数学模拟测试题p
- 格式:docx
- 大小:55.55 KB
- 文档页数:6
北师大版七年级上册期中预测题数学试题考试时间:120分钟满分150分班级:________________ 姓名:________________ 考号:________________一、单选题(本大题共10小题,总分40分)1.下列说法不正确的是()A.长方体是四棱柱B.八棱柱有16条棱C.五棱柱有7个面D.直棱柱的每个侧面都是长方形2.12025的相反数是()A.2025B.﹣2025C.12025D.−12025 3.下列各式:1,5t,nn5,4500−3600mm,9>2,3y+2=7,xx−yy xx+yy,其中代数式共有()个A.4B.5C.6D.7 4.对于算式(−525)×4可以转换为()A.(−5)×4−25×4B.(−5)×4+25×4 C.(−5)−25×4D.(−5)+25×45.如图,这是一个计算机的运算程序,若一开始输入x的值为−14,则输出y的值是()A.﹣14B.﹣13C.﹣2D.46.有以下四个结论:①绝对值等于本身的数只有正数;②相反数等于本身的数是0;③倒数等于本身的数只有1;④平方等于本身的数是0.其中正确结论的个数是()A.1B.2C.3D.47.下列运算正确的是()A.6a﹣3a=3B.3(a﹣b)=3a﹣bC.8ab﹣ab=7ab D.2+3b=6b8.如图,有理数a、b在数轴上分别对应点A、B,下列各式正确的是()A.a+b<0B.a﹣b<0C.a•b>0D.aa bb>09.定义运算“*”如下:对任意有理数x,y和z都有x*x=0,x*(y*z)=(x*y)+z,这里“+”号表示数的加法,则2023*2022的值是()A.1B.2C.3D.410.小明设计了一台数值转换机,只要依次输入整数x1,x2,则输出的结果为x1﹣x2.比如小明依次输入1,2,则输出的结果是1﹣2=﹣1,再次输入3,则输出的结果为﹣1﹣3=﹣4,此后每输入一个整数都是与前次显示的结果进行求差的运算.下列说法:①若依次输入﹣1,﹣2,﹣3,…,﹣10,则最后输出的结果是55;②若将﹣1,2,﹣3,4,﹣5这5个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是11,最小值是﹣7;③x,5,y,全部输入完毕后显示的最后结果设为m,若m的最小值为﹣11,那么m的最大值是﹣1.其中正确的个数是()A.0B.1C.2D.3二、填空题(本大题共5小题,总分20分)11.根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创进了1新的春节档票房纪录,其中数据80.16亿用科学记数法表示为.12.在桌上摆有一些大小相同的正方体木块,其从正面和从上面看到的形状图如图所示,则摆出这样的图形至少需要块木块,最多需要块正方体木块.13.已知a,b互为相反数,m,n互为倒数,则式子aa+bb2024−2024mmmm的值为.14.若a、b、c都是有理数,a+b+c=0且abc<0,则aa+bb|cc|+bb+cc|aa|+aa+cc|bb|=.15.如图所示,各正方形的四个数之间都有相同的规律,根据此规律,“◆”位置的数是.三、解答题(本大题共10小题,总分90分)16.把下列各数按要求分类.﹣4,10%、−112、﹣2、101,2、﹣1.5、0、23、+0.3、7.负整数集合:{…};正分数集合:{…};负分数集合:{…};整数集合:{…};有理数集合:{…}.17.若干个完全相同的小正方体堆成一个几何体,如图是从上面看到的这个几何体的形状,小正方形中的数字表示在该位置的小正方体的个数.请在网格中画出从正面和左面看到的几何体的形状图.18.在数轴上表示下列各数:−|−412|,0,1.5,﹣3,﹣(﹣5).并用“<“号把这些数连接起来.19.计算:(1)217−(+223)+(−517)−513(2)112×57−(−57)×212+(−12)÷12520.先化简,再求值.(1)2(ab2﹣2a2b)﹣3(ab2﹣a2b)+(2ab2﹣2a2b),其中a=2,b=1;(2)已知:A=4x2﹣4xy+y2,B=x2+xy﹣5y2,求A﹣2B的值.21.数学课上,老师布置了这样一道题:计算:(−112)÷(23−14).小明的方法是:原式=(−112)÷23+(−112)÷(−14)=(−112)×32+(−112)×(−4)=(−18)+13=524小亮的方法是:原式的倒数=(23−14)÷(−112)=(23−14)×(−12)=(﹣8)+3=﹣5所以(−112)÷(23−14)=−15(1)两位同学的方法中错误的是,错误的原因是;(2)请你仿照上面正确的方法计算:(−124)÷(23−16−38).22.如图是一个“数值转换机”(箭头是指数进入转换机的路径,方框是对进入的数进行转换的转换机).(1)当小亮输入1,3这两个数时,则两次输出的结果依次为,.(2)当小亮输入数15时,求出输出的结果.(3)当小亮输入数18时,则输出结果为.(4)有一次,小亮操作的时候,输出结果是2,聪明的你判断一下,小亮输入的正整数可能是()A.2022 B.2023 C.202423.某校高度重视学生的体育健康状况,打算在某商店采购一批篮球和跳绳,已知篮球每个定价120元,跳绳每条定价20元.该商店给学校提供以下两种优惠方案:方案①:篮球和跳绳都按定价的90%付款;方案②:买一个篮球送一条跳绳.现学校要购买篮球50个,跳绳x(x>50)条.(1)按方案①购买篮球和跳绳共需付款元;按方案②购买篮球和跳绳共需付款元.(均用含x的最简代数式表示)(2)当x=100时,通过计算说明此时按哪种方案购买较合算.(3)若两种优惠方案可同时使用,当x=100时,请你给出更省钱的购买方案,并说明理由.24.出租车司机小李某天下午的劳动全是在东西走向的裕华路上进行的,他从艺术中心出发如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+10,﹣15,﹣2,+5,﹣1,﹣3,﹣2,+12,+4,﹣5,+6(1)小李这天下午离开艺术中心的最远距离是千米,此时他相对于艺术中心的位置是;(2)小李下午将最后一名乘客送抵目的地时,他是否回到了艺术中心?请说明理由;(3)若汽车耗油量为0.41升/千米,这天下午小李共耗油多少升?25.阅读材料:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离可以表示为|AB|=|a﹣b|.回答下列问题:(1)数轴上点P代表的数是x,数轴上表示7的点到点P之间的距离是(用含x的式子表示):|x+5|可表示为点P到表示数的距离.(2)若|x﹣2|=6,则x=;(3)代数式|x﹣2|+|x+6|的最小值是,代数式|x+3|+|x+6|+|x﹣3|的最小值是.(4)若(|x﹣1|+|x﹣3|+|x﹣7|)×(|y+2|+|y﹣1|+|y﹣3|+|y﹣5|)=54,则3x﹣4y的最大值是.参考答案一、单选题(本大题共10小题,总分40.0分)1-5.BDBAB.6-10.ACBAB.二、填空题(本大题共5小题,总分20分)11.8.016×109.12.7,8.13.﹣2024.14.﹣1.15.158.三、解答题(本大题共10小题,总分90分)16.解:负整数集合:{﹣4,﹣2,…};正分数集合:{10%,2233,+0.3,…};负分数集合:{−111122,﹣1.5,…};整数集合:{﹣4,﹣2,101,2,0,7,…};有理数集合:{﹣4,10%,−111122,﹣2,101,2,﹣1.5,0,2233,+0.3,7,…}.17.解:该几何体的主视图和左视图如下.18.解:如图,在数轴上表示各数如下:从小到大排列:−|−441122|<−33<00<11.55<−(−55).19.解:(1)221177−(+222233)+(−551177)−551133=21177−551177+(﹣22233−551133)=﹣3+(﹣8)=﹣11;(2)111122×5577−(−5577)×221122+(−1122)÷112255=3322×5577+5577×5522+(−1122)×5577=5577×(3322+5522−1122)=5577×7722=5522.20.解:(1)2(ab2﹣2a2b)﹣3(ab2﹣a2b)+(2ab2﹣2a2b)=2ab2﹣4a2b﹣3ab2+3a2b+2ab2﹣2a2b=2ab2+2ab2﹣3ab2﹣4a2b﹣2a2b+3a2b=ab2﹣3a2b,当a=2,b=1时,原式=2×12﹣3×22×1=2×1﹣3×4×1=2﹣12=﹣10;(2)A﹣2B=(4x2﹣4xy+y2)﹣2(x2+xy﹣5y2)=4x2﹣4xy+y2﹣2x2﹣2xy+10y2=4x2﹣2x2﹣4xy﹣2xy+10y2+y2=2x2﹣6xy+11y2.21.解:(1)∵除法没有分配律,∴小明的方法是错误的,故答案为:小明的方法,除法没有分配律;(2)∵(2233−1166−3388)÷(−112244)=(2233−1166−3388)×(−2244)=2233×(−2244)−1166×(−2244)−3388×(−2244)=﹣16+4+9=﹣12+9=﹣3.∴(−112244)÷(2233−1166−3388)=−1133.22.解:(1)输入1时,∵1<2,1的相反数为﹣1,﹣1的绝对值为1,∴输出的结果为1;输入3时,∵3>2,3+(﹣5)=﹣2,﹣2的相反数是2,2的倒数是1122,∴输出的结果为1122;故答案为:1,1122;(2)当输入15时,∵15>2,15+(﹣5)×3=0,0的相反数是0,0的绝对值是0,∴输出的结果是0;(3)当输入18时,∵18>2,18+(﹣5)×4=﹣2,﹣2的相反数是2,2的倒数是1122,∴输出的结果是1122.故答案为:1122;(4)按照倒数计算输出的结果不能是2,当按照绝对值计算输出的结果是2时,输入的数是2,根据题意将这两个数扩大,即再加上5的倍数,5×404=2020,所以符合题意的数是2020+2=2022.故选:A.23.解:(1)∵方案①:篮球和跳绳都按定价的90%付款,∴购买篮球50个,跳绳x(x>50)条付款:50×120×90%+20x×90%=(5400+18x)元;∵方案②:买一个篮球送一条跳绳,∴购买篮球50个,跳绳x(x>50)条付款:50×120+(x﹣50)×20=(5000+20x)元;故答案为:(5400+18x)(5000+20x);(2)当x=100时,按方案①购买需付款5400+18×100=7200(元),按方案②购买需付款5000+20×100=7000(元).∵7200>7000,∴选择方案②购买较合算;(3)购买方案:先按方案②购买50个篮球,再按方案①购买50条跳绳.理由:若按上述方案购买需付款50×120+20×50×90%=6900(元).∵6900<7000<7200,∴按照上述方案购买更省钱.(本小题答案不唯一)24.解:(1)第一次离开艺术中心10千米,第二次离开艺术中心|10+(﹣15)|=|﹣5|=5(千米),第三次离开艺术中心|﹣5﹣2|=|﹣7|=7(千米),第四次离开艺术中心|﹣7+5|=|﹣2|=2(千米),第五次离开艺术中心|﹣2﹣1|=|﹣3|=3(千米),第六次离开艺术中心|﹣3﹣3|=|﹣6|=6(千米),第七次离开艺术中心|﹣6﹣2|=|﹣8|=8(千米),第八次离开艺术中心|﹣8+12|=|4|=4(千米),第九次离开艺术中心|4+4|=|8|=8(千米),第十次离开艺术中心|﹣8+5|=|﹣3|=3(千米),第十一次离开艺术中心|3+6|=|9|=9(千米),∴小李这天下午离开艺术中心的最远距离是10千米,此时他在艺术中心的东边;故答案为:10;他在艺术中心的东边.(2)10﹣15﹣2+5﹣1﹣3﹣2+12+4﹣5+6=9(千米),答:小李下午将最后一名乘客送抵目的地时,他没有回到了艺术中心,在艺术中心东边9千米处.(3)(10+15+2+5+1+3+2+12+4+5+6)×0.41=26.65(升),答:这天下午小李共耗油26.65升.25.解:(1)∵点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离可以表示为|AB|=|a﹣b|.∴数轴上表示7的点到点P之间的距离是|x﹣7|,|x+5|可表示为点P到表示数﹣5的距离;故答案为:|x﹣7|,﹣5;(2)|x﹣2|=6,∴x=2+6=8或x=2﹣6=﹣4;故答案为:﹣4或8;(3)∵|x﹣2|+|x+6|表示数x分别与数﹣6,2之间的距离之和,∴当x在﹣6和2之间时,代数式|x﹣2|+|x+6|的值最小为2﹣(﹣6)=8;同理:当x=﹣3时,代数式|x+3|+|x+6|+|x﹣3|的值最小为:3﹣(﹣6)=9;故答案为:8,9;(4)同(3)可知:当x=3时,|x﹣1|+|x﹣3|+|x﹣7|的值最小为7﹣1=6,当y=1或y=3时,|y+2|+|y﹣1|+|y﹣3|+|y﹣5|的值最小为9,∵(|x﹣1|+|x﹣3|+|x﹣7|)×(|y+2|+|y﹣1|+|y﹣3|+|y﹣5|)=54,∴|x﹣1|+|x﹣3|+|x﹣7|=6,|y+2|+|y﹣1|+|y﹣3|+|y﹣5|=9,∴x=3,y=1或y=3,∴3x﹣4y=3×3﹣4×1=5或3x﹣4y=3×3﹣4×3=﹣3,∴3x﹣4y的最大值是5。
