全等三角形的判定(边角边)导学案
- 格式:doc
- 大小:287.50 KB
- 文档页数:4
三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解并掌握“边角边”判定定理(SAS),能够运用该定理证明两个三角形全等。
2. 培养学生运用几何知识解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队合作能力。
二、教学内容1. 三角形全等的概念。
2. “边角边”判定定理(SAS)的定义及证明过程。
3. 运用“边角边”判定定理解决实际问题。
三、教学重点与难点1. 教学重点:掌握“边角边”判定定理(SAS),能够运用该定理证明两个三角形全等。
2. 教学难点:如何判断两个三角形是否全等,以及如何运用“边角边”判定定理进行证明。
四、教学方法1. 采用讲授法,讲解三角形全等的概念和“边角边”判定定理。
2. 采用案例分析法,分析实际问题,引导学生运用“边角边”判定定理解决问题。
3. 采用小组讨论法,培养学生团队合作精神,提高解决问题的能力。
五、教学过程1. 导入:通过复习三角形全等的概念,引入“边角边”判定定理。
2. 讲解:讲解“边角边”判定定理(SAS)的定义及证明过程,让学生理解并掌握。
3. 案例分析:分析实际问题,引导学生运用“边角边”判定定理解决问题。
4. 小组讨论:让学生分组讨论,运用“边角边”判定定理证明三角形全等。
5. 总结:对本节课的内容进行总结,强调“边角边”判定定理的应用。
6. 作业布置:布置相关练习题,巩固所学知识。
教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
关注学生在解决问题时的创新意识和逻辑思维能力,为后续教学做好准备。
六、教学评价1. 通过课堂讲解、案例分析和小组讨论,评价学生对“边角边”判定定理(SAS)的理解和掌握程度。
2. 评价学生在解决实际问题时,能否正确运用“边角边”判定定理,以及证明的逻辑性和准确性。
3. 观察学生在小组讨论中的表现,评估其团队合作能力和交流沟通能力。
七、教学拓展1. 引导学生思考其他三角形全等的判定定理,如“角边角”(ASA)、“角角边”(AAS)等,让学生了解并掌握更多判定定理。
三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的判定方法。
2. 让学生掌握“边角边”(SAS)判定定理,并能运用其判定两个三角形全等。
3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。
二、教学内容1. 三角形全等的概念。
2. “边角边”(SAS)判定定理。
三、教学重点与难点1. 教学重点:三角形全等的概念,SAS判定定理。
2. 教学难点:SAS判定定理在实际问题中的应用。
四、教学方法1. 采用讲授法讲解三角形全等的概念和SAS判定定理。
2. 利用多媒体演示和实物模型辅助教学,增强学生的直观感受。
3. 开展小组讨论和练习,培养学生的合作精神和解决问题的能力。
五、教学过程1. 导入新课:通过复习三角形全等的概念,引入“边角边”判定定理。
2. 讲解三角形全等的概念:三角形全等指的是在平面内,两个三角形的所有对应角度相等,对应边长比例相等。
3. 讲解“边角边”(SAS)判定定理:如果两个三角形的一边和与其相邻的两个角分别与另一个三角形的一边和与其相邻的两个角相等,这两个三角形全等。
4. 演示和练习:利用多媒体演示和实物模型,让学生直观地理解SAS判定定理。
让学生进行一些练习题,巩固所学知识。
5. 小组讨论:让学生分组讨论如何运用SAS判定定理解决实际问题,并分享讨论成果。
6. 总结与拓展:对本节课的内容进行总结,强调SAS判定定理在三角形全等问题中的应用。
提出一些拓展问题,激发学生的学习兴趣。
7. 布置作业:布置一些有关三角形全等和SAS判定定理的练习题,巩固所学知识。
六、教学评价1. 通过课堂讲解、练习和小组讨论,评价学生对三角形全等概念和SAS判定定理的理解程度。
2. 观察学生在练习题中的解题思路和解答过程,评价其运用SAS判定定理的能力。
3. 收集学生的讨论成果,评价其合作精神和解决问题的能力。
