AF=CB或EF=EB或AE=CE【分析】根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE =90°,∴∠BAD=∠BCE,所以根据AAS添加AF=CB或EF=EB;根据ASA添加AE=CE.可证△AEF≌△CEB.故答案为:AF=CB或EF=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.18.10+15x【解析】【分析】根据所挂物体与弹簧长度之间的关系得出函数解析式即可根据函数的定义判断自变量及因变量弹簧的总长度y(cm)可以表示为y=10+15x【详解】y=10+15x所挂物体总质量x解析:10+1.5x【解析】【分析】根据所挂物体与弹簧长度之间的关系得出函数解析式即可,根据函数的定义判断自变量及因变量.弹簧的总长度y(cm)可以表示为y=10+1.5x【详解】y=10+1.5x,所挂物体总质量x,弹簧的总长度y【点睛】此题考查二元一次函数的应用,难度不大19.40°【分析】先根据AB∥DE∠B=70°CM平分∠DCB可求出∠BCM及∠BCE 的度数再根据CM⊥CN可求出∠BCN的度数再由∠NCE=∠BCE-∠BCN即可解答【详解】解:∵AB∥DE∠B=80解析:40°【分析】先根据AB∥DE,∠B=70°,CM平分∠DCB可求出∠BCM及∠BCE的度数,再根据CM⊥CN 可求出∠BCN的度数,再由∠NCE=∠BCE-∠BCN即可解答.【详解】解:∵AB ∥DE ,∠B=80°,∴∠DCB=180°-∠B=180°-80°=100°,∠BCE=∠B=80°,∵CM 平分∠DCB ,∴∠BCM=12∠DCB=12×100°=50°, ∵CM ⊥CN ,垂足为C ,∴∠BCN=90°-∠BCM=90°-50°=40°,∴∠NCE=∠BCE-∠BCN=80°-40°=40°.故答案为:40°.【点睛】此题主要考查平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补,属于基础题,注意细心掌握.20.6【分析】原式利用完全平方公式平方差公式化简去括号整理后将已知等式代入计算即可求出值【详解】解:∵x2+4x-4=0即x2+4x=4∴原式=3(x2-4x+4)-6(x2-1)=3x2-12x+12解析:6【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【详解】解:∵x 2+4x-4=0,即x 2+4x=4,∴原式=3(x 2-4x+4)-6(x 2-1)=3x 2-12x+12-6x 2+6=-3x 2-12x+18=-3(x 2+4x )+18=-12+18=6. 故答案为:6.【点睛】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.三、解答题21.(1)袋中红、黄、白三种颜色的球的个数分别是4个、4个、2个;(2)向袋中放入10个红球;(3)摸出一个球是白球的概率是0.1.【解析】【分析】(1)根据概率的性质可求出黄球的个数,再求出白球的个数,即可求解(2)设放入红球x 个,根据概率公式可列出方程进行求解;(3)根据概率公式即可求出摸出一个球是白球的概率【详解】(1)黄球个数:100.44⨯=(个),白球个数:()4232+÷=(个),红球个数:10424--=(个),即袋中红、黄、白三种颜色的球的个数分别是4个、4个、2个; (2)设放入红球x 个,则()4100.7x x +=+⨯,10x =,即向袋中放入10个红球;(3)()20.1 1010P==+摸出一个球是白球,即摸出一个球是白球的概率是0.1.【点睛】此题主要考查概率的应用,解题的关键是熟知简单事件的概率求解.22.(1)特征1:都是轴对称图形;特征2:阴影部分的面积都相等;(2)见解析;(3)见解析【分析】(1)应从对称方面,阴影部分的面积等方面入手思考;(2)应画出既是中心对称图形,又是轴对称图形,且面积为4的图形;【详解】解:(1)特征1:都是轴对称图形;特征2:阴影部分的面积都相等(其他特征只要正确即可)(2)如:以下几种均符合题意(答案不唯一)【点睛】此题主要考查了利用轴对称设计图案,解答本题需要我们熟练掌握轴对称的定义,难度一般.23.