2024年HGT 第一次模拟测试数学本试卷共4页,22小题,满分150分.考试时间120分钟一、单项选择题:共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}{}2R 240,N 10A x x x B x x +=∈--<=∈<∣∣,则A B = ()A.{}1 B.{}1,2 C.{}1,2,3 D.{}1,2,3,42.已知复数z 满足2i i 4z z -=+,则z =()A.3B.C.4D.103.已知等差数列{}n a 的前n 项和为n S ,若3612,33a a ==,则17S =()A.51B.34C.17D.14.已知()21:ln 10,:0,x p a q x a x+->∃>≤,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知抛物线2:4C x y =的焦点为,F A 是抛物线C 在第一象限部分上一点,若4AF =,则抛物线C 在点A 处的切线方程为()A.30y --= B.210x y --=C.10x y --= D.20y --=6.已知1225log 5,log 2,e a b c ===,则()A.c a b <<B.a c b <<C.a b c<< D.b c a<<7.已知函数()][1sin ,2,11,2f x x x x ⎛⎫⎡⎤=-∈--⋃ ⎪⎣⎦⎝⎭,则下列结论中错误的是()A.()f x 是奇函数B.max ()1f x =C.()f x 在[]2,1--上递增D.()f x 在[]1,2上递增8.木桶效应,也可称为短板效应,是说一只水桶能装多少水取决于它最短的那块木板.如果一只桶的木板中有一块不齐或者某块木板有破洞,这只桶就无法盛满水,此时我们可以倾斜木桶,设法让桶装水更多.如图,棱长为2的正方体容器,在顶点1C 和棱1AA 的中点M 处各有一个小洞(小洞面积忽略不计),为了保持平衡,以BD 为轴转动正方体,则用此容器装水,最多能装水的体积V =()A.4B.163C.6D.203二、多项选择题:共4小题,每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知空间中两条不同的直线,m n 和两个不同的平面,αβ,则下列说法正确的是()A.若m,n m α⊂,则n αB.若α ,m βα⊂,则m βC .若,m n ββ⊥⊂,则m n⊥D .若,n αββ⊥⊂,则n α⊥10.已知圆22:4O x y +=与直线:l x my =+交于,A B 两点,设OAB 的面积为()S m ,则下列说法正确的是()A.()S m 有最大值2B.()S m 无最小值C.若12m m ≠,则()()12S m S m ≠D.若()()12S m S m ≠,则12m m ≠11.某环保局对辖区内甲、乙两个地区的环境治理情况进行检查督导,若连续10天,每天空气质量指数(单位:3μg/m )不超过100,则认为该地区环境治理达标,否则认为该地区环境治理不达标.已知甲乙两地区连续10天检查所得数据特征是:甲地区平均数为80,方差为40,乙地区平均数为70,方差为90.则下列推断一定正确的是()A.甲乙两地区这10天检查所得共20个数据的平均数是75B.甲乙两地区这10天检查所得共20个数据的方差是65C.甲地区环境治理达标D.乙地区环境治理达标12.已知直线1l 是曲线()ln f x x =上任一点()11,A x y 处的切线,直线2l 是曲线()e xg x =上点()11,B y x 处的切线,则下列结论中正确的是()A.当111+=x y 时,1l 2lB.存在1x ,使得12l l ⊥C.若1l 与2l 交于点C 时,且三角形ABC 为等边三角形,则12x =+D.若1l 与曲线()g x 相切,切点为()22,C x y ,则121x y =三、填空题:共4小题,每小题5分,共20分.13.已知向量,a b 满足(2,1,a b == ,且1a b ⋅=- ,则向量,a b 夹角的余弦值为__________.14.()6(2)1x y x --的展开式中43x y 的系数是__________.15.“南昌之星”摩天轮半径为80米,建成时为世界第一高摩天轮,成为南昌地标建筑之一.已知摩天轮转一圈的时间为30分钟,甲乙两人相差10分钟坐上摩天轮,那么在摩天轮上,他们离地面高度差的绝对值的取值范围是__________.16.用平面截圆锥面,可以截出椭圆、双曲线、抛物线,那它们是不是符合圆锥曲线的定义呢?比利时数学家旦德林用一个双球模型给出了证明.如图1,在一个圆锥中放入两个球,使得它们都与圆锥面相切,一个平面过圆锥母线上的点P 且与两个球都相切,切点分别记为12,F F .这个平面截圆锥面得到交线,C M 是C 上任意一点,过点M 的母线与两个球分别相切于点,G H ,因此有12MF MF MG MH GH +=+=,而GH 是图中两个圆锥母线长的差,是一个定值,因此曲线C 是一个椭圆.如图2,两个对顶圆锥中,各有一个球,这两个球的半径相等且与圆锥面相切,已知这两个圆锥的母线与轴夹角的正切值为43,球的半径为4,平面α与圆锥的轴平行,且与这两个球相切于,A B 两点,记平面α与圆锥侧面相交所得曲线为C ,则曲线C 的离心率为__________.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.18.对于各项均不为零的数列{}n c ,我们定义:数列n k n c c +⎧⎫⎨⎬⎩⎭为数列{}n c 的“k -比分数列”.已知数列{}{},n n a b 满足111a b ==,且{}n a 的“1-比分数列”与{}n b 的“2-比分数列”是同一个数列.(1)若{}n b 是公比为2的等比数列,求数列{}n a 的前n 项和n S ;(2)若{}n b 是公差为2的等差数列,求n a .19.如图,两块直角三角形模具,斜边靠在一起,其中公共斜边10AC =,ππ,34BAC DAC ∠∠==,BD 交AC 于点E.(1)求2BD ;(2)求AE .20.甲公司现有资金200万元,考虑一项投资计划,假定影响投资收益的唯一因素是投资期间的经济形势,若投资期间经济形势好,投资有25%的收益率,若投资期间经济形势不好,投资有10%的损益率;如果不执行该投资计划,损失为1万元.现有两个方案,方案一:执行投资计划;方案二:聘请投资咨询公司乙分析投资期间的经济形势,聘请费用为5000元,若投资咨询公司乙预测投资期间经济形势好,则执行投资计划;若投资咨询公司乙预测投资期间经济形势不好,则不执行该计划.根据以往的资料表明,投资咨询公司乙预测不一定正确,投资期间经济形势好,咨询公司乙预测经济形势好的概率是0.8;投资期间经济形势不好,咨询公司乙预测经济形势不好的概率是0.7.假设根据权威资料可以确定,投资期间经济形势好的概率是40%,经济形势不好的概率是60%.(1)求投资咨询公司乙预测投资期间经济形势好的概率;(2)根据获得利润的期望值的大小,甲公司应该执行哪个方案?说明理由.21.如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,π3ABC ∠=,已知E 为棱AD 的中点,P 在底面的投影H 为线段EC 的中点,M 是棱PC 上一点.(1)若2CM MP =,求证://PE 平面MBD ;(2)若,PB EM PC EC ⊥=,确定点M 的位置,并求二面角B EM C --的余弦值.22.已知椭圆2222:1(0)x y E a b a b +=>>的离心率为32,左右两顶点分别为12,A A ,过点()1,0C 作斜率为()110k k ≠的动直线与椭圆E 相交于,M N 两点.当11k =时,点1A 到直线MN 的距离为322.(1)求椭圆E 的标准方程;(2)设点M 关于原点的对称点为P ,设直线1A P 与直线2A N 相交于点Q ,设直线OQ 的斜率为2k ,试探究21k k 是否为定值,若为定值,求出定值并说明理由.2024年HGT 第一次模拟测试数学本试卷共4页,22小题,满分150分.考试时间120分钟一、单项选择题:共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}{}2R 240,N 10A x x x B x x +=∈--<=∈<∣∣,则A B = ()A.{}1 B.{}1,2 C.{}1,2,3 D.{}1,2,3,4【答案】C 【解析】【分析】先求出集合,A B ,再由交集的定义求解即可.【详解】因为2240x x --<,所以11x -<<+所以{{}R11,1,2,3,4,5,6,7,8,9A x x B =∈-<<+=∣,所以A B = {}1,2,3.故选:C .2.已知复数z 满足2i i 4z z -=+,则z =()A.3 B.C.4D.10【答案】B 【解析】【分析】先由复数的乘法和除法运算化简复数,再由复数的模长公式求解即可.【详解】由2i i 4z z -=+可得:i 2i 4z z -=+,所以()()()()()()22i 41i 2i 21i 2i 4i i 22i 3i 11i 1i 1i 2z +++++====+++=+--+,所以z ==故选:B .3.已知等差数列{}n a 的前n 项和为n S ,若3612,33a a ==,则17S =()A.51B.34C.17D.1【答案】C 【解析】【分析】由题意列方程组可求出1a ,d ,再由等差数列的前n 项和公式求解即可.【详解】设等差数列{}n a 的首项为1a ,公差为d ,所以由3612,33a a ==可得:11123253a d a d ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:11919a d ⎧=⎪⎪⎨⎪=⎪⎩,所以17117161171611717172929S a d ⨯⨯=+=⨯+⨯=.故选:C .4.已知()21:ln 10,:0,x p a q x a x+->∃>≤,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分条件和必要条件的定义,结合对数函数定义域和基本不等式求最值,利用集合包含关系可得.【详解】由()ln 10a ->,得10211a a a ->⎧⇒>⎨->⎩,设(){}{}:ln 102p A a a a a =->=>,由210,x x a x +∃>≤的否定为210,x x a x+∀>>,令()2112x f x x x x +==+≥,当且仅当1x x =时,又0x >,即1x =等号成立,若210,x x a x+∀>>,则2a <,若210,x x a x+∃>≤,则2a ≥,设{}:2q B a =≥,因为{}{}22a a a ≥⊇>,所以p q ⇒且q p ⇒/,所以p 是q 的充分不必要条件故选:A5.已知抛物线2:4C x y =的焦点为,F A 是抛物线C 在第一象限部分上一点,若4AF =,则抛物线C 在点A 处的切线方程为()A.30y --= B.210x y --=C.10x y --=D.20y --=【答案】A 【解析】【分析】设()11,A x y ,根据抛物线的定义求得1x =,13y =,再根据导函数的几何意义求出切线斜率,由点斜式写出方程即可【详解】设()11,A x y ,由24x y =,得2p =,所以抛物线的准线方程1y =-,由抛物线的定义可得114AF y =+=,得13y =代入24x y =,得1x =±又A 是抛物线C 在第一象限部分上一点,所以1x =由24x y =,得214y x =,所以12y x '=,所以抛物线C 在点A 处的切线方程斜率为112x x y ===⨯'=所以抛物线C 在点A 处的切线方程为3y x -=-30y --=,故选:A6.已知1225log 5,log 2,e a b c ===,则()A.c a b <<B.a c b <<C.a b c <<D.b c a<<【答案】D 【解析】【分析】由对数函数和指数函数的性质可得2,1,a b ><12c <<,即可得出答案.【详解】因为2255log 5log 42,log 2log 51,a b =>==<=121e 2c <==<=,所以b c a <<.故选:D .7.已知函数()][1sin ,2,11,2f x x x x ⎛⎫⎡⎤=-∈--⋃ ⎪⎣⎦⎝⎭,则下列结论中错误的是()A.()f x 是奇函数B.max ()1f x =C.()f x 在[]2,1--上递增 D.()f x 在[]1,2上递增【答案】B 【解析】【分析】根据奇函数的定义可判A ;根据复合函数的单调性并求出最值判断B 、C 、D 【详解】因为][2,11,2x ⎡⎤∈--⋃⎣⎦,所以定义域关于原点对称,且()()111sin sin sin f x x x x f x x x x ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=--=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以()f x 是奇函数;故A 对;令[]1,1,2u x x x=-∈,所以()h x 在[]1,2单调递增,所以13π022x x ≤-≤≤,即3π022u ≤≤≤,又sin y u =在π0,2⎡⎤⎢⎥⎣⎦单调递增,所以()1sin f x x x ⎛⎫=-⎪⎝⎭在[]1,2单调递增,故D 对;因为()f x 是奇函数,所以()f x 在[]2,1--上递增,故C 对,综上,()()110f f -=-=,则()max 13()2sin 2sin 122f x f ⎛⎫==-=≠ ⎪⎝⎭,故B 错;故选:B8.木桶效应,也可称为短板效应,是说一只水桶能装多少水取决于它最短的那块木板.如果一只桶的木板中有一块不齐或者某块木板有破洞,这只桶就无法盛满水,此时我们可以倾斜木桶,设法让桶装水更多.如图,棱长为2的正方体容器,在顶点1C 和棱1AA 的中点M 处各有一个小洞(小洞面积忽略不计),为了保持平衡,以BD 为轴转动正方体,则用此容器装水,最多能装水的体积V =()A.4B.163C.6D.203【答案】C 【解析】【分析】作出辅助线,得到1PMQC 为菱形,从而得到多能装入的体积为长方体MTRX ABCD -的体积加上长方体1111MTRX A B C D -的体积的一半,结合正方体的体积求出答案.