七、教学反思1. 反思本节课的教学内容安排是否合适,教学方法是否得当。
12.2三角形全等的判定第2课时边角边一、新课导入1.导入课题:上一节课,我们探究了三条边对应相等的两个三角形全等.如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?——这就是本节课我们要探讨的课题.2.学习目标:(1)能说出“边角边”判定定理.(2)会用“边角边”定理证明两个三角形全等.3.学习重、难点:重点:“边角边”定理及其应用.难点:“边角边”定理的应用.二、分层学习1.自学指导:(1)自学内容:探究有两条边和它们的夹角对应相等的两个三角形是否全等.(2)自学时间:5分钟.(3)自学方法:根据探究提纲进行操作,并观察归纳得出结论.(4)探究提纲:①如果两个三角形有两条边和一个角分别对应相等,有几种可能的情形?②画△ABC和△A′B′C′,使AB=A′B′,BC=B′C′,∠A=∠A′,剪下两个三角形,相互交流一下,看△ABC与△A′B′C′是否一定能重合?不一定③画△ABC和△A′B′C′, 使A′B′=AB,∠A′=∠A,A′C′=AC,剪下△ABC 和△A′B′C′,大家试一试,△A′B′C′与△ABC能重合吗?能a.由上面的探究得到判定两个三角形全等的方法是两边和它们的夹角分别相等的两个三角形全等(简写成边角边或SAS).b.将上述结论写成几何语言:∵AB=A′B′,∠BAC=∠B′A′C′,AC=A′C′,∴△ABC≌△A′B′C′(SAS)④寻找题目中的隐含条件.a.如图(a),AB、CD相交于点O,且AO=OB.观察图形,图中已具备的另一个相等的条件是∠AOC=∠BOD;联想SAS公理,只需补充条件OC=OD,则有△AOC≌△BOD.b.如图(b),AB⊥AC,AD⊥AE,AB=AC, AD=AE.能得出△DAC≌△EAB吗?能.∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠EAB=∠DAC.在△DAC和△EAB中,AC=AB,∠DAC=∠EAB,∴△DAC≌△EAB(SAS)AD=AEc.如图(c),AB=CD,∠ABC=∠DCB,能判定△ABC≌△DCB吗?解:∵AB=CD,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS).2.自学:学生结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:部分学生在归纳结论上会存在一定的困难,特别是“夹角”的理解及表述上.②差异指导:根据学生学习中存在的问题予以分类指导.(2)生助生:探究提纲中的问题可以由小组合作学习,相互交流帮助寻找出题目条件或隐含条件和说明方式.4.强化:(1)已知两边和夹角,会用尺规作图画三角形.(2)边角边公理内容及几何语言的表达.(3)边角边公理是判定两个三角形全等的第二个方法,现在一共学习了两个判定三角形全等的方法:SSS、SAS,结合条件可以选用这两个判定方法证明三角形全等.(4)强化练习:①下列条件中,能用SAS判定△ABC≌△DEF的条件是(B)A.AB=DE,∠A=∠D,BC=EFB.AB=DE,∠B=∠E,BC=EFC.AB=EF,∠A=∠D,AC=DFD.BC=EF,∠C=∠F,AB=DF②已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7个.1.自学指导:(1)自学内容:教材第38页例2到教材第39页练习前的“思考”.(2)自学时间:10分钟.(3)自学指导:结合自学参考提纲,阅读教材.(4)自学参考提纲:①看懂例题题意,对照定理,在证明过程的后面注上理由.②此题证明△ABC≌△DEC的理论依据是什么?SAS③归纳:线段相等或者角相等,可以通过什么方法得到?证明三角形全等,再根据全等三角形的性质得到.④思考:定理中为什么要强调“夹角”?因为只有满足“两边及夹角”的两个三角形才能全等,否则不一定全等.动手操作:把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?两边相等,夹角不相等的两个三角形不一定全等.