(1)甲、丙;(2)见详解【分析】(1)根据平行线的性质,由AB∥DE可得∠B=∠DEC,再加上条件∠A=∠D,只需要添加一个能得出对应边相等的条件,即可证明两个三角形全等,添加AC//DF不能证明△ABC≌△DEF;(2)添加AB=DE,再由条件AB∥DE可得∠B=∠DEC,然后再利用ASA判定△ABC≌△DEF即可.【详解】(1)解:∵AB//DE,∴∠B=∠DEC,又∵∠A=∠D,∴添加AB=DE,可得△ABC≌△DEF(ASA);添加BE=CF,可得BC=EF,可得△ABC≌△DEF (AAS)∴说法正确的是:甲、丙,故答案为:甲、丙;(2)选“甲”,理由如下:证明:∵AB∥DE,∴∠B =∠DEC ,在△ABC 和△DEF 中A DB DEF AB DE ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABC ≌△DEF (ASA ).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.24.(1)自变量是小圆的半径()x cm ,因变量是圆环面积()2y cm;(2)y =()2100xπ-;(3)19π 【分析】(1)根据自变量与因变量的定义解答即可;(2)根据圆环面积的计算方法求解即可;(3)把x =9代入(2)题的关系式中计算即得结果.【详解】解:(1)自变量是小圆的半径()x cm ,因变量是圆环面积()2y cm; (2)根据题意得:()22210100y x xπππ=⨯-⨯=-;(3)当9x =时,()1008119y ππ=⨯-=.【点睛】本题考查了用关系式表示的变量之间的关系,正确列出关系式是解题的关键.25.(1)//AB CD ,理由见解析;(2)见解析;(3)不发生变化,=45HPQ ∠︒【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,所以易证AB ∥CD ;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG ⊥PF ,故结合已知条件GH ⊥EG ,易证PF ∥GH ;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=12∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ 的大小不变,是定值45°.【详解】(1)如图1,∵1∠与2∠互补,∴12180∠+∠=︒,又∵1AEF ∠=∠,2CFE ∠=∠,∴180AEF CFE ∠+∠=︒,∴AB ∥CD ;(2)如图2,由(1)知,AB ∥CD ,∴180BEF EFD ∠+∠=︒,又∵BEF ∠与EFD ∠的角平分线交于点P , ∴()1902FEP EFP BEF EFD ∠+∠=∠+∠=︒, ∴90EPF ∠=︒,即EG PF ⊥,∵GH EG ⊥,∴PF ∥GH ;(3)HPQ ∠的大小不发生变化,理由如下:如图3,∵12∠=∠,∴322∠=∠,又∵GH EG ⊥,∴49039022∠=︒-∠=︒-∠,∴18049022EPK ∠=︒-∠=︒+∠,∵PQ 平分EPK ∠, ∴14522QPK EPK ∠=∠=︒+∠, ∴245HPQ QPK ∠=∠-∠=︒, ∴HPQ ∠的大小不发生变化,一直是45︒.【点睛】本题考查了平行线的判定与性质,角平分线的定义.正确的识别图形是解题的关键.解题过程中,注意“数形结合”数学思想的运用.26.(1)120;(2)2016;(3)2100【分析】(1)设(30-x )=m ,(x -20)=n ,利用完全平方公式变形计算;(2)设(2017-x )=c ,(2015-x )=d ,则(2017-x )2+(2015-x )2=c 2+d 2=4036,c -d =(2017-x )-(2015-x )=2,所以2cd =(c 2+d 2)-(c -d )2=4036-22=4032,可得cd =2016,即可解答;(3)根据正方形ABCD 的边长为x ,AE =10,CG =20,所以DE =(x -10),DG =x -20,得到(x -10)(x -20)=500,设(x -10)=a ,(x -20)=b ,从而得到ab =500,a -b =(x -10)-(x -20)=10,根据举例求出a 2+b 2,即可求出阴影部分的面积.