【详解】棱长为2的正方体的体积为328=,在11,BB DD 上分别取,P Q ,使得1112B P D Q ==,又M 为棱1AA 的中点,故由勾股定理得112C P MQ MP C Q =====,故四边形1PMQC 为菱形,故1,,,P M Q C 四点共面,取111,,BB CC DD 的中点,,T R X ,连接,,,MT TR RX XM ,则平面1PMQC 将长方体1111MTRX A B C D -的体积平分,故以BD 为轴转动正方体,则用此容器装水,则最多能装入的体积为长方体MTRX ABCD -的体积加上长方体1111MTRX A B C D -的体积的一半,故最多能装水的体积1111633844ABCD A B C D V V -==⨯=.故选:C二、多项选择题:共4小题,每题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知空间中两条不同的直线,m n 和两个不同的平面,αβ,则下列说法正确的是()A.若m,n m α⊂,则n αB.若α ,m βα⊂,则m βC.若,m n ββ⊥⊂,则m n ⊥D.若,n αββ⊥⊂,则n α⊥【答案】BC 【解析】【分析】根据线面平行的判定判断选项A ;根据面面平行的性质以及线面平行的定义判断选项B ;根据线面垂直的定义判断选项C ;根据面面垂直性质判断选项D 【详解】若m,n m α⊂,则n α或n ⊂α,故A 错;若α ,m βα⊂,则m 与平面β无交点,故m β,故B 对;若,m n ββ⊥⊂,则m 垂直于β内的任一条直线,所以m n ⊥,故C 对;若,n αββ⊥⊂,则n 与α可能平行或相交或在α内,故D 错;故选:BC10.已知圆22:4O x y +=与直线:l x my =+交于,A B 两点,设OAB 的面积为()S m ,则下列说法正确的是()A.()S m 有最大值2B.()S m 无最小值C.若12m m ≠,则()()12S m S m ≠D.若()()12S m S m ≠,则12m m ≠【答案】ABD 【解析】【分析】设出点线距离,求出面积取值范围判断AB ,利用圆的对称性判断C ,将D 转化为逆否命题再判断即可.【详解】由题意得:l x my =+)P ,如图,取AB 中点为D ,故()12OAB S S m AB OD OD ==⨯⨯== ,设OD 为d ,故OAB S == ,易知OD OP ≤,即0d <≤,故203d <≤,令(]20,3t d =∈,而OAB S =由二次函数性质得当2t =时,OAB S 取得最大值,此时()2OAB S m S == ,故A 正确,由二次函数性质得,()S m 在(]0,2单调递增,在(]2,3单调递减,易知当3t =时,()S m =,当0t →时,()0S m →,故()(]0,2S m ∈,则B 正确对于C ,作A 关于x 轴的对称点A ',B 关于x 轴的对称点B ',连接OA ',OB ',由圆的对称性知OAB OA B S S ''= ,故不论m 取何值,必有()()12S m S m =,故C 错误,易知D 的逆否命题为若12m m =,则()()12S m S m =,故欲判断D 的真假性,判断其逆否命题真假性即可,显然当12m m =时,则()()12S m S m =,故D 正确,故选:ABD11.某环保局对辖区内甲、乙两个地区的环境治理情况进行检查督导,若连续10天,每天空气质量指数(单位:3μg/m )不超过100,则认为该地区环境治理达标,否则认为该地区环境治理不达标.已知甲乙两地区连续10天检查所得数据特征是:甲地区平均数为80,方差为40,乙地区平均数为70,方差为90.则下列推断一定正确的是()A.甲乙两地区这10天检查所得共20个数据的平均数是75B.甲乙两地区这10天检查所得共20个数据的方差是65C.甲地区环境治理达标D.乙地区环境治理达标【答案】ACD 【解析】【分析】根据条件分别求出平均数和方差判断选项A 、B ;根据条件判断甲乙地区的每天空气质量指数判断选项C 、D【详解】甲地区平均数为80,乙地区平均数为70,则甲乙两地区这10天检查所得共20个数据的平均数是801070107520⨯+⨯=,故A 对;设甲乙两地区连续10天检查所得数据分别为,1,2,3,,10i x i = 和,1,2,3,,10i y i = ,所以()102211804010i i S x ==-=∑甲,得()102180400ii x =-=∑,()102211709010i i S x ==-=∑乙,得()102170900i i x =-=∑,由()1010111111180,10801010800108001080002020202020i i i i x x x ===∴-=⨯-⨯⨯=⨯⨯-⨯⨯=⎡⎤⎣⎦∑∑,由()1010111111170,10701010700107001070002020202020i i i i y y y ===∴-=⨯-⨯⨯=⨯⨯-⨯⨯=⎡⎤⎣⎦∑∑,甲乙两地区这10天检查所得共20个数据的方差是()()102211758020i i i S x y =⎡⎤=-+-⎣⎦∑()()101022111175752020i i i i x y ===-+-∑∑()()10102211118057052020i i i i x y ===-++--∑∑()()()()101022111180108025701070252020i i i i i i x x y y ==⎡⎤⎡⎤=-+-++---+⎣⎦⎣⎦∑∑()()()()1010101022111111111180108010257010701025202020202020i i i i i i i i x x y y =====-+-+⨯⨯+---+⨯⨯⎡⎤⎡⎤⎣⎦⎣⎦∑∑∑∑1140090025902020=⨯+⨯+=,甲地区平均数为80,方差为40,如果这10天中有一天空气质量指数大于100,那么它的方差就一定大于()21100804010⨯-=,所以能确定甲地区连续10天,每天空气质量指数不超过100,所以甲地区环境治理达标,故C 对;乙地区平均数为70,方差为90,如果这10天中有一天空气质量指数大于100,那么它的方差就一定大于()21100709010⨯-=,所以能确定乙地区连续10天,每天空气质量指数不超过100,所以乙地区环境治理达标,故选:ACD12.已知直线1l 是曲线()ln f x x =上任一点()11,A x y 处的切线,直线2l 是曲线()e xg x =上点()11,B y x 处的切线,则下列结论中正确的是()A.当111+=x y 时,1l 2lB.存在1x ,使得12l l ⊥C.若1l 与2l 交于点C 时,且三角形ABC 为等边三角形,则123x =+D.若1l 与曲线()g x 相切,切点为()22,C x y ,则121x y =【答案】ACD 【解析】【分析】根据导数求出两直线斜率可判断选项A 、B ;根据斜率与倾斜角的关系及和差角公式求出123x =+,判断选项C ;利用导数的几何意义求出斜率判断选项D 【详解】由题意得11ln y x =,由111+=x y ,得11ln 1x x +=,如图,可知ln y x x =+与1y =交点是()1,1可得11x =,11ln ln10y x ===,由()ln f x x =,得()1f x x'=,所以直线1l 的斜率为()()111f x f ==',由()e xg x =,得()e xg x '=,所以直线2l 的斜率为()()()0110e 1g y g f x '==='=,即直线1l 的斜率等于直线2l 的斜率,所以12l l ∥,故A 对;因为()()1112ln 111111111e e 11y x l l k kf xg y x x x x ''⋅=⋅=⋅=⋅=⋅=≠-,所以不存在1x ,使得12l l ⊥,故B错;如图,设21,l l 的倾斜角分别为,αβ,因为三角形ABC 为等边三角形,所以π3βα=+,又()()11ln 11111tan ,tan e e y x f x g y x x αβ======'',所以1111πtan 3tan tan 131tan 1x x x αβαα++⎛⎫=+=== ⎪-⎝⎭-,整理得21110x --=,所以12x =±,因为()11,A x y 在曲线()ln f x x =上,所以1>0x,所以12x =+,故C 对;若1l 与曲线()g x 相切,切点为()22,C x y ,则()()211211e x l kf xg x x '==='=,即211e x x =,又()22,C x y 在()e x g x =上,所以22e x y =,所以211y x =,即121x y =,故D 对;故选:ACD【点睛】关键点点睛:根据导数的几何意义求出直线斜率,结合两直线平行和垂直的斜率关系进行判断各项.三、填空题:共4小题,每小题5分,共20分.13.已知向量,a b满足(2,1,a b == ,且1a b ⋅=- ,则向量,a b 夹角的余弦值为__________.【答案】16-【解析】【分析】由向量的夹角和模长公式求解即可.【详解】因为(1,b = ,所以3b == ,所以向量,a b 夹角的余弦值为:11cos 236a b a b a b ⋅-⋅===-⨯⋅.故答案为:16-.14.()6(2)1x y x --的展开式中43x y 的系数是__________.【答案】160【解析】【分析】根据二项式展开6(2)x y -,然后在与()1x -相乘,找到43x y 这一项即可.【详解】由于题目要求43x y 的系数,所以对于6(2)x y -的展开项中,没有43x y 这一项.所以只需要求出6(2)x y -的33x y 项在与()1x -相乘即可.()()333436C 2160x y x x y -⋅-=,故系数为160.故答案为:160.15.“南昌之星”摩天轮半径为80米,建成时为世界第一高摩天轮,成为南昌地标建筑之一.已知摩天轮转一圈的时间为30分钟,甲乙两人相差10分钟坐上摩天轮,那么在摩天轮上,他们离地面高度差的绝对值的取值范围是__________.【答案】⎡⎣【解析】【分析】由已知设甲乙两人坐上摩天轮的时间分别为t ,10t +,得到甲乙两人坐上摩天轮转过的角度,分别列出甲乙离地面的高度1π8080cos15h t =-,2π2π8080cos 153h t ⎛⎫=-+ ⎪⎝⎭,然后得到12ππ153h h t ⎛⎫-=+ ⎪⎝⎭,由t 的取值范围即可求解.【详解】设甲乙两人坐上摩天轮的时间分别为t ,10t +,则甲乙两人坐上摩天轮转过的角度分别为2ππ3015t t =,()2ππ2π1030153t t +=+,则甲距离地面的高度为1π8080cos 15h t =-,乙距离地面的高度为2π2π8080cos 153h t ⎛⎫=-+⎪⎝⎭,则12ππ2π8080cos8080cos 15153h h t t ⎛⎫-=--++ ⎪⎝⎭π2πππ2ππ2ππ80cos 80cos 80cos cos sin sin cos 1531515315315t t t t ⎛⎫=+-=- ⎪⎝⎭3π3ππ1πππ80cos sin sin 21521515215153t t t t t ⎛⎫=--=+=+ ⎪⎝⎭因为030t ≤≤,所以ππ7π01533t ≤+≤,所以ππ0sin 1153t ⎛⎫≤+≤ ⎪⎝⎭,即12h h ⎡-∈⎣.故答案为:⎡⎣.16.用平面截圆锥面,可以截出椭圆、双曲线、抛物线,那它们是不是符合圆锥曲线的定义呢?比利时数学家旦德林用一个双球模型给出了证明.如图1,在一个圆锥中放入两个球,使得它们都与圆锥面相切,一个平面过圆锥母线上的点P 且与两个球都相切,切点分别记为12,F F .这个平面截圆锥面得到交线,C M 是C 上任意一点,过点M 的母线与两个球分别相切于点,G H ,因此有12MF MF MG MH GH +=+=,而GH 是图中两个圆锥母线长的差,是一个定值,因此曲线C 是一个椭圆.如图2,两个对顶圆锥中,各有一个球,这两个球的半径相等且与圆锥面相切,已知这两个圆锥的母线与轴夹角的正切值为43,球的半径为4,平面α与圆锥的轴平行,且与这两个球相切于,A B 两点,记平面α与圆锥侧面相交所得曲线为C ,则曲线C 的离心率为__________.【答案】53##213【解析】【分析】根据矩形的性质求出1212O O F F =,由题意求出2110O O =,根据旦德林双球模型和双曲线定义可得126PF PF -=,求出a 、c 即可【详解】如图,,M N 是圆锥与球的切点,12,O O 是球心,P 是截口上任一点,连接12O O ,12,,O A O B 则12,O A AB O B AB ⊥⊥,所以124O A O B ==,12O A O B ,所以12O ABO 是矩形,12O O AB=连接112,O M O N ,则12,O M MN O N MN ⊥⊥,因为圆锥的母线与轴夹角的正切值为43,即14tan 3MOO ∠=,所以1144tan 33O M AOO OM OMOM ∠===⇒=,根据对称性得3ON =,所以6MN =,故两圆的公切线长为6连接PB ,PA ,OP ,设OP 与球1O 的切线交于K ,与球2O 的切线交于H ,则,PH PB PK PA ==,所以26PA PB HK MN a -====,得3a =,在1OO A △中,15OO ===,所以1212210O O F F c ===,得5c =曲线C 的离心率为53c a =故答案为:53四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()()2ln2ln f x x x x =+-.(1)求()f x 的单调递减区间;(2)求()f x 的最大值.【答案】(1)()2e,∞+;(2)2e .【解析】【分析】(1)求导得()2elnf x x=',令()0f x '<可求()f x 的单调递减区间;(2)由(1)易判断()f x 在()0,2e x ∈时单增,()f x 在()2e,x ∞∈+时单减,进而求出()max f x .