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:第二层次的学习是教会学生证明角、线段相等的方法是构造全等三角形,学生在初次接触到这种方法,应用起来会比较生疏.②差异指导:a.指导学生构造全等三角形来证明角或者边相等;b.引导学生理解“两边及一角对应相等是不是一定可以得到两个三角形全等?”(2)生助生:小组共同探讨帮助认知例题的证明方法及教材第39页的思考所反映的问题.4.强化:(1)判定两个三角形全等到目前学习的方法有“SSS”、“SAS”,注意没有“SSA”或“ASS”(特殊情形除外).(2)证明三角形全等的方法和步骤.(3)课堂练习:①课本教材第39页练习.练习1:相等,根据边角边定理,△BAD≌△BAC,∴DA=CA.练习2:证明:∵BE=FC,∴BE+EF=FC+EF,即BF=CE,又AB=DC,∠B=∠C,∴△ABF≌DCE,∴∠A=∠D.②如图,在四边形ABCD中,AD∥BC,AD=BC,你能得出AB=CD 吗?若能,试说明理由.解:连接AC.∵AD∥BC,∴∠DAC=∠BCA.在△ABC和△CDA中,AD=BC,∠DAC=∠BCA,AC=CA,∴△ABC≌△CDA(SAS).∴AB=CD.三、评价1.学生的自我评价:学生交谈自己的学习收获及学习中的困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及存在的不足进行点评.(2)纸笔评价(课堂评价检测).3.教师的自我评价(教学反思):本节课的引入,可采用探究的方式,引导学生通过操作、观察、探索、交流、发现思索的过程,得出判定三角形全等的“SAS”条件,同时利用一个联系生活实际的问题——测量池塘两端的距离,对得到的知识加以运用,最后再通过实际图形让学生认识到“两边及其中一边的对角对应相等”的条件不能判定两个三角形全等.一、基础巩固(第1、2题每题10分,第3、4题每题20分,共60分)1.下列命题错误的是(D)A.周长相等的两个等边三角形全等B.两条直角边对应相等的两个直角三角形全等C.有两条边对应相等的两个等腰三角形不一定全等D.有两条边和一个角对应相等的两个三角形全等2.如图,AB=AC,若想用“SAS”判定△ABD≌△ACE,则需补充一个条件AD=AE.第2题图第3题图第4题图3.如图,给出5个等量关系:①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA.请你以其中两个为条件,另三个中的一个为结论,组成一个正确的命题(用“若……则……”的形式表述)(只需写出一个),并加以证明.解:命题:若AD=BC,∠DAB=∠CBA,则AC=BD.证明如下:在△ABD和△BAC中,AD=BC,∠DAB=∠CBA,AB=BA,∴△ABD≌△BAC(SAS).∴AC=BD.4.如图,点B,E,C,F在同一直线上,AB=DE,∠B=∠DEF,BE=CF.求证:AC=DF.证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠DEF,∴△ABC≌△DEF(SAS).∴AC=DF.BC=EF二、综合应用(20分)5.已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE.证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,∴△ABD≌△ACE(SAS),AD=AE,三、拓展延伸(20分)6.小明做了一个如图所示的风筝,测得DE=DF,EH=FH,由此你能推出哪些正确结论?并说明理由.解:结论:(1)DH平分∠EDF和∠EHF.(2)DH垂直平分EF.理由.(1)在△EDH和△FDH中,DE=DF,EH=FH,DH=DH,∴△EDH≌△FDH(SSS).∴∠EDH=∠FDH,∠EHD=∠FHD.即DH平分∠EDF和∠EHF.(2)由(1)知,在△EOD和△FOD中,ED=DF,∠EDO=∠FDO,OD=OD,∴△EOD≌△FOD(SAS).∴EO=OF,∠EOD=∠FOD=90°,∴DH垂直平分EF.作者留言:非常感谢!您浏览到此文档。