【详解】解:(1)设(30-x )=m ,(x -20)=n ,则(30-x )(x -20)=mn =-10,m +n =(30-x )+(x -20)=10,∴(30-x )2+(x -20)2=m 2+n 2=(m +n )2-2mn =(-10)2-2×(-10)=120;(2)设(2017-x )=c ,(2015-x )=d ,则(2017-x )2+(2015-x )2=c 2+d 2=4036,c -d =(2017-x )-(2015-x )=2,∴2cd=(c2+d2)-(c-d)2=4036-22=4032,∴cd=2016,∴(2017-x)(2015-x)=cd=2016.(3)∵正方形ABCD的边长为x,AE=10,CG=20,∴DE=(x-10),DG=x-20,∴(x-10)(x-20)=500,设(x-10)=a,(x-20)=b,∴ab=500,a-b=(x-10)-(x-20)=10,∴a2+b2=(a-b)2+2ab=102+2×500=1100,∴阴影部分的面积为:a2+b2+2ab=1100+2×500=2100.【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式,进行转化运用.。
2022-2023学年浙教新版七年级下册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.下列各式是二元一次方程的是( )A.x2+y=0B.x=C.D.y+x2.下列算式中,结果一定等于a6的是( )A.a3+a2B.a3•a2C.a8﹣a2D.(a2)33.含有新冠病毒的气溶胶直径通常小于5微米,其病原体含量非常少,携带新冠病毒的气溶胶在空气中被健康人群直接吸入的概率较低.人们更应该注意那些随气溶胶沉降在物体表面的冠状病毒,做到勤消毒、勤洗手,防止接触后造成感染.5微米转换成国际单位“米”为单位是0.000005米,将数字0.000005写成科学记数法得到( )A.0.5×105B.5×106C.0.5×10﹣5D.5×10﹣64.有下列变形:①a(x+y)=ax+ay;②12x2﹣6x=6x(2x﹣1);③2mR+2mr=2m (R+r).其中是因式分解的有( )A.3个B.2个C.1个D.0个5.下列问题中,不适合用普查的是( )A.了解全班同学每周体育锻炼时间B.旅客上飞机安检C.学生会选干部D.了解全市中学生的新年红包6.如图,直线a∥b,一块含45°角的直角三角板的直角顶点恰好在直线a上,若∠1=30°,则∠2的度数是( )A.55°B.65°C.75°D.80°7.刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用10元.设刘刚买的两种贺卡分别为x张、y张,则下面的方程组正确的是( )A.B.C.D.8.若分式方程﹣=0有增根,则m的值是( )A.3B.2C.1D.﹣19.已知方程组的解满足x+y=2,则k的值为( )A.4B.﹣4C.2D.﹣210.当a=﹣1时,分式的值是( )A.2B.﹣2C.﹣4D.4二.填空题(共6小题,满分24分,每小题4分)11.当a 时,分式有意义.12.已知2x﹣y=﹣3,用含x的式子表示y,则 .13.78×73= .14.已知是方程组的解,则a+b= .15.如果(x+1)(x﹣2)=x2+mx+n,那么n m= .16.如图,图1,图2都是由8个一样的小长方形拼成的,且图2中的阴影部分(正方形)的面积为1.则小长方形的长为 .三.解答题(共8小题,满分66分)17.(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x2﹣12y2.18.先化简,再求值:(﹣1)÷,其中m=2.19.解方程(1)解分式方程:=﹣1;(2)解二元一次方程组.20.如图,在8×8的正方形网格中有△ABC,点A,B,C均在格点上.