【小问1详解】()2e 1ln2ln lnf x x x =+-=',令()0f x '<,得2e01x<<,即2e x >,所以()f x 的单调递减区间为()2e,∞+;【小问2详解】当()0,2e x ∈时,()()0,f x f x '>单调递增;当()2e,x ∞∈+时,()()0,f x f x '<单调递减,所以()()()2e 2ln22e 2eln2e 2e f x f ≤=+-=,即()f x 的最大值为2e .18.对于各项均不为零的数列{}n c ,我们定义:数列n k n c c +⎧⎫⎨⎬⎩⎭为数列{}n c 的“k -比分数列”.已知数列{}{},n n a b 满足111a b ==,且{}n a 的“1-比分数列”与{}n b 的“2-比分数列”是同一个数列.(1)若{}n b 是公比为2的等比数列,求数列{}n a 的前n 项和n S ;(2)若{}n b 是公差为2的等差数列,求n a .【答案】(1)()1413n n S =⨯-;(2)()21413n a n =⨯-.【解析】【分析】(1)利用已知求出通项公式,再求前n 项和即可.(2)利用累乘法求通项公式即可.【小问1详解】由题意知12n n n na b a b ++=,因为11b =,且{}n b 是公比为2的等比数列,所以14n na a +=,因为11a =,所以数列{}n a 首项为1,公比为4的等比数列,所以()()114141143nnnS ⨯-==⨯--;【小问2详解】因为11b =,且{}n b 是公差为2的等差数列,所以21n b n =-,所以122321n n n n a b n a b n +++==-,所以1212121215,,,23251n n n n a a a n n a n a n a ---+-===-- ,所以()()1212131n n n a a +-=⨯,因为11a =,所以()21413n a n =⨯-.19.如图,两块直角三角形模具,斜边靠在一起,其中公共斜边10AC =,ππ,34BAC DAC ∠∠==,BD 交AC 于点E.(1)求2BD ;(2)求AE .【答案】(1)50+;(2)5.【解析】【分析】(1)由锐角三角函数求出AB 、AD ,又ππ34BAD ∠=+,利用两角和的余弦公式求出cos BAD ∠,最后由余弦定理计算可得;(2)解法1:首先求出sin BAD ∠,再由ABD ABE ADE S S S =+ ,利用面积公式计算可得;解法2:首先得到33ABD BCD S AE EC S == ,再由10AE EC +=计算可得.【小问1详解】由已知,1cos 1052AB AC BAC ∠=⋅=⨯=,2cos 102AD AC DAC ∠=⋅=⨯=因为ππ34BAD BAC DAC BAC ∠=∠+∠=∠=+,所以ππππππcos cos cos cos sin sin 343434BAD ∠⎛⎫=+=- ⎪⎝⎭12322622224=⨯-=,所以在ABD △中由余弦定理可得2222cos BD AB AD AB AD BAD=+-⋅⋅∠2550254=+-⨯⨯50=+.【小问2详解】解法1:因为ππππππ62sin sin sin cos cos sin3434344BAD∠+⎛⎫=+=+=⎪⎝⎭,又因为ABD ABE ADES S S=+,所以111sin sin sin222AB AD BAD AB AE BAE AE AD EAD∠∠∠⋅⋅⋅=⋅⋅⋅+⋅⋅⋅,即162131255242222AE AE⨯⨯=⨯⨯⨯+⨯⨯,解得5AE=.解法2:因为πBAD BCD∠+∠=,所以()sin sinπsinBAD BCD BCD∠=-∠=∠,又AD CD==BC=所以11sin5322113sin22ABDBCDAB AD BAD BADSAEEC S BC CD BCD BCD∠∠∠∠⨯⋅⋅⨯⨯====⨯⋅⋅⨯,又因为10AC=,所以10AE EC+=,则10AE+=,所以5AE=.20.甲公司现有资金200万元,考虑一项投资计划,假定影响投资收益的唯一因素是投资期间的经济形势,若投资期间经济形势好,投资有25%的收益率,若投资期间经济形势不好,投资有10%的损益率;如果不执行该投资计划,损失为1万元.现有两个方案,方案一:执行投资计划;方案二:聘请投资咨询公司乙分析投资期间的经济形势,聘请费用为5000元,若投资咨询公司乙预测投资期间经济形势好,则执行投资计划;若投资咨询公司乙预测投资期间经济形势不好,则不执行该计划.根据以往的资料表明,投资咨询公司乙预测不一定正确,投资期间经济形势好,咨询公司乙预测经济形势好的概率是0.8;投资期间经济形势不好,咨询公司乙预测经济形势不好的概率是0.7.假设根据权威资料可以确定,投资期间经济形势好的概率是40%,经济形势不好的概率是60%.(1)求投资咨询公司乙预测投资期间经济形势好的概率;(2)根据获得利润的期望值的大小,甲公司应该执行哪个方案?说明理由.【答案】(1)0.5;(2)甲公司应该选择方案二,理由见解析【解析】【分析】(1)由全概率公式即可得解;(2)方案一服从两点分布,由此求出对应的概率可得期望;方案二有三种情况,分别算出相应的概率,结合期望公式算出期望,比较两个期望的大小即可得解.【小问1详解】记投资期间经济形势好为事件1B ,投资期间经济形势不好为事件2B ,投资咨询公司预测投资期间经济形势好为事件A ,则()()120.4,0.6P B P B ==,因此()()120.40.80.60.30.5P A P B A B A =+=⨯+⨯=;【小问2详解】若采取方案一,则该公司获得的利润值X 万元的分布列是X5020-P 0.40.6()500.4200.68E X =⨯-⨯=万元;若采取方案二:设该公司获得的利润值为Y 万元,有以下情况,投资期间经济形势好,咨询公司乙预测经济形势为好,49.5Y =,其发生的概率为:()10.40.80.32P B A =⨯=,投资期间经济形势好,咨询公司乙预测经济形势为不好, 1.5Y =-,其发生的概率为:()10.40.20.08P B A =⨯=,投资期间经济形势不好,咨询公司乙预测经济形势为好,20.5Y =-,其发生的概率为:()20.60.30.18P B A =⨯=,投资期间经济形势不好,咨询公司乙预测经济形势为不好, 1.5Y =-,其发生的概率为:()20.60.70.42P B A =⨯=,因此,随机变量Y 的分布列为:Y 20.5- 1.5-49.5P 0.180.50.32因此,()20.50.18 1.50.549.50.32 3.690.7515.8411.4E Y =-⨯-⨯+⨯=--+=万元,因为()()E X E Y <,所以甲公司应该选择方案二.21.如图,四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,π3ABC ∠=,已知E 为棱AD 的中点,P 在底面的投影H 为线段EC 的中点,M 是棱PC 上一点.(1)若2CM MP =,求证://PE 平面MBD ;(2)若,PB EM PC EC ⊥=,确定点M 的位置,并求二面角B EM C --的余弦值.【答案】(1)证明见解析(2)M 为PC 中点,19.【解析】【分析】(1)根据角平分线性质定理得2CD CN DE NE==,由平行线分线段成比例定理得MN PE ,再由线面平行的判定可证;(2)利用线面垂直可得PH BC ⊥,进而得BC ⊥平面PEC ,由线面垂直得EM PC ⊥,然后根据等边三角形三线重合即得M 为PC 中点,以C 为原点,分别以,CB CE 为,x y 轴,以过C 点且与平面ABCD 垂直的直线为z 轴建立空间直角坐标系,求出两个平面的法向量,利用公式cos ,n CB n CB n CB⋅=⋅ 求解即可【小问1详解】设BD CE N ⋂=,因为底面ABCD 是边长为2的菱形,所以CD AB =,对角线BD 平分ADC ∠,又E 为棱AD 的中点,所以2CD AB DE ==,在ADC △中,根据角平分线性质定理得2CN CD NE DE==,又2CM MP =,所以2CM MP =,所以2CN CM NE MP==,//MN ∴PE ,PE ⊄平面MBD ,且MN ⊂平面,//MBD PE ∴平面MBD .【小问2详解】PH ⊥Q 平面ABCD ,且BC ⊂平面ABCD ,PH BC ∴⊥,因为π3ABC ∠=,所以2π3BCD ∠=,在ACD 中,CD AB =,π3ABC ∠=,所以ACD 是等边三角形,又E 为棱AD 的中点,所以BC CE ⊥,PH ⊥Q 平面ABCD ,PH ⊂平面PCE ,所以平面PCE ⊥平面ABCD ,又平面PCE ⋂平面ABCD =CE ,BC ⊂平面ABCD ,BC ∴⊥平面PEC ,又EM ⊂平面PEC ,BC EM ∴⊥,又PB EM ⊥ ,,,PB BC B PB BC ⋂=⊂平面PBC ,EM ∴⊥平面PBC ,且PC ⊂平面PBC ,EM PC ∴⊥.因为P 在底面的投影H 为线段EC 的中点,所以PC PE =,又PC CE=所以PCE 为等边三角形,故M 为PC 中点,所以M 在底面ABCD 上的投影为CH 的中点.在CDE中,CE ===3,22CE AD PH CE ⊥== ,以C 为原点,分别以,CB CE 为,x y 轴,以过C 点且与平面ABCD 垂直的直线为z轴建立空间直角坐标系,所以()()()30,0,0,2,0,0,,0,,44C B E M ⎛⎫ ⎪ ⎪⎝⎭,()3332,,0,44EB ME ⎛⎫∴==- ⎪ ⎪⎝⎭ ,设(),,n x y z = 是平面EBM的一个法向量,则020*******n EB x n ME y z ⎧⋅=⇒-=⎪⎨⋅=⇒-=⎪⎩,令2y =,则x z ==,即2,n = ,BC ⊥ 平面PEC ,()2,0,0CB ∴= 是平面PEC的一个法向量,57cos ,19n CB n CB n CB ⋅∴==⋅ ,因为二面角B EM C --是一个锐角,所以二面角B EM C --的余弦值为19.【点睛】方法点睛:向量法求二面角的方法:首先设两个平面的法向量坐标,利用线面垂直得到线线垂直即向量的数量积为零列出方程组求出法向量坐标,把二面角转化为向量的夹角,利用公式cos ,n CB n CB n CB⋅=⋅ ,结合图形写出夹角或补角.22.已知椭圆2222:1(0)x y E a b a b +=>>的离心率为2,左右两顶点分别为12,A A ,过点()1,0C 作斜率为()110k k ≠的动直线与椭圆E 相交于,M N 两点.当11k =时,点1A 到直线MN的距离为2.(1)求椭圆E 的标准方程;(2)设点M 关于原点的对称点为P ,设直线1A P 与直线2A N 相交于点Q ,设直线OQ 的斜率为2k ,试探究21k k 是否为定值,若为定值,求出定值并说明理由.【答案】(1)2214x y +=(2)是定值32,理由见解析【解析】【分析】(1)由题意可得2c a =322=,解方程求出,a c ,再结合b =,即可得出答案.(2)设()()()112211,,,,,M x y N x y P x y --,直线AB 的方程为1x my =+,联立直线和椭圆方程,利用根与系数的关系、斜率公式即可求得21k k 为定值.【小问1详解】依题意可知32c e a ==,由于11k =,则直线MN 的方程为10x y --=,因为点1A 到直线MN 的距离为322.322=,解得2a =,所以c =1b ==,所以椭圆E 的标准方程2214x y +=.【小问2详解】设()()()112211,,,,,M x y N x y P x y --,直线AB 的方程为1x my =+.此时11k m =.联立直线与椭圆方程22144x my x y =+⎧⎨+=⎩消去x 得()224230m y my ++-=,则有12122223,44m y y y y m m --+==++不妨设()00,Q x y ,因为2,,A N Q 三点共线,则22A N A Q k k =,所以则有020222y y x x =--,因为1,,A P Q 三点共线,则11A P A Q k k =则有010122y y x x =+-,所以0022110222011122212111,x x x my x my m m y y y y y y y y -+----===-===-20012222114422334mx m m m m y y y m -⎛⎫+=-+=-= ⎪-⎝⎭+,所以0032y x m =,所以232k m=,所以2132k k =,所以2132k k =.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。
浙江省温州市2024年6月普通高中学业水平模拟测试数学试
题
学校:___________姓名:___________班级:___________考号:___________
二、多选题
13.下列选项中正确的是( )
A .33log 1.1log 1.2
<B .
()
()
3
3
1.1 1.2-<-C . 1.1 1.2
0.990.99<D .30.99
0.993<14.某不透明盒子中共有5个大小质地完全相同的小球,其中有3个白球2个黑球,现从
20.在ABC V 中,已知4BC =,4BC BD =uuu r uuu r ,连接AD ,满足
sin sin DB ABD DC ACD ×Ð=×Ð,则ABC V 的面积的最大值为四、解答题
21.某校为了解高二段学生每天数学学习时长的分布情况,随机抽取了100名高二学生进行调查,得到了这100名学生的日平均数学学习时长(单位:分钟),并将样本数据分成
[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100六组,绘制如图所示的频率分布
直方图.