课题:13.3三角形全等的判定(边角边)【学习目标】通过自主学习经历“全等三角形的判定一(边角边)”的发现、验证和运用过程;能正确识别图形中使两个三角形全等的条件(边角边)并能规范的写出识别的过程;通过对图形的观察培养自己的识图能力,同时通过对“边边角”的辨析提高自己的思辨能力.【学习重点】能用“边角边”证明两个三角形全等,并能严谨、规范地写出证明的过程. 【学习难点】正确寻找判定三角形全等所需的条件.一、导读思考:1.如果两个三角形有3组对应相等的元素,那么含有几种情况?其中哪一种已经确定不能判定两个三角形全等?2.画一个三角形,使三角形有其中两边长分别为3cm和4cm,一个内角为45°.试一试你能画出几个?3.在你所画的三角形中,长度3cm和4cm的两边的夹角是45°的三角形有几种?45°角的一边是4cm,它所对的边长是3cm的三角形有几种?你从中发现了什么?二、探究新知:1.下面针对“如果两个三角形有两边和一个角分别对应相等,这两个三角形全等吗?”进行探究.此时应该有几种情况?分别是怎样的条件?2.把你画的三角形与其他同学画的三角形进行比较,下列哪种条件的三角形能完全重合(全等)?3.如图,在△ABC 和△A ′B ′C ′中,已知AB =A ′B ′,∠B =∠B ′,BC =B ′C ′.试说明通过怎样的变换,可以使两个三角形重合?4.概括:如果两个三角形有 及其 分别对应相等,那么这两个三角形全等.简称S.A.S.(或边角边).用数学符号表达为:在△ABC 和△A ′B ′C ′中(上图)(1)⎪⎩⎪⎨⎧''='∠=∠''=C B BC B B B A AB (2) ⎪⎩⎪⎨⎧='∠=∠''=______A A B A AB∴C B A ABC '''∆≅∆( S.A.S.) ∴C B A ABC '''∆≅∆( S.A.S.)(3) ⎪⎩⎪⎨⎧''=∠=∠''=C B BC C A AC ____∴C B A ABC '''∆≅∆( S.A.S.)5. 如果两个三角形有两边和其中一边的对角分别对应相等,这两个三角形全等吗?说明理由(或举反例说明).三、精练反馈:1.根据题目条件,判断下面的三角形是否全等.(1) AC =DF , ∠C =∠F , BC =EF ;(2) BC =BD , ∠ABC =∠ABD .(第1题)2. 如图2,△AOB 和△COD 全等吗?3. 如图,在△ABC 中,AB =AC , AD 平分∠BAC ,求证:△ABD ≌△ACD .证明:∵ AD 平分∠BAC ,∴ ∠ =∠ .在△ABD 与△ACD 中,∵ AB = ,(已知)∠BAD =∠CAD ,AD = ,( 边)∴ △ABD ≌△ACD ( ). 思路:证明两个三角形全等时,要先看这两个三角形已经具有哪些对应相等的元素,要全等还需怎样的条件,再设法寻求所需的条件.延伸:由△ABD 与△ACD 全等,还能证得∠B =∠ ,即证得等腰三角形的 相等.你还能证得哪些结论?4. 如图3,已知AD ∥BC ,AD =CB ,证明△ABC ≌△CDA.分析:要证明△ABC ≌△CDA ,需要 个条件,已有①AD =CB ( ),②AC= ( ),还需要的条件是 ,这可根据已知中的 可以得到.证明:5.如图4,已知AB=AC,AD=AE,∠1=∠2,证明△ABD≌ACE.6.如图,已知AB=AC,AE=AD,那么图中哪两个三角形全等?并进行证明.四、拓展延伸:已知: AD∥BC,AD= CB(如图).现有条件能证明△ADC≌△CBA吗?如果能请写出证明过程,若不能,那么还需添加怎样的条件才能证明?五、课堂小结:六、课后作业:《课时达标》第41页(其中5、6、7写在作业本上,第8题选做). 七.课后反思:。
11.全等三角形导案(SAS)一、导学目标1.知道三角形全等“边角边”的内容.2.会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.二、导学重难点1. 难点:对全等三角形的识别的理解和运用2.重点:三SAS三、导学准备:三角尺、圆规四、导学流程:1、复习全等三角形的判定12、探索三角形全等的条件(SAS)3、用“SAS”判定的运用4、题型训练11.全等三角形学案(SAS)一、学习目标1.知道三角形全等“边角边”的内容.2.会运用“S AS ”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 二、学习重难点1. 