(1)画出点B到直线AC的最短路径BD;(2)过C点画出AB的平行线,交BD于点E;(3)将△ABC向左平移4格,再向下平移3格后得到△A1B1C1,画出△A1B1C1;(4)判断∠BAC和∠CED的数量关系 .21.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只能选一种),在全校范围内随机调查了部分学生,并将统计结果绘制了两幅不完整的统计图,请结合图中所给信息,解答下列问题:(1)本次调查问卷共调查了多少名学生,表示“其它”的扇形圆心角的度数是多少?(2)请你补充完整条形统计图;(3)如果该校有1000名学生,请估计该校最喜欢用“微信”进行沟通的学生约有多少名?22.如图,△ABC中,D是AC上一点,过D作DE∥BC交AB于E点,F是BC上一点,连接DF.若∠1=∠AED.(1)求证:DF∥AB.(2)若∠1=50°,DF平分∠CDE,求∠A的度数.23.某工厂生产某种型号的螺母和螺钉两种零件,每名工人平均每天生产的螺母比螺钉多800个,1个螺钉需要配2个螺母,生产50000个螺母和生产30000个螺钉所用的时间相同.(1)求每名工人平均每天生产螺母和螺钉各多少个?(2)若该车间有工人22名,如何分配使每天生产的螺钉和螺母刚好配套?24.如图,已知AM∥BN,点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)解答下列问题.①当∠A=50°时,∠ABN的度数是 .②∵AM∥BN,∴∠ACB=∠ .(2)当∠A=x°,求∠CBD的度数(用x的代数式表示).(3)当点P运动时,∠ADB与∠APB的度数之比是否随点P的运动而发生变化?若不变化,请求出这个比值,若变化,请写出变化规律.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A.该方程是二元二次方程,不符合二元一次方程的定义,不是二元一次方程,即A 选项不合题意;B.是分式方程,不符合二元一次方程的定义,不是二元一次方程,即B选项不合题意;C.符合二元一次方程的定义,是二元一次方程,即C选项符合题意;D.不是方程,即D选项不合题意.故选:C.2.解:A.a3与a2不能合并,故A不符合题意;B.a3•a2=a5,故B不符合题意;C.a8与a2不能合并,故C不符合题意;D.(a2)3=a6,故D符合题意;故选:D.3.解:将0.000005用科学记数法表示为5×10﹣6.故选:D.4.解:①a(x+y)=ax+ay,是整式的乘法,不是因式分解;②12x2﹣6x=6x(2x﹣1),是因式分解;③2mR+2mr=2m(R+r),是因式分解.其中是因式分解的有2个.故选:B.5.解:A、了解全班同学每周体育锻炼时间,调查范围小,适合普查;B、旅客上飞机安检是事关重大的调查,适合普查;C、学生会选干部,调查范围小,适合普查;D、了解全市中学生的新年红包,适合抽样调查;故选:D.6.解:如图,∵∠1=30°,∴∠3=∠1+45°=75°,∵直线a∥b,∴∠2=∠3=75°,故选:C.7.解:根据题意列方程组,得.故选:D.8.解:方程两边同时乘(x﹣2)得:m﹣1﹣x=0,∴x=m﹣1,∵方程有增根,∴x﹣2=0,∴x=2,∴m﹣1=2,∴m=3,故选:A.9.解:,①×2﹣②×3得:y=4﹣k,②×5﹣①×3得:x=2k﹣6,代入x+y=2中得:2k﹣6+4﹣k=2,解得:k=4,故选:A.10.解:当a=﹣1时,原式=,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:∵分式有意义,∴2a+1≠0,解得:a≠﹣.故答案为:a≠﹣.12.解:由2x﹣y=﹣3,解得:y=2x+3,故答案为:y=2x+313.解:78×73=78+3=711.故答案为:711.14.解:将代入得:,∴,∴a+b=﹣2,故答案为:﹣2.15.解:∵(x+1)(x﹣2)=x2﹣x﹣2,=x2+mx+n,∴m=﹣1,n=﹣2,∴n m=(﹣2)﹣1=﹣.故答案为:﹣.16.解:设小长方形的长为x,宽为y,依题意得:,解得:.故答案为:5.三.解答题(共8小题,满分66分)17.