20.3
【分析】分别在ADB
V和
由角平分线定理得到AB AC
cos BAC
Ð,即可得到sin
ADB
V。
2022-2023学年八年级数学上册期末模拟测试题(附答案)一、选择题(共计24分)1.点P(1,2)关于y轴对称点的坐标是()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(﹣1,﹣2)2.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.1、2、3B.2、3、4C.3、4、5D.4、5、63.如图,点D为△ABC的边BC延长线上一点,关于∠B与∠ACD的大小关系,下列说法正确的是()A.∠B>∠ACD B.∠B=∠ACD C.∠B<∠ACD D.无法确定4.明明在对一组数据:9,1■,25,25,进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.众数B.中位数C.平均数D.方差5.代入法解方程组时,代入正确的是()A.x﹣2﹣x=7B.x﹣2﹣2x=7C.x﹣2+2x=7D.x﹣2+x=7 6.下列计算不正确的是()A.3﹣=2B.×=C.+==3D.÷==27.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹价值x两,牛每头y两,根据题意可列方程组为()A.B.C.D.8.下表中列出的是一个一次函数的自变量x与函数y的几组对应值:x…﹣2﹣11…y…﹣128…若将该一次函数的图象向下平移2个单位,得到一个新一次函数,下列关于新一次函数的说法中,正确的是()A.函数值y随自变量x的增大而减小B.函数图象不经过第四象限C.函数图象经过原点D.当x=2时,y的值为7二、填空题(共计15分)9.请写出一个大于3的无理数.10.命题“同位角相等”是命题(填“真”或“假”).11.甲,乙两人进行射击比赛,每人射击5次,所得平均环数相等,其中甲所得环数的方差为 2.1,乙所得环数分别为:8,7,9,7,9,那么成绩较稳定的是(填“甲”或“乙”).12.如图,点P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,若四边形OMPN是边长为5的正方形,则mn的值为.13.如图,长方体的高为9dm,底面是边长为6dm的正方形,一只蚂蚁从顶点A开始爬向顶点B,那么它爬行的最短路程为dm.三、解答题(计81分)14.计算:(π﹣3)0﹣×+|﹣1|.15.解方程组:16.如图,求图中x的值.17.若是二元一次方程4x﹣3y=10的一个解,求m的值.18.某校招聘一名数学老师,对应聘者分别进行了教学能力、教研能力和组织能力三项测试,并按教学能力占70%,教研能力占20%,组织能力占10%,计算加权平均数,作为最后评定的总成绩.王伟和李婷都应聘了该岗位,经计算,王伟的最后评定总成绩为87.8分,已知李婷的教学能力、教研能力和组织能力三项成绩依次为88分、84分、86分.若该校要在李婷和王伟两人中录用一人,谁将被录用?19.已知a+b是25的算术平方根,2a﹣b是﹣8的立方根,c是的整数部分,求a+bc的平方根.20.已知:如图:∠BEC=∠B+∠C.求证:AB∥CD.21.2021年12月12日是西安事变85周年纪念日,西安事变及其和平解决在中国社会发展中占有重要的历史地位,为中国社会的发展起到了无可替代的作用.为此,某社区开展了系列纪念活动,如图,有一块三角形空地ABC,社区计划将其布置成展区,△BCD区域摆放花草,阴影部分陈列有关西安事变的历史图片,现测得AB=20米,AC=10米,BD=6米,CD=8米,且∠BDC=90°.(1)求BC的长;(2)求阴影部分的面积.22.为巩固“精准扶贫”成果,市农科院专家指导李大爷种植某种优质水果喜获丰收,上市20天全部销售完,专家对销售情况进行了跟踪记录,并将记录情况绘制成如图所示的函数图象,其中x(天)表示上市时间,y(千克)表示日销售量.(1)当12≤x≤20时,求日销售量y与上市时间x的函数关系式;(2)求出第15天的日销售量.23.如图,在平面直角坐标系中,已知四边形ABCD的四个顶点都在网格的格点上.(1)在图中画出四边形ABCD关于x轴对称的四边形A'B'C'D';(2)在(1)的条件下,分别写出点A、B、D的对应点A'、B'、D'的坐标.24.某公司对消费者进行了随机问卷调查,共发放1000份调查问卷,并全部收回,根据调查问卷,将消费者年收入情况整理后,制成如下表格(被调查的消费者年收入情况):年收入/万元38102050被调查的消费者数/人1005003005050(1)根据表中数据,被调查的消费者平均年收入为多少万元?(2)被调查的消费者年收入的中位数和众数分别是和万元.(3)在平均数、中位数这两个数据中,谁更能反映被调查的消费者的收入水平?请说明理由.25.某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:年级捐款数额(元)捐助贫困中学生人数(名)捐助贫困小学生人数(名)初一年级400024初二年级420033初三年级7400(1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,求初三年级学生可捐助的贫困中小学生人数.26.如图,已知直线AB经过点(1,﹣2),且与x轴交于点A(2,0),与y轴交于点B,作直线AB关于y轴对称的直线BC交x轴于点C,点P为OC的中点.(1)求直线AB的函数表达式和点B的坐标;(2)若经过点P的直线l将△ABC的面积分为1:3的两部分,求所有符合条件的直线l的函数表达式.参考答案一、选择题(共计24分)1.解:∵点P(1,2)关于y轴对称,∴点P(1,2)关于y轴对称的点的坐标是(﹣1,2).故选:A.2.解:A、∵12+22≠32,∴不能组成直角三角形,故A选项错误;B、∵22+32≠42,∴不能组成直角三角形,故B选项错误;C、∵32+42=52,∴组成直角三角形,故C选项正确;D、∵42+52≠62,∴不能组成直角三角形,故D选项错误.故选:C.3.解:∵∠ACD是△ABC的外角,∴∠ACD=∠B+∠A,∴∠B<∠ACD.故选:C.4.解:这组数据的平均数、方差和中位数都与被涂污数字有关,而这组数据的众数为25,与被涂污数字无关.故选:A.5.解:把②代入①得,x﹣2(1﹣x)=7,去括号得,x﹣2+2x=7.故选:C.6.解:A.3﹣=2,故此选项不合题意;B.×=,故此选项不合题意;C.+无法合并计算,故此选项符合题意;D.÷==2,故此选项不合题意.故选:C.7.解:设马每匹x两,牛每头y两,根据题意可列方程组为:.故选:A.8.解:设原来的一次函数解析式为y=kx+b(k≠0),代入(﹣2,﹣1),(﹣1,2),得,解得,∴原来的一次函数解析式为y=3x+5,将该一次函数图象向下平移2个单位,得到新的一次函数的解析式为y=3x+3,∵k=3>0,∴函数值y随自变量x的增大而增大,故A选项不符合题意;∵函数y=3x+3经过第一、二、三象限,不经过第四象限,故B选项符合题意;∵函数y=3x+3不是正比例函数,不经过原点,故C选项不符合题意;当x=2时,y=3×2+3=9,故D选项不符合题意,故选:B.二、填空题(共计15分)9.解:由题意可得,>3,并且是无理数.故答案为:.10.解:两直线平行,同位角相等,命题“同位角相等”是假命题,因为没有说明前提条件.故答案为:假.11.解:∵乙的平均环数为=8,∴乙射击成绩的方差为×[2×(7﹣8)2+(8﹣8)2+2×(9﹣8)2]=0.8,∵甲所得环数的方差为2.1,0.8<2.1,∴成绩比较稳定的是乙,故答案为:乙.12.解:∵P(m+n,4m﹣n)为平面直角坐标系中第一象限内一点,PM⊥x轴于点M,PN⊥y轴于点N,∴PN=m+n,PM=4m﹣n,∵四边形OMPN是边长为5的正方形,∴PM=PN=5,,∴,则mn的值为6.故答案为:6.13.解:如图,(1)AB===3;(2)AB==15,由于15<3;则蚂蚁爬行的最短路程为15dm.故答案为:15.三、解答题(共计81分)14.解:(π﹣3)0﹣×+|﹣1|=1﹣3+﹣1=﹣2.15.解:①×2得:4x+6y=16③,③﹣②得:11y=22,解得:y=2,把y=2代入②,得4x﹣10=﹣6,解得:x=1,故原方程组的解为:.16.解:由题意得:x°+(x+10)°=(x+70)°,解得:x=60.即x的值为60.17.解:把代入方程4x﹣3y=10,可得:12m+4﹣6m+6=10,解得:m=0.18.解:李婷的最后评定总成绩为:88×70%+84×20%+86×10%=87(分),∵王伟的最后评定总成绩为87.8分,87<87.8,∴王伟将被录用.19.解:∵a+b是25的算术平方根,2a﹣b是﹣8的立方根,∴,解得:,∵4<5<9,∴2<<3,∴的整数部分是2,∴c=2,∴a+bc=1+4×2=1+8=9,∴a+bc的平方根为±3.20.证明:如图,过点E作EM∥AB,∴∠B=∠BEM,∵∠BEC=∠B+∠C,∠BEC=∠BEM+∠CEM,∴∠C=∠CEM,∴EM∥CD,∴AB∥CD.21.解:(1)∵BD=6米,CD=8米,∠BDC=90°,∴BC===10(米),答:BC的长为10米;(2)∵AB=20米,AC=10米,BC=10米,∴AB2+BC2=202+102=(10)2=AC2,∴△ABC是直角三角形,且∠ABC=90,∴S阴影=S△ABC﹣S△BCD=AB•BC﹣BD•CD=×20×10﹣×6×8=76(平方米).22.解:(1)当12≤x≤20时,设y与x的函数关系式为y=kx+b,由题意得:,解得:,∴当12≤x≤20时,y与x的函数关系式为:y=﹣120x+2 400;(2)当x=15时,y=﹣120×15+2 400=600,所以第15天的日销售量为600千克.23.解:(1)如图所示:四边形A'B'C'D'即为所求;(2)点A、B、D的对应点:A'(﹣5,﹣6),B'(﹣5,﹣2),D'(3,﹣7).24.解:(1)==10.8(万元),答:被调查的消费者平均年收入约为10.8万元;(2)这组数据从小到大排列后,处在中间位置的两个数都是8万元,因此中位数为8万元;这组数据中出现次数最多的是8万元,因此众数为8万元;故答案为:8,8;(3)中位数更能反映被调查的消费者的收入水平,理由:虽然平均数,中位数均能反映一组数据的集中程度,但平均数易受极端数值影响,所以中位数更能反映被调查的消费者的收入水平.25.解:(1)依题意得:,解得:.答:a的值为800,b的值为600.(2)设初三年级学生可捐助贫困中学生x人,小学生y人,依题意得:,解得:.答:初三年级学生可捐助贫困中学生4人,小学生7人.26.解:(1)设直线AB的函数表达式为y=kx+b(h≠0).把点(1,﹣2),(2,0)代入得,解得,∴直线AB为y=2x﹣4.当x=0时,y=2x﹣4=﹣4,∴B(0,﹣4).(2)①当直线l经过点B时,如图1.∵直线AB关于y轴对称的直线BC交x轴于点C,∴OA=OC=2,∴C(﹣2,0).∵P为OC的中点,∴P(﹣1,0),∴AP=3CP,∴S△BCP:S△BAP=1:3.设此时直线l的表达式为y=mx+n(m≠0).将点P(﹣1,0)、B(0,﹣4)代入得,解得,∴此时直线l的表达式为y=﹣4x﹣4;②当直线l与AB的交点D在第四象限时,如图2.∵A(2,0),C(﹣2,0),B(0,﹣4),∴AC=4,OB=4,∴S△ABC=AC•OB=×4×4=8.∵直线l将△ABC的面积分为1:3的两部分,∴S△APD=S△ABC=2,∴•AP•|y D|=2,即×3×|y D|=2,解得|y D|=,将y=﹣代入y=2x﹣4,得x=,∴D(,﹣).设此时直线l的函数表达式为y=m2x+n2(m2≠0).将点D(,﹣)、P(﹣1,0)代入得,解得,∴此时直线l的函数表达式为y=﹣.综上所述,所有符合条件的直线l的函数表达式为y=﹣4x﹣4或y=﹣x﹣.。
浙教版2022-2023学年八年级上学期期末数学模拟测试卷(二)(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列图案中,不是轴对称图形的是()A.B.C.D.【答案】C【解析】A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不符合题意;故答案为:C.2.在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A.C,r B.C,π,r C.C,πD.C,2π,r【答案】A【解析】∵在圆的周长公式C=2πr中,C与r是改变的,π是不变的;∴变量是C,r,常量是2π.故选A.3.若实数a,b满足a>b,则下列不等式一定成立的是()A.a>b+2B.a﹣1>b﹣2C.﹣a>﹣b D.a2>b2【答案】B【解析】当a>b时,a>b+2不一定成立,故错误;当a>b时,a﹣1>b﹣1>b﹣2,成立,当a>b时,﹣a<﹣b,故错误;当a>b时,a2>b2不一定成立,故错误;故答案为:B.4.仔细观察用直尺和圆规作一个角等于已知角的示意图,请根据三角形全等的有关知识,说明画出∠AOB=∠CPD的依据是()A.SAS B.AAS C.ASA D.SSS【答案】D【解析】由作法易得OG=PM,OH=PN,GH=MN,在△GOH与△MPN中,{OG=PM OH=PN GH=MN,∴△GOH≌△MPN(SSS),∴∠AOB=∠CPD(全等三角形的对应角相等).故答案为:D.5.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(-4,2)C.(6,2)或(-5,2)D.(1,7)或(1,-3)【答案】B【解析】∵AB∥x轴,点A的坐标为(1,2),∴点B 的纵坐标为2, ∵AB=5,∴点B 在点A 的左边时,横坐标为1-5=-4, 点B 在点A 的右边时,横坐标为1+5=6, ∴点B 的坐标为(-4,2)或(6,2). 故答案为:B .6.已知等腰三角形中有一个角等于 40° ,则这个等腰三角形的顶角的度数为( ) A .40° B .100° C .40° 或 70° D .40° 或 100° 【答案】D【解析】∵等腰三角形中有一个角等于40°,∴①若40°为顶角,则这个等腰三角形的顶角的度数为40°;②若40°为底角,则这个等腰三角形的顶角的度数为:180°-40°×2=100°. ∴这个等腰三角形的顶角的度数为:40°或100°. 故答案为:D.7.如图,在∥ABC 中,∥B =46°,∥C =52°,AD 平分∥BAC ,交BC 于点D ,DE∥AB ,交AC 于点E ,则∥ADE =( )A .45°B .41°C .40°D .50° 【答案】B【解析】∵∥B =46°,∥C =52°,∴∥BAC =180°-∥B -∥C =180°-46°-52°=82°, 又∵AD 平分∥BAC ,∴∥BAD =∥BAC =12×82°=41°,∵DE∥AB ,∴∥ADE =∥BAD =41°. 故答案为:B .8.在平面直角坐标系中,若点(x 1,-1),(x 2,-2),(x 3,1)都在直线y=-2x+b 上,则x 1,x 2,x 3的大小关系是( ) A .x 1>x 2>x 3 B .x 3>x 2>x 1 C .x 2>x 1>x 3 D .x 2>x 3>x 1 【答案】C【解析】∵y=-2x+b 中k=-2<0 ∴y 随x 的增大而减小 ∵-2<-1<1 ∴x 2>x 1>x 3. 故答案为:C.9.