难点:对全等三角形的识别的理解和运用2.重点:三角SAS三、知识储备全等三角形的性质和全等三角形的判定1----SSS四、教学流程 (一)知识回顾1. 如图,四边形ABCD 中,AD =BC ,A B =DC . 求证:△ABC ≌△CDA .2.如图,A B D C =,A CD B=,△ABC ≌△DCB 全等吗?为什么(二)、探索新知 活动一 探索三角形全等的条件DCBA1.如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?(1)在上面的例子中我们已知哪些条件(从三角形的边、角关系作答),得到什么结论?(2)由(1)中的回答,你能得到什么猜想?2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.1cm,AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?(三)、知识点小结总结得出:相等的两个三角形全等(简称“边角边”或“SAS”)活动二全等三角形判定的简单应用阅读课本第9页例2后,完成下列问题:1.如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.(提示:要证明两个三角形全等,已具有两个条件,一是AD=CB(已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)证明:2.思考:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”画一画:三角形的两条边分别为4cm和3cm,长度为3cm的边所对的角为30度,画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?把你的发现和同伴交流。
教学过程设计提炼规律:两角和它们的夹边对应相等的两个三角形全等〔可以简写成“角边角〞或“ASA 〞〕.问题3:我们刚刚做的三角形是一个特殊三角形, 随意画一个三角形ABC, •能不能作一个△A ′B ′C ′, 使∠A=∠A ′、∠B=∠B ′、AB=A ′B ′呢?问题4:如图, 在△ABC 和△DEF 中, ∠A=∠D, ∠B=∠E, BC=EF, △ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?D CABFE例题:如以下图, D 在AB 上, E 在AC 上, AB=AC, ∠B=∠C . 求证:AD=AE .D CABE三、课堂训练1.如图, ∠B =∠DEF , AB =DE , 请添加一个条件使△ABC ≌△DEF , 那么需添加的条件是__________(只需写出一个).2..如图, 某同学把一块三角形的玻璃打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃, 那么最省事的方法是〔 〕 A .带①去 B .带②去 C .带③去 D .带②和③去3.如图, AE ∥CF , 且AE =CF , AB ⊥EF 于B , CD ⊥EF 于D . 求证:FB =DE .生类比“SSS 〞“SAS 〞归纳“角边角〞定理.学生利用尺规作图法, 作出△A ′B ′C ′, 并与△ABC 比拟. 最终形成三角形全等的判定定理——“角边角〞学生探究、证明, 获得“角角边〞判定定理.观察图形, 找全等三角形及三角形全等所需的条件.完成证明后与教材中对照.学生充分讨论, 综合应用所学知识解决问题.培养学生的类比、归纳能力. 复习用尺规作一个角等于角的方法及加深对“角边角〞定理的理解.应用“角边角〞定理解题, 强化知识间的联系.标准证明的过程的书写.稳固本节课所学知识及提升综合应用所学知识解决问题的能力.板书设计一、阅读教科书 二、学习目标:1.知道二次函数的一般表达式; 2.会利用二次函数的概念分析解题; 3.列二次函数表达式解实际问题. 三、知识点:一般地, 形如____________________________的函数, 叫做二次函数. 其中x 是________, a 是__________, b 是___________, c 是_____________. 四、根本知识练习1.