解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).18.解:(﹣1)÷====,当m=2时,原式==6.19.解:(1)方程两边都乘x﹣1,得2=﹣x﹣x+1,解得:x=﹣,检验:当x=﹣时,x﹣1≠0,所以x=﹣是原方程的解,即原方程的解是x=﹣;(2),①×3+②,得10x=20,解得:x=2,把x=2代入①,得4+y=3,解得:y=﹣1,所以方程组的解为.20.解:(1)如图,BD即为所求.(2)如图,直线CE即为所求.(3)如图,△A1B1C1即为所求.(4)∵CE∥AB,∴∠BAC=∠ECD,∵BD⊥AD,∴∠ADB=90°,∴∠DCE+∠DEC=90°,∴∠BAC+∠DEC=90°,即∠BAC和∠CED的数量关系为互余.故答案为:互余.21.解:(1)40÷20%=200(名),360°×=18°;答:本次调查问卷共调查了200名学生,表示“其它”的扇形圆心角的度数是18°;(2)短信的人数为:200×5%=10(名),微信人数为:200﹣40﹣10﹣60﹣10=80(名),补全条形统计图如图所示:(3)1000×=400(名),答:该校有1000名学生中,估计喜欢用“微信”进行沟通的学生有400名.22.解:(1)∵DE∥BC,∴∠B=∠AED,∵∠1=∠AED,∴∠1=∠B,∴DF∥AB.(2)∵DE∥BC,∴∠EDF=∠1=50°,∵DF平分∠CDE,∴∠EDC=2∠EDF=100°,∴∠A=∠EDC﹣∠AED=∠EDC﹣∠1=100°﹣50°=50°.23.解:(1)设每名工人平均每天生产螺母x个,螺钉(x﹣800)个,根据题意得:解得:x=2000当x=2000时,x(x﹣800)≠0,∴x﹣800=1200个,∴每名工人平均每天生产螺母2000个,螺钉1200个;(2)设x个工人生产螺钉,y个工人生产螺母,根据题意得:解得答:10个工人生产螺钉,12个工人生产螺母.24.解:(1)①∵AM∥BN,∴∠A+∠ABN=180°,∵∠A=50°,∴∠ABN=130°,故答案为:130°;②∵AM∥BN,∴∠ACB=∠CBN;故答案为:∠CBN;(2)∵AM∥BN,∴∠ABN+∠A=180°,∵∠A=x°,∴∠ABN=180°﹣x°,∴∠ABP+∠PBN=180°﹣x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°﹣x°,∴∠CBD=∠CBP+∠DBP=(180°﹣x°)=90°﹣x°;(3)不变,∠ADB:∠APB=1:2,理由如下:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=1:2.。
浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列代数运算正确的是()A.(x 3)2=x 5B.(2x)2=2x 2C.(x+1)2=x 2+1D.x 3•x 2=x 52、已知多项式x2+kx+ 是一个完全平方式,则k的值为()A.±1B.﹣1C.1D.3、下列各式计算正确的是()A. (x﹣y)2=x2﹣y2B. x3﹣x=x2C. (x2)3=x5D. x5÷x4=x4、下列运算正确的是()A. B. C. D.5、下列各式变形中,正确的是()A.x 2•x 3=x 6B.(x﹣1)(﹣1﹣x)=1﹣x 2C.(x 2﹣)÷x=x﹣1 D.6、如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为()A.120°B.100°C.60°D.20°7、对50个数据整理所得的频率分布表中,各组的频数之和与频率之和分别为()A.50,1B.50,50C.1,50D.1,18、要使式子成为一个完全平方式,则需添上( )A. B. C. D.9、如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A.60°B.33°C.30°D.23°10、已知分式(m,n为常数)满足下列表格中的信息:则下列结论中错误的是()x的取值﹣1 1 p q分式的值无意义1 0 ﹣1A.m=1B.n=8C.p=D.q=﹣111、下来运算中正确的是()A. B.