在∥ABC 中,AB=15,AC=13,BC 上的高AD 长为12,则∥ABC 的面积为( ) A .84 B .24 C .24或84 D .42或84 【答案】C 【解析】(1)∥ABC 为锐角三角形,高AD 在三角形ABC 的内部, ∴BD= √AB 2−AD 2 =9,CD= √AC 2−AD 2 =5, ∴∥ABC 的面积为 12×(9+5)×12 =84,( 2 )∥ABC 为钝角三角形,高AD 在三角形ABC 的外部,∴BD= √AB 2−AD 2 =9,CD= √AC 2−AD 2 =5,∴∥ABC 的面积为 12×(9−5)×12 =24,故答案为:C.10.定义:∥ABC 中,一个内角的度数为 α ,另一个内角的度数为 β ,若满足 α+2β=90° ,则称这个三角形为“准直角三角形”.如图,在Rt∥ABC 中,∥C=90°, AC=8,BC=6,D 是BC 上的一个动点,连接AD ,若∥ABD 是“准直角三角形”,则CD 的长是( )A .127B .2413C .83D .135【答案】C【解析】如图,过D 作DE∥AB ,∵∥C=90°,∴AB=√AC 2+BC 2=√82+62=10, ∴设∥ABD= α,∥BAD= β ,∵∥BAD+∥CAD+∥ABD=90°, 即α+β+∥CAD=90°∵, ∴∥CAD=∥BAD=β,∴AD 是∥CAB 的平分线, ∴DE=DC ,AE=AC ,BE=AB -AE=10-8=2, 设DC=DE=x, 则BD=BC -DC=6-x, ∵BD 2=BE 2+DE 2, ∴(6-x )2=22+x 2, 整理得12x=32, ∴x=83.故答案为:C.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.如果点P (6,1+m )在第四象限,m 的取值范围是 . 【答案】m <﹣1【解析】∵点P (6,1+m )在第四象限, ∴1+m <0,解得:m <﹣1, 故答案为:m <﹣1.12.已知一个三角形三边的长分别为 √5,√10,√15 ,则这个三角形的面积是 .【答案】52√2【解析】∵(√5)2+(√10)2=15 , (√15)2=15 ,∴(√5)2+(√10)2=(√15)2 , ∴该三角形为直角三角形,∴其面积为 12×√5×√10=52√2 ,故答案为: 52√2 .13.在平面直角坐标系中,直线y =−34x +3与x 轴、y 轴交于点A 、B ,点C 在x 轴负半轴上,若ΔABC 为等腰三角形,则点C 的坐标为 . 【答案】(-4,0)或(-1,0)【解析】直线y =−34x +3与x 轴、y 轴交于点A 、B ,则点A 的坐标为(4,0),点B 的坐标为(0,3),∴AB =√OA 2+OB 2=5. 分两种情况考虑,如图所示.①当BA=BC 时,OC =OA =4, ∴点C 1的坐标为 (-4,0) ;②当AB=AC 时,∵AB =5,OA =4, ∴OC =5−4=1,∴点C 2的坐标为 (-1,0) .∴点C 的坐标为为(-4,0)或(-1,0). 故答案为:(-4,0)或(-1,0).14.如图,六边形 ABCDEF 的六个内角都等于120°,若 AB =BC =CD =6cm , DE =4cm ,则这个六边形的周长等于 cm .【答案】34【解析】如图,分别作AB 、CD 、EF 的延长线和反向延长线,使它们交于点G 、H 、P ,∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°,∴∥APF、∥BGC、∥DHE、∥GHP都是等边三角形,∴GC=BC=6cm,DH=DE=4cm,PF=PA=FA,∴GH=6+6+4=16cm,∴FA=PA=PG-AB-BG=16-6-6=4cm,EF=PH-PF-EH=16-4-4=8cm,∴六边形的周长为6+6+6+4+8+4=34cm.故答案为:34.15.如图,在Rt△ABC中,∠ACB=90∘,∠A>∠B,将△ABC第一次沿折痕CE折叠,使得点A能落在BC上,铺平后,将∠B沿折痕GF折叠,使点B与点A重合,FG分别交BC边,AB边于点F,点G,CD是斜边上的高线,若∠DCE=∠B,则BFCE=.【答案】√2【解析】连接AF,∵将△ABC第一次沿折痕CE折叠,使得点A能落在BC上,∴∠ACE=∠BCE=45°,∵将∠B沿折痕GF折叠,使点B与点A重合,∴∠B=∠FAB,FA=FB,∵∠ACD+∠DCB=∠B+∠DCB=90°,∴∠ACD=∠B,∵∠DCE=∠B,∴∠ACD=∠DCE=∠B=12∠ACE=22.5°,∴∠AFC=∠B+∠FAB=2∠B=45°,∴△AFC为等腰直角三角形,设AC=CF=a,则AF=√a2+a2=√2a,∵∠CAB=90°−∠B=67.5°,∠CEA=∠B+∠BCE=67.5°,即∠CAE=∠CEA,∴CA=CE,∴BF CE=AFCA=√2aa=√2,故答案为:√2.16.在∥ABC中,∥C=90°,D是边BC上一点,连接AD,若∥BAD+3∥CAD=90°,DC=a,BD =b,则AB=. (用含a,b的式子表示)【答案】2a+b【解析】如图,延长BC至点E,使CE=CD,连接AE,∵∥ACB=90°,∴∥CAB+∥B=90°,AC∥CD,∵∥BAD+3∥CAD=90°,∥BAD+∥CAD=∥BAC,∴∥B=2∥CAD,∵CE=CD,AC∥CD,∴AC垂直平分ED,∴AE=AD,即∥AED是等腰三角形,∴∥EAC=∥CAD,∴∥EAD=2∥CAD=∥B,∴∥EAB=∥B+∥BAD,∵∥E=∥ADE=∥B+∥BAD,∴∥E=∥EAB,∴AB=EB,∵EB=EC+CD+BD=a+a+b=2a+b,∴AB=2a+b.故填:2a+b.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.解下列不等式(组).(1)3(x﹣1)﹣5<2x;(2){1−2x−23⩽5−3x2 3−2x>1−3x【答案】(1)解:去括号得:3x﹣3﹣5<2x,移项得:3x﹣2x<3+5,合并得:x<8(2)解:{1−2x−23⩽5−3x2①3−2x>1−3x②,由①得:x≤1,由②得:x>﹣2,∴原不等式组的解集为﹣2<x≤118.如图,已知∠BAC,用三种不同的方法画出∠BAC的平分线.要求:( 1 )画图工具:带有刻度的直角三角板; ( 2 )保留画图痕迹,简要写出画法.【答案】 解:①在AC 上取线段AD ,AB 上取线段AE ,使AE =AD ,再连接DE ,并取DE 中点F ,最后连接AF 并延长,则AF 即为∠BAC 的平分线;②在AC 上取线段AG ,AB 上取线段AH ,使AG =AH .再过点G 作GJ ⊥AC ,过点H 作IH ⊥AB ,GJ 和HI 交于点K ,最后连接AK 并延长,则AK 即为∠BAC 的平分线;③在AC 上取线段AR ,在AB 上取线段AP ,使AR=AP ,过点P 作PQ//AC ,再在PQ 上取线段PO ,使PO=AR ,连接AO 并延长,则AO 即为∠BAC 的平分线.19.已知点P (32a +2,2a −3),根据下列条件,求出点P 的坐标.(1)点P 在y 轴上;(2)点Q 的坐标为(-3,3),直线PQ ∥x 轴. 【答案】(1)解:∵点P 在y 轴上, ∴点P 的横坐标为0,即32a +2=0解得:a =−43,∴2a −3=2×(−43)−3=−173,∴点P 的坐标为(0,−173);(2)解:∵直线PQ ∥x 轴,∴点P 、Q 的纵坐标相等,即2a −3=3,解得:a =3,∴32a +2=32×3+2=132∴点P 的坐标为(132,3).20.如图,AD 是∥ABC 的高,CE 是∥ACB 的角平分线,F 是AC 中点,∥ACB =50°,∥BAD =65°.(1)求∥AEC 的度数;(2)若∥BCF 与∥BAF 的周长差为3,AB =7,AC =4,则BC = . 【答案】(1)解:∵AD 是∥ABC 的高, ∴∥ADB =90°, ∵∥BAD =65°,∴∥ABD =90°﹣65°=25°,∵CE 是∥ACB 的角平分线,∥ACB =50°, ∴∥ECB = 12∥ACB =25°,∴∥AEC =∥ABD+∥ECB =25°+25°=50° (2)10 【解析】(2)∵F 是AC 中点, ∴AF =FC ,∵∥BCF 与∥BAF 的周长差为3,∴(BC+CF+BF )﹣(AB+AF+BF )=3, ∴BC ﹣AB =3, ∵AB =7, ∴BC =10, 故答案为:10.21.如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男孩拽着绳子另一端向右走,绳端从C 移动到E ,同时小船从A 移动到B ,且绳长始终保持不变.A 、B 、F 三点在一条直线上,CF ⊥AF .回答下列问题:(1)根据题意可知:AC BC +CE (填“>”、“<”、“=”).(2)若CF =6米,AF =8米,AB =3米,求小男孩需向右移动的距离(结果保留根号). 【答案】(1)=(2)解:∵A 、B 、F 三点共线, ∴在Rt △CFA 中,AC =√AF 2+CF 2=10,∵BF =AF −AB =8−3=5, ∴在Rt △CFB 中,BC =√CF 2+BF 2=√61, 由(1)可得:AC =BC +CE , ∴CE =AC −BC =10−√61,∴小男孩需移动的距离为(10−√61)米. 【解析】(1)∵AC 的长度是男孩拽之前的绳长,(BC +CE)是男孩拽之后的绳长,绳长始终未变, ∴AC =BC +CE ,故答案为:=;22.每年11月份脐橙和蜜桔进入销售旺季.某水果专销商购进脐橙和蜜桔共1000箱.设购进蜜桔x(2)为了迎接“双11”活动,商家决定进行组合促销活动:两种水果各一箱打包成一组,售价为55元/组,其组数为购进蜜桔箱数的 15,未打包的按原价出售.若这两种水果全部卖出,利润不少于6500元,则该商家至少要购进蜜桔多少箱? 【答案】(1)解:售完1000箱水果所获得的利润为8x +6(1000−x)=2x +6000(2)解:由题意可知,购进蜜桔x 箱,则脐橙(1000-x)箱8⋅45x +6⋅(1000−x −15x)+10⋅15x ≥6500 解得 x ≥41623∵x 为整数,且为5的倍数 ∴至少为420箱.23.在等腰三角形∥ABC 中,AC =BC ,D 、E 分别为AB 、BC 上一点,∠CDE =∠A .(1)如图1,若BC =BD ,求证:△ADC ≅△BED ;(2)如图2,过点C 作CH ⊥DE ,垂足为H ,若CD =BD ,EH =3. ①求证:CE =DE ; ②求CE -BE 的值. 【答案】(1)证明:∵AC =BC ,∠CDE =∠A , ∴∠A =∠B =∠CDE ,∵∠CDB =∠A +∠ACD =∠CDE +∠BDE , ∴∠ACD =∠BDE . 又∵BC =BD , ∴BD =AC .在∥ADC 和∥BED 中,{∠ACD =∠BDE AC =BD ∠A =∠B△ADC ≅△BED(ASA)(2)解:①证明:∵CD =BD , ∴∠B =∠DCB .由(1)知:∠CDE =∠B , ∴∠DCB =∠CDE , ∴CE =DE ;②如图,在DE 上取点F ,使DF =BE ,在∥CDF 和∥DBE 中, {DF =BE ∠CDE =∠B CD =BD, ∴△CDF ≅△DBE(SAS), ∴CF =DE =CE , 又∵CH ⊥EF , ∴FH =HE ,∴CE −BE =DE −DF =EF =2HE =2×3=6.24.如图1,一次函数y =43x+4的图象与x 轴、y 轴分别交于点A 、B.(1)则点A 的坐标为 ,点B 的坐标为 ; (2)如图2,点P 为y 轴上的动点,以点P 为圆心,PB 长为半径画弧,与BA 的延长线交于点E ,连接PE ,已知PB =PE ,求证:∥BPE =2∥OAB ;(3)在(2)的条件下,如图3,连接PA ,以PA 为腰作等腰三角形PAQ ,其中PA =PQ ,∥APQ =2∥OAB.连接OQ.①则图中(不添加其他辅助线)与∥EPA 相等的角有 ;(都写出来) ②试求线段OQ 长的最小值. 【答案】(1)(﹣3,0);(0,4)(2)证明:如图2中,设∥ABO =α,则∥OAB =90°﹣α, ∵PB =PE ,∴∥PBE =∥PEB =α,∴∥BPE =180°﹣∥PBE ﹣∥PEB =180°﹣2α=2(90°﹣α), ∴∥BPE =2∥OAB.(3)①∥QPO ,∥BAQ ;②如图3中,连接BQ 交x 轴于T.∵AP =PQ ,PE =PB ,∥APQ =∥BPE , ∴∥APE =∥QPB ,在∥APE 和∥QPB 中,{PA=PQ∠APE=∠QPBPE=PB,∴∥APE∥∥QPB(SAS),∴∥AEP=∥QBP,∵∥AEP=∥EBP,∴∥ABO=∥QBP,∵∥ABO+∥BAO=90°,∥OBT+∥OTB=90°,∴∥BAO=∥BTO,∴BA=BT,∵BO∥A T,∴OA=OT,∴直线BT的解析式为为:y=﹣43x+4 ,∴点Q在直线上y=﹣43x+4运动,∵B(0,4),T(3,0).∴BT=5.当OQ∥BT时,OQ最小.∵S∥BOT=12×3×4=12×5×OQ.∴OQ=12 5.∴线段OQ长的最小值为12 5.【解析】(1)解:在y=43x+4中,令y=0,得0=43x+4,解得x=﹣3,∴A(﹣3,0),在y=43x+4中,令x=0,得y=4,∴B(0,4);故答案为:(﹣3,0),(0,4);(3)解:①结论:∥QPO,∥BAQ理由:如图3中,∵∥APQ=2∥OAB,∥BPE=2∥OAB,∴∥APQ=∥BPE.∴∥APQ﹣∥APB=∥BPE﹣∥APB.∴∥QPO=∥EPA.又∵PE=PB,AP=PQ∴∥PEB=∥PBE=∥PAQ=∥AQP.∴∥BAQ=180°﹣∥EAQ=180°﹣∥APQ=∥EPA.∴与∥EPA相等的角有∥QPO,∥BAQ.故答案为:∥QPO,∥BAQ;。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣20162.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 904. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣85.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y66.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 37.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A.7B.38C.78D.589.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°10.已知二次函数的与的部分对应值如下表:-1 0 1 3 -3131下列结论:①抛物线开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二.填空题(共4小题)11.在实数117,-(-1),3π, 1.21,313113113,5中,无理数有______个.12.若正六边形的边长为3,则其面积为_____.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=.16.计算:8﹣(12)﹣1﹣|21-|17.如图,已知线段AB.(1)仅用没有刻度直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张. (1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由. 23.