观察:①y =6x 2;②y =-32 x 2+30x ;③y =200x 2+400x +200.这三个式子中, 虽然函数有一项的, 两项的或三项的, 但自变量的最高次项的次数都是______次.一般地, 如果y =ax 2+bx +c 〔a 、b 、c 是常数, a ≠0〕, 那么y 叫做x 的_____________. 2.函数y =(m -2)x 2+mx -3〔m 为常数〕. 〔1〕当m__________时, 该函数为二次函数; 〔2〕当m__________时, 该函数为一次函数.3.以下函数表达式中, 哪些是二次函数?哪些不是?假设是二次函数, 请指出各项对应项的系数. 〔1〕y =1-3x 2 〔2〕y =3x 2+2x 〔3〕y =x (x -5)+2 〔4〕y =3x 3+2x 2〔5〕y =x +1x五、课堂训练 1.y =(m +1)xmm 2-3x +1是二次函数, 那么m 的值为_________________.2.以下函数中是二次函数的是〔 〕 A .y =x +12B . y =3 (x -1)2C .y =(x +1)2-x 2D .y =1x2 -x3.在一定条件下, 假设物体运动的路段s 〔米〕与时间t 〔秒〕之间的关系为 s =5t 2+2t, 那么当t =4秒时, 该物体所经过的路程为〔 〕 A .28米 B .48米 C .68米 D .88米4.n 支球队参加比赛, 每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.5.y 与x 2成正比例, 并且当x =-1时, y =-3. 求:〔1〕函数y 与x 的函数关系式;〔2〕当x =4时, y 的值;2〔3〕当y=-13时, x的值.6.为了改善小区环境, 某小区决定要在一块一边靠墙〔墙长25m〕的空地上修建一个矩形绿化带ABCD, 绿化带一边靠墙, 另三边用总长为40m的栅栏围住〔如图〕.假设设绿化带的BC边长为x m, 绿化带的面积为y m2.求y与x之间的函数关系式, 并写出自变量x的取值范围.六、目标检测1.假设函数y=(a-1)x2+2x+a2-1是二次函数, 那么〔〕A.a=1 B.a=±1 C.a≠1 D.a≠-1 2.以下函数中, 是二次函数的是〔〕A.y=x2-1 B.y=x-1 C.y=8x D.y=8x23.一个长方形的长是宽的2倍, 写出这个长方形的面积与宽之间的函数关系式.4.二次函数y=-x2+bx+3.当x=2时, y=3, 求这个二次函数解析式.。
(第4题)13.2.2全等三角形的判定(SAS )学习目标:掌握SAS 的内容,会运用SAS 来识别两个三角形全等;通过识别全等三角形的识别的学习,初步认识事物之间的因果关系与相互制约关系,学习分析事物本质的方法;经历如何总结出全等三角形识别方法,体会如何探讨、实践、总结,培养学生的合作能力。
一、自主学习1.思考:如果两个三角形有三组对应相等的元素(边或角),那么会有哪几种可能的情况?2.思考:如果“两边及一角”条件中的角是两边的夹角,比如三角形两条边分别为3cm 和4cm ,它们的夹角为45︒,你能画出这个三角形吗?你画的与同伴画的一定全等吗?换两条线段和一个角试试,你发现了什么?3..边角边理:如果两个三角形有______________及其_____________分别对应相等,那么这两个三角形____________.4.用两条线段和一个角画三角形,能画______种不同的三角形.所以在用边角边公理判定两三角形是否全等时,这个角必须是两边的_______角.二、合作探究例1:如图,△ABC 中,AB =AC ,AD 平分∠BAC ,试说明△ABD ≌△ACD .变式训练(1)求证: ∠B =∠C . (2)求证:BD=CD (3)求证:AD ⊥BC练一练:如图,在△AEC 和△ADB 中,已知AE=AD ,AC=AB 。
请说明△AEC ≌ △ADB 的理由。