()2= C. D.12、如图,在△ABC中,∠C=30°,∠ABC=100°,将△ABC绕点A顺时针旋转至△ADE(点B与点D对应),连结BD,当BD平分∠ABC时,∠BAE的大小为( )A.130°B.135°C.140°D.145°13、下列计算结果为a5的是()A.a 2+a 3B.a 2·a 3C.(a 3)2D.14、方程组的解满足方程x+y﹣a=0,那么a的值是()A.5B.-5C.3D.-315、为了解全州近5万名考生的数学成绩,教研部门从中抽取800名考生的数学成绩进行统计分析,下列说法正确的是()A.5万名考生是总体B.800名考生是总体的一个样本C.每位考生的数学成绩是个体D.800名考生是样本容量二、填空题(共10题,共计30分)16、若m- =3,则m2+ =________.17、若(x-1)x+1=1,则x=________.18、小明从市环境监测网随机查阅了若干天的空气质量数据作为样本进行统计,分别绘制了如图的条形统计图和扇形统计图,根据图中提供的信息,可知扇形统计图中表示空气质量为轻度污染的扇形的圆心角度数为________;19、如图,AB CD,AD平分∠BAE,∠D=25°,则∠AEC的度数为________.20、计算:________.21、当=________时,分式的值为0;22、用换元法解方程时,如果设,那么原方程可化为关于y的整式方程是________.23、如图,在平行四边形ABCD中,AC=12,BD=8,AD=a,那么a的取值范围是________。
期
末复习卷
一、选一选(每小题有4个选项,其中有且只有一个正确,请把正确选项的编码填入答题卷的相应空格内,
每小题3分,共30分)。
1.下列运算正确的是( )
A .a 2•(a 3)2=a 7
B .a 6÷a 2=a 3
C .(a-2)2
=a 2
-4 D .2)1(1)
2
1(01
=---+-π
2.如图2所示,在下列四组条件中,能判定AB ∥CD 的是 ( ) A .∠1=∠2 B .∠3=∠4 C .∠BAD +∠ABC =180° D .∠ABD =∠BDC
3. 如果把5x
x +y 中的x 与y 的值都扩大10倍,那么这个分式的值 ( )
A .不变
B .扩大为原来的50倍
C .扩大为原来的10倍
D .缩小为原来的1
10
4. 二元一次方程组{
3
253-=-=+y x y x 的解 ( )
A .{
1
2==x y B .{
1
2-==x y C .{
1
2=-=x y D .{
1
2-=-=x y
5. 分解因式b 2
(x -3)+b (3-x )的正确结果是 ( )
A .(x -3)(b 2
+b ) B .b (x -3)(b +1)
C .(x -3)(b 2
-b ) D .b (x -3)(b -1)
6. 若a 、b 是正数,a -b =1,ab =2,则a +b 等于( ) A .-3 B .3 C .±3 D .9
7. 已知(m -n )2=8,(m +n )2=2,则m 2+n 2
等于 ( ) A .10 B .6 C .5 D .3
8. 甲车行驶30千米和乙车行驶40千米所用的时间相同,已知乙车每小时比甲车多行驶15千米.设甲车的速度为x 千米/小时,依题意可列方程为 ( ) A.30
x
=40x -15 B.30x -15=40
x C.30
x
=
40x +15 D.30x +15=40
x
9. 计算22009
-22008
等于 ( )
A .1
B .2
C .22008
D .-22009
10. 已知x 2+3x +1=0,则x 4
+1x
4的值等于 ( )
A .7
B .47
C .11
D .9
二、填一填(请把正确答案填入相应横线上,每小题3分,共30分)。
11. 请写出方程2x +3y =14的一组正整数解______________________。
12. 当x =__________时,分式x 2-9
x -3
的值为零。
13. 若方程
22
1
21=+-+-x x m 有增根,则m 的值为 。
14. 某扇形统计在图中,一扇形的圆心角为36°,则该扇形代表的部分占总体的百分比为 。