如图,AB 是⊙O 的直径,点C 、E 在⊙O 上,∠B =2∠ACE ,在BA 的延长线上有一点P ,使得∠P =∠BAC ,弦CE 交AB 于点F ,连接AE .(1)求证:PE 是⊙O 切线;(2)若AF =2,AE =EF =10,求OA 的长.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H. (1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.答案与解析一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣2016 【答案】B【解析】【分析】根据零次幂直接回答即可.【详解】解:20160=1.故选:B.【点睛】本题是对零次幂的考查,熟练掌握零次幂知识是解决本题的关键.2.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图为.故选A.点睛:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 90【答案】B【解析】∵∠DFE=135°,∴∠CFE=180°-135°=45°.∵AB∥CD,∴∠ABE=∠CFE=45°.故选B.4. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.5.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y6【答案】C【解析】【分析】根据整式运算依次判断即可.【详解】解:A、6x6÷2x3=3x3,故选项A错误;B、x2+x2=2x2,故选项B错误;C、﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;D、(﹣3xy2)3=﹣27x3y6,故选项D错误;故选:C.【点睛】本题是对整式乘除的考查,熟练掌握积的乘方,单项式乘多项式及单项式除以单项式运算是解决本题的关键.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 3【答案】A 【解析】 【分析】如图,过点D 作DF ⊥AC 于F ,由角平分线的性质可得DF=DE=1,在Rt △BED 中,根据30度角所对直角边等于斜边一半可得BD 长,在Rt △CDF 中,由∠C=45°,可知△CDF 为等腰直角三角形,利用勾股定理可求得CD 的长,继而由BC=BD+CD 即可求得答案. 【详解】如图,过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F , ∴DF=DE=1,在Rt △BED 中,∠B=30°, ∴BD=2DE=2,在Rt △CDF 中,∠C=45°, ∴△CDF 为等腰直角三角形, ∴CF=DF=1,∴22DF CF +2, ∴BC=BD+CD=22+, 故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.【答案】D 【解析】 【分析】直接根据”上加下减”的原则进行解答即可.【详解】解:由”上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1, 解得n=2. 故选D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A. 7B.38C.78D.58【答案】C 【解析】 【分析】如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB ≌GED ,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG 中依据勾股定理列方程求解即可. 【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=,AEB GED ∠∠=,AB GD 3==,AEB ∴≌GED ,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.9.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B 【解析】 【分析】先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可. 【详解】连接OA ,∵o OBA 20∠=,OB OA = ∴o OAB=OBA 20∠∠= ∵AC OC =且OC OA = ∴AOC ∆是等边三角形 ∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒ ∴=2=80BOC BAC ∠∠︒ 故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅助线证出AOC ∆是等边三角形是解本题的关键.10.已知二次函数的与的部分对应值如下表:-1 0 1 3-3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【详解】解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=033 22 +=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=32,故②错误;当x>32时,y随x的增大而减小,当x<32时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质二.填空题(共4小题)11.在实数117,-(-1),3π1.21,3131131135中,无理数有______个.【答案】2【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】在所列实数中,无理数有π3,5这2个,故答案为2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.若正六边形的边长为3,则其面积为_____.【答案】273 2【解析】【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【详解】解:∵此多边形为正六边形,如图:∴∠AOB=3606︒=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=3,∴OG=OA•cos30°=3×3332∴S△OAB=12×AB×OG=12×3×332934∴S六边形=6S△OAB=6×9342732.2732;【点睛】此题主要考查正多边形的计算问题,关键是由正六边形的特点求出∠AOB的度数及OG的长.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【解析】详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=+,215x=-(舍去),()2215625k x∴==+=+,故答案为625+14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】134.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF=22F0G G+=413,∴EF=413﹣4,∴PD+PE的长度最小值为413﹣4,故答案为:413﹣4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=【答案】21aa+,322【解析】【分析】先对括号内第一项因式分解同时将除法化为乘法,然后利用乘法分配律进行计算,再把结果相加,最后把a 的值代入计算即可.【详解】原式=2(1)1()(1) (1)(1)aaa a a-++ +-=11aaa+ -+=21aa+,当2a=时,原式=2(2)12+=322.16.计算:8﹣(12)﹣1﹣|21-|【答案】2﹣1【解析】【分析】先化简二次根式和绝对值,计算负整数幂,然后再计算得出结果即可.【详解】解:原式=22﹣2﹣(2﹣1)=22﹣2﹣2+1=2﹣1.【点睛】本题是对实数运算的考查,熟练掌握二次根式化简及负整数幂运算是解决本题的关键.17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.【答案】(1)见解析;(2)2.【解析】【分析】(1)以AB为边作等边三角形DAB,再以DB为边作等边三角形DBC,然后连接AC,则△ABC满足条件;(2)利用△ABD为等边三角形可确定等腰△ABC的外接圆的半径.【详解】解:(1)如图:△ABC为所求;(2)∵△ABD和△BCD为等边三角形,∴DA=DB=DC=AB,∴等腰△ABC的外接圆的半径为2,故答案2.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【答案】(1)详见解析;(2)432.【解析】【分析】(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.【详解】解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,所以课外阅读量的众数是3本,则m%=1650×100%=32%,即m=32,补全图形如下:(2)估计该校600名学生中能完成此目标的有600×1614650++=432(人).【点睛】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C 处放置一块镜子,小明站在BC 的延长线上,当小明在镜子中刚好看到树的顶点A 时,测得小明到镜子的距离CD =2米,小明的眼睛E 到地面的距离ED =1.5米; ②将镜子从点C 沿BC 的延长线向后移动10米到点F 处,小明向后移动到点H 处时,小明的眼睛G 又刚好在镜子中看到树的顶点A ,这时测得小明到镜子的距离FH =3米; ③计算树高度AB ;【答案】树的高度AB 为15米 【解析】 【分析】设AB =x 米,BC =y 米,先证△ABC ∽△EDC ,得到1.52x y =,再证△ABF ∽△GHF ,得到101.53x y +=,从而求出x 的值即可.【详解】解:设AB =x 米,BC =y 米, ∵∠ABC =∠EDC =90°,∠ACB =∠ECD , ∴△ABC ∽△EDC ,∴AB BCED DC =, ∴1.52x y =, ∵∠ABF =∠GHF =90°,∠AFB =∠GFH , ∴△ABF ∽△GHF ,∴AB BFGH HF =, ∴101.53x y +=, ∴1023y y +=, 解得:y =20, 把y =20代入1.52x y =中得201.52x =, 解得x =15,∴树的高度AB 为15米.【点睛】本题是对相似三角形的综合考查,熟练掌握相似三角形判定及相似比是解决本题的关键.21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?【答案】(1)y=20﹣6x(x>0);(2)这时山顶的温度大约是14.21℃;(3)飞机离地面的高度为9千米【解析】【分析】(1)根据等量关系:高出地面x千米处的温度=地面温度-6℃×高出地面的距离,列出函数关系式;(2)把给出的自变量高出地面的距离0.965km代入一次函数求得;(3)把给出的函数值高出地面x千米处的温度-34℃代入一次函数求得x.【详解】解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x>0);(2)由题意得,x=0.965km,∴y=20﹣6×0.965=14.21(℃),则这时山顶温度大约是14.21℃;(3)由题意得,y=﹣34℃时,代入y=20﹣6x得,﹣34=20﹣6x,解得x=9km,答:飞机离地面的高度为9千米.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息,理解随着高度的增加,温度降低列出关系式是解题的关键.22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【答案】(1)14;(2)这个游戏公平.【解析】【分析】(1)将所有可能的情况在图中表示出来,再根据概率公式计算可得;(2)计算出和为大于32和不大于32的概率,即可得到游戏是否公平【详解】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为14.(2)这个游戏公平.因为P(小贝获胜)=P(小晶获胜)=12.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF10,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE ,∴∠AOE =2∠ACE ,∵∠B =2∠ACE ,∴∠AOE =∠B ,∵∠P =∠BAC ,∴∠ACB =∠OEP ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OEP =90°,∴PE 是⊙O 的切线;(2)∵OA =OE ,∴∠OAE =∠OEA ,∵AE =EF ,∴∠EAF =∠AFE ,∴∠OAE =∠OEA =∠EAF =∠AFE ,∴△AEF ∽△AOE , ∴AE AF OA AE=, ∵AF =2,AE =EF 10∴OA =5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y 轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H.(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.【答案】(1)2y x 2x 3=--+,(-1,4) (2)(-2,3),31711722⎛⎫-+-+ ⎪ ⎪⎝⎭,,31711722⎛--- ⎝⎭, (3)(-4,-5),(23-,359) 【解析】分析】 (1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax 2+bx+3求出即可;(2)求出直线AD 的解析式,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,利用△ADE 与△ACD 面积相等,得出直线EC 和直线EH 的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P 在对称轴左侧;②点P 在对称轴右侧.