15. 二次三项式x 2
-kx +9是一个完全平方式,则k 的值是__ ___。
16. 在y=kx+b 中,当x=-1时,y=0;当x=1时,y=5,则k=_____,b=______. 17. 若m nx x ++2
能分解成)5)(2(-+x x ,则m = ,
n = 。
18..对于非零的两个实数a 、b ,规定a ⊕b =1b -1
a
,若2⊕(2x -1)=1,
则x 的值为 。
19. 按如图19所示的方法排列黑色小正方形地砖,则第14个图案中黑色小
正方形地砖的块数是___ __。
20. 如图20,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,
则买5束鲜花和5个礼盒的总价为 元。
三、解答题(共5小题,21、22每题6分,23题8分,24、25每题10分,共40分)。
21.( 本题6分)
(1)[(m+3n)2-(m-3n)2
]÷(-3mn)
(2)若a +3b =0,求⎝ ⎛
⎭⎪⎫1-b a +2b ÷a 2
+2ab +b 2
a 2-4b
2
的值
22. (本题6分)
(1)因式分解:(1) a 3b 一ab 3 (2) y 2
1y 2y 22
++x x
图19
图20
23.( 本题8分) 下面提供某市楼市近期的两幅业务图:图(甲)所示为2012年6月至12月该市商品房平均成交价格的走势图(单位:万元/平方米);图(乙)所示为2012年12月该市商品房成交价格段比例分布图其中a 为每平方米商品房成交价格,单位:万元/平方米).
(1)根据图(甲),写出2012年6月至2012年12月该市商品房平均成交价格的最低价为 万元/平方米;
(2)根据图(乙),可知x = ;
(3)2012年12月从该市的四个不同地段中的每个地段的在售楼盘中随机抽出两个进行分析:共有可售商品房2400套,其中成交200套.请估计12月份在全市所有的60000套可售商品房中已成交的并且每平方米价格低于2万元的商品房的套数.
24. (本题10分)某公司生产一种蔬菜,在市场上直接销售,每吨利润为1000元,经粗加工后销售,每吨
利润可达4500元,经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收获这种蔬菜140吨,该公司的加工能力是:如果对蔬菜进行粗加工,•每天可加工16吨;如果进行精加工,每天可加
时间(月)
成交均价(万元/平方米)
1.95
2.172.392.612.83
3.05图(甲)
图(乙)
工6吨,但这两种加工方式不能同时进行,•受季节等条件限制,公司须用15天的时间将这批蔬菜全部销售或加工完毕,为此,•公司研制了三种可行方案:
方案一:将蔬菜全部进行粗加工.
方案二:尽可能多的对蔬菜进行精加工,没来得及加工的到市场直接销售.
方案三:将一部分粗加工,其余部分进行精加工,并恰好用15天完成.
你认为选择哪种方案获利最多?为什么?
25.(本题10分)用水清洗蔬菜上残留的农药,假设用x(x≥1)为单位量的水清洗一次以后,蔬菜上
残留的农药量与本次清洗前残留的农药量之比为
1
1x。
现有a(a≥2)单位量的水,可以一次清洗,也
可以把水平均分成两份后清洗两次,或可以把水分成12
,
33
a a不相等的两份后清洗两次,试问要使清洗后
蔬菜上残留的农药量较少,应选择哪种方案?请说明理由。
参考答案
一、选一选
1. D
2. D
3. A
4.A
5. D
6. B
7. C
8. C
9. C 10. B 二、填一填
11. 略 12. -3 13. 2 14. 10% 15. 6或-6 16. 2.5,2.5 17. -10,-3 18.
6
5
19. 365 20. 440 三、解答题
21.(1)-4(2)
2
5
2=+-b a b a 22.(1)ab(a+b)(a-b)(2)2
)12(2
1+x y
23. (1) 2.43 …2分 (2) 6 …2分
(3)
×60000=5000 …2分
5000×(6%+17%)=1150 (套)…2分
24. 方案一:630000元,方案二:725000元,方案三:810000元,所以方案三获利最多。
25. 应平均分成两份后清洗(理由略)。