【详解】(1)设抛物线的解析式为2y ax bx c(a 0)=++<,∵抛物线过点A(-3,0),B(1,0),D(0,3), ∴93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得,a=-1,b=-2,c=3,∴抛物线解析式为2y x 2x 3=--+,顶点C(-1,4);(2)如图1,∵A(-3,0),D(0,3),∴直线AD 的解析式为y=x+3,设直线AD 与CH 交点为F ,则点F 的坐标为(-1,2)∴CF=FH,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,由平行间距离处处相等,平行线分线段成比例可知,△ADE 与△ACD 面积相等,∴直线EC 的解析式为y=x+5,直线EH 的解析式为y=x+1,分别与抛物线解析式联立,得25x 23y x y x =+⎧⎨=--+⎩,21x 23y x y x =+⎧⎨=--+⎩,解得点E 坐标为(-2,3),⎝⎭,⎝⎭; (3)①若点P 在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH, ∴PQ CH 2CQ AH==, 分别过点C 、P 作x 轴的平行线,过点Q 作y 轴的平行线,交点为M 和N ,由△CQM∽△QPN, 得PQ PN QN CQ MQ CM===2, ∵∠MCQ=45°,设CM=m ,则MQ=m ,PN=QN=2m ,MN=3m ,∴P 点坐标为(-m-1,4-3m),将点P 坐标代入抛物线解析式,得()()2m 12m 1343m -++++=-,解得m=3,或m=0(与点C 重合,舍去)∴P 点坐标为(-4,-5);②若点P 在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH, ∴PQ AH 1CQ CH 2==, 延长CD 交x 轴于M ,∴M(3,0)过点M 作CM 垂线,交CP 延长线于点F ,作FNx 轴于点N , ∴PQ FM 1CQ CM 2==, ∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F 点坐标为(5,2),∴直线CF 的解析式为y=111x 33-+, 联立抛物线解析式,得211133x 23y x y x ⎧=-+⎪⎨⎪=--+⎩,解得点P 坐标为(23-,359), 综上所得,符合条件的P 点坐标为(-4,-5),(23-,359).【点睛】本题考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型,特别注意分类讨论思想的应用.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.【答案】(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)410米.【解析】【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB 均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.。
浙江省嘉兴市海宁一中2024年初中学业水平模拟测试数学试题卷卷I一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.数1,01中,是负数的是()A.1B.0C D.-12.如图所示的几何体,它的主视图是()A.B.C.D.3.2023年12月27日,第58颗北斗卫星成功定点于距地球36000公里的同步轨道上,数据36000用科学记数法表示为()A.0.36×105B.3.6×105C.3.6×104D.36×1034.一个不透明的布袋里装有5个只有颜色不同的球,其中3个白球,2个红球.从布袋里任意摸出1个球,是白球的概率()A.45B.35C.25D.155.如图,△ABC与△DEF是位似三角形,点O为位似中心.OA=AD,则△ABC与△DEF的位似比为()A.1∶1B.2∶3C.1∶2D.1∶36.化简(-2a)3∙a=()A.-8a4B.-8a3C.-6a4D.-6a37.如图所示的△ABC,进行以下操作:①以A,B为圆心,大于12AB为半径作圆弧,相交点D,E;②以A,C为圆心,大于12AC为半径作圆弧,相交于点F,G.两直线DE,FG相交于△ABC外一点P,且分别交BC点M,N.若∠MAN=50°,则∠MPN等于()A.60°B.65°C.70°D.75°8.已知y是关于x的一次函数,下表列出了部分对应值,则m的值为()A.-1B.12C.0D.129.如图1,在矩形ABCD中,点E在BC上,连结AE,过点D作DF⊥AE于点F.设AE=x,DF=y,已知x,y满足反比例函数y=kx(k>0,x>0),其图象如图2所示,则矩形ABCD的面积为()图1图2A.B.9C.10D.10.如图,量筒的液面A-C-B呈凹形,近似看成圆弧,读数时视线要与液面相切于最低点C(即弧中点).小温想探究仰视、俯视对读数的影响,当他俯视点C时,记录量筒上点D的高度为37mm;仰视点C(点E,C,B在同一直线),记录量筒上点E的高度为23mm,若点D在液面圆弧所在圆上,量筒直径为10mm,则平视点C,点C的高度为()mm.A.30-B.37-C.23+D.23+卷Ⅱ二、填空题(本题有6小题,每小题3分,共18分)11.分解因式:m 2-4= .12.某校九(1)班同学每周课外阅读时间的频数直方图如图所示(每组含前一个边界值,不含后一个边界值).由图可知,该班每周阅读时间不低于4小时的学生一共有 人.13.已知扇形的圆心角为120°,它的半径为2,则扇形的面积为 (计算结果保留π).14.不等式2(x -1)>x +3的解为 .15.已知二次函数y =x 2+bx +c (b ,c 为常数且b >0,c <0),当-5≤x ≤0时,-11≤y ≤5,则c 的值为 . 16.如图1是古塔建筑中的方圆设计,寓意天圆地方.据古塔示意图,以塔底座宽AB 为边作正方形ABCD (图2),塔高AF =AC ,分别以点A ,B 为圆心,AF 为半径作圆弧,交于点G .正方形ABCD 内部由四个全等的直角三角形和一个小正方形组成,若点G 落在AM 的延长线上,连接GP 交DQ 于点T ,则GT GP的值为 .图1 图2三、解答题(本题有8小题,共72分)17.(本题8分)(10(1)|5|---.(2)计算:223221a a a a a a --+--. 18.(本题8分)如图,在△ABC 中,AB =AC ,AD 是BC 边上的高线,点E ,F 分别在AC ,CD 上,且∠1=∠2(1)求证:AD∥EF.(2)当CE∶AE=3∶5,CF=6时,求BC的长.19.(本题8分)如图,是3个相同大小的6×6的方格,图1中放置一副七巧板组成的正方形图案,其顶点均在格点上,称之为格点图形.利用七巧板中的3种图形,按下列要求作出符合条件的格点图形.(1)在图2中,拼成一个轴对称但不是中心对称的图形.(2)在图3中,拼成一个中心对称但不是轴对称的图形.图1图2图320.(本题8分)某校组织的知识竞赛中,每班参加的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次为100分,90分,80分,70分,学校将九年级一班和九年级二班的成绩整理并绘制统计图,如图所示.(1)分别求出九年级一班成绩的平均数、中位数和众数;(2)规定成绩在90分以上为优秀(含90分),已知九年级二班成绩的平均数为87.6分,中位数为80分,众数为100分,优秀率为48%,请你选择两个统计量综合评价两个班的成绩.21.(本题8分)汽车刹车后,还会继续向前滑行一段距离,这段距离称为“刹车距离”.刹车距离y(m)与刹车时间的速度x(m/s)有以下关系式:y=ax2+bx(a,b为常数,且a≠0).某车辆测试结果如下:当车速为10m/s时,刹车距离y为3m;当车速为15m/s,刹车距离y为7.5m.(1)求出a,b的值;(2)行车记录仪记录了该车行驶一段路程的过程,汽车在刹车前匀速行驶了20s,然后刹车直至停下.测得刹车距离为5m,问:记录仪中汽车行驶路程为多少米?22.(本题10分)在Y ABCD中,E,F分别是AB,CD的中点,EG⊥BD于点G,FH⊥BD于点H,连接GF,EH.(1)求证:四边形EHFG是平行四边形.(2)当∠ABD=45°,tan∠EHG=14,EG=1时,求AD的长.23.(本题10分)综合与实践:测算校门所在斜坡的坡度.【背景】如图1,某学校校门在一道斜坡上,该校兴趣小组想要测量斜坡的坡度.图1图2【素材1】校门前的斜坡上铺着相同的长方形石砖,如图2,从测量杆AB到校门所在位置DE在斜坡上有15块地砖.【素材2】在点A处测得仰角tan∠1=19,俯角tan∠2=524;在点B处直立一面镜子,光线BD反射至斜坡CE的点N处,测得点B的仰角tan∠3=15;测量杆上AB∶BC=5∶8,斜坡CE上点N所在位置恰好是第9块地砖右边线.【讨论】只需要在∠1,∠2,∠3中选择两个角,再通过计算,可得CE的坡度.24.(本题12分)如图,在Rt△ABC中,∠ABC=90°,BC=6,AB=8,点D在AC上,过点B,D,C所作的弧为优弧BDC,交AB于点E,作DF//BC交BDC于点F,BF与CE,CD分别交于点G,H,连接DE.(1)求证:点H 是AC 的中点.(2)当»BE,»ED ,»DF 中的两段相等时,求DE 的长. (3)记△ADE 的面积为1S ,△CDF 的面积为2S ,若122596S S ,求¼BDC 所在圆的半径.。
一、单选题二、多选题1. 已知命题P :,使得,则命题为( )A .,使得B .,都有C .,使得D .,都有2. 下列各式中正确的是( )A.B.C.D.3. “绿水青山就是金山银山”,党的十九大以来,城乡深化河道生态环境治理,科学治污.某乡村一条污染河道的蓄水量为立方米,每天的进出水量为立方米.已知污染源以每天个单位污染河水,某一时段(单位:天)河水污染质量指数为(每立方米河水所含的污染物)满足(为初始质量指数),经测算,河道蓄水量是每天进出水量的80倍.若从现在开始关闭污染源,要使河水的污染水平下降到初始时的10%,需要的时间大约是(参考数据:)( )A .1个月B .3个月C .半年D .1年4. 同时抛掷两颗质地均匀的六面体骰子,分别观察它们落地时朝上的面的点数,则“两颗骰子的点数相同”的概率为( )A.B.C.D.5. 第24届冬奥会奥运村有智能餐厅A 、人工餐厅B ,运动员甲第一天随机地选择一餐厅用餐,如果第一天去A 餐厅,那么第二天去A 餐厅的概率为0.7;如果第一天去B 餐厅,那么第二天去A 餐厅的概率为0.8.运动员甲第二天去A 餐厅用餐的概率为( )A .0.75B .0.7C .0.56D .0.386. 函数的大致图象为( )A.B.C.D.7.已知函数,则( ).A.B.C.D.8. 若不等式|8x+9|<7和不等式ax 2+bx>2的解集相等,则实数a 、b 的值分别为A .a=-8,b=-10B .a=-1,b=2C .a=-1,b=9D .a=-4,b=-99. 已知为不同的直线,为不同的平面,则下列说法正确的是( )A .若,则B .若,则C.若,则至少有一条与直线垂直D .若,则10. 下列条件中,使M 与A ,B ,C 一定共面的是( )A.B.甘肃省2023年普通高中学业水平合格性考试数学模拟测试题(1)甘肃省2023年普通高中学业水平合格性考试数学模拟测试题(1)三、填空题四、解答题C.D.11.为得到函数的图象,只需将的图象( )A .先将横坐标扩大到原来的2倍(纵坐标不变),再向右平移个单位长度B .先将横坐标扩大到原来的2倍(纵坐标不变),再向右平移个单位长度C .先向右平移个单位长度,再将横坐标扩大到原来的2倍(纵坐标不变)D .先向右平移个单位长度,再将横坐标扩大到原来的2倍(纵坐标不变)12.对于函数,下列结论中错误的是( )A.为奇函数B.在定义域上是单调递减函数C.的图象关于点对称D .在区间上存在零点13.如图,已知抛物线的准线与轴交于点,过焦点作倾斜角为的直线与抛物线交于两点,过两点分别作准线的垂线,垂足分别为,则的值等于.14. 已知全集,集合,则______.15. 已知椭圆是椭圆上两点,线段的垂直平分线与轴交于,则的取值范围是__________.16. 如图,在四棱锥中,底面为梯形,,为等边三角形.(1)证明:平面.(2)若为等边三角形,求平面与平面夹角的余弦值.17. 已知函数(是自然对数的底数)(1)若直线为曲线的一条切线,求实数的值;(2)若函数在区间上为单调函数,求实数的取值范围;(3)设,若在定义域上有极值点(极值点是指函数取得极值时对应的自变量的值),求实数的取值范围.18. 如图,在三棱锥中,底面,,、分别是、的中点,与交于点,是上的一个点,记.(1)若平面,求实数的值;(2)当时,求二面角的余弦值.19. 已知抛物线的准线方程为.(1)求p的值;(2)直线交抛物线于A,B两点,求弦长.20. 如图,在多面体中,四边形是边长为2的菱形,,,.(1)求证:平面平面;(2)若,,点到平面的距离为,求平面与平面所成锐二面角的余弦值.21. 在中,角的对边分别为,已知.(Ⅰ)求角的大小;(Ⅱ)若,求周长的取值范围.。
数学模拟测试题p Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8
【经典资料,WORD文档,可编辑修改】【经典考试资料,答案附后,看后必过,WORD文档,可修改】
第四小学“学课标、学教材”
数学模拟测试题A(课标部分)
一、填空题
1. 数学活动是师生积极参与、交往互动、共同发展的过程。
有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者、合作者。
2. 学生学习应当是一个生动活泼的、主动地和富有个性的过程,除接受学习外,动手实践、自主探索与合作交流也是数学学习的重要方式,学生应当有足够的时间和空间经历观察、实验、猜测、验证、推理、计算、证明等活动过程。
3.教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生,注重启发式和因材施教,为学生提供充分的数学活动的机会。
4. 学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。
应建立目标多元、方法多样的评价体系。
5. 《标准》提出义务教育阶段数学课程的总体目标和分学段目标,并从知识技能、数学思考、问题解决、情感态度等四个方面具体阐述。
6. 《标准》用了“了解、理解、掌握、运用”等认知目标动词表述知识技能目标的不同水平。
一句“基本理念”,数学学习必须注重过程,《标准》使用“经历、体验、探索”等认知过程动词表述学习活动的不同程度。
2、教师要积极利用各种教学资源,创造性地使用教材,学会(B )。
A、教教材
B、用教材教
3、“三维目标”是指知识与技能、( B )、情感态度与价值观。
A、数学思考
B、过程与方法
C、解决问题
4、《数学课程标准》中使用了“经历、体验、探索”等表述(A )不同程度。
A、学习过程目标
B、学习活动结果目标。
5、评价要关注学习的结果,也要关注学习的( C )
A、成绩
B、目的
C、过程
6、“综合与实践”的教学活动应当保证每学期至少( A )次。
A、一
B、二
C、三
D、四
7、在新课程背景下,评价的主要目的是( C )
A、促进学生、教师、学校和课程的发展
B、形成新的教育评价制度
C、全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学
8、学生是数学学习的主人,教师是数学学习的( C )。
A 组织者合作者 B组织者引导者 C 组织者引导者合作者
9、学生的数学学习活动应是一个( A )的过程。
A、生动活泼的主动的和富有个性
B、主动和被动的生动活泼的
C、生动活泼的被动的富于个性
10、推理一般包括( C )。
A、逻辑推理和类比推理
B、逻辑推理和演绎推理
C、合情推理和演绎推理
11、义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:( BC )
A、人人学有价值的数学
B、人人都能获得良好的数学教育
C、不同的人在数学上得到不同的发展
12、数学活动必须建立在学生的( AB )之上。