解:在△AEC 和△ADB 中 AE =____(已知)____= _____(公共角)_____= AB ( )∴ △_____≌△______( )例2.点M 是等腰梯形ABCD 底边AB 的中点,求证: △AMD ≌△BMC练习:已知:AD =BC ,∠ADC =∠BCD .求证: ∠BDC =∠ACD .三、展示提升: 1.如图,已知:在ABC △和DCB △中,AC DB =,若不增加任何字母与辅助线,要使ABC DCB △△≌,则还需增加一个条件是 . (见下图)2. 如图,线段AC 与BD 交于点O ,且OA =O C, 请添加一个条件,使△OAB ≅△OCD ,这个条件是D C B AA B C D F EDEACB 图1E DCBAOEDCBA图2OEDCBA图3______________________.3. 如图,AB AC = ,要使ABE ACD △≌△,应添加的条件是____________ .(添加一个条件即可)4.如图,A ,B ,C ,D 在同一直线上,AB CD =,DE AF ∥,若要使ACF DBE △≌△,则还需要补充一个..条件: . 5.如图,AB AD =,AC AE =,12∠=∠,求证:BC DE =6.已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF . 求证:AB ∥CD四、检测反馈 1、(2006·烟台市)如图1,CD 是Rt △ABC 斜边上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( )A 、25°B 、30°C 、45°D 、60°2、(2005·广东)如图2,已知CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 交于点O ,且AO 平分∠BAC ,那么图中全等的三角形共______________对。
三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的条件。
2. 引导学生学习“边角边”判定定理,并能运用该定理判断三角形是否全等。
3. 培养学生的观察能力、思考能力和动手操作能力。
二、教学内容1. 三角形全等的概念2. “边角边”判定定理3. 运用“边角边”判定定理判断三角形全等三、教学重点与难点1. 教学重点:三角形全等的概念,“边角边”判定定理及其运用。
2. 教学难点:三角形全等的判断过程,运用“边角边”判定定理时的思路。
四、教学方法1. 采用问题驱动法,引导学生探究三角形全等的条件。
2. 运用案例分析法,让学生通过观察、操作、思考,掌握“边角边”判定定理。
3. 采用小组合作学习法,培养学生的团队协作能力和沟通能力。
五、教学过程1. 导入:通过复习三角形的基本概念,引导学生思考三角形全等的条件。
2. 新课:介绍三角形全等的概念,讲解“边角边”判定定理。
3. 案例分析:展示三角形全等的实例,让学生运用“边角边”判定定理进行判断。
4. 课堂练习:设计相关练习题,让学生巩固所学知识。
5. 总结:对本节课的内容进行总结,强调三角形全等的判断方法。
6. 作业布置:布置相关作业,巩固所学知识。
教学反思:本节课通过问题驱动法和案例分析法,引导学生探究三角形全等的条件,并运用“边角边”判定定理进行判断。
在教学过程中,注意调动学生的积极性,培养学生的观察能力、思考能力和动手操作能力。
采用小组合作学习法,培养学生的团队协作能力和沟通能力。
通过课堂练习和作业布置,巩固所学知识。
在教学反思中,要关注学生的掌握情况,针对性地进行教学调整。
六、教学拓展1. 引导学生思考:除了“边角边”判定定理,还有哪些判定三角形全等的方法?2. 介绍其他判定三角形全等的方法:a. 角角边(AAS)判定定理b. 角边角(ASA)判定定理c. 边边边(SSS)判定定理3. 分析各种判定方法的适用范围和条件。
12.2 三角形全等的判定“角边角” “角角边” 导学案一、学习目标1.了解三角形全等的判定方法:角边角、角角边;2.能够应用二者判定方法判断两个三角形的全等性。
二、学习重点1.三角形全等的判定方法“角边角”;2.三角形全等的判定方法“角角边”。
三、学习难点1.二者的比较和应用;2.需要注意的细节。
四、课前预习复习三角形内角和定理,了解三角形的基本性质,如三角形对边比例定理、角平分线定理等。
五、课堂讲解5.1 角边角(AAS)全等判定法角边角全等判定法又称AAS定理,是指在两个三角形中,若其中一个三角形的两个角和一个边分别与另一个三角形中的两个角和一条边对应相等,则这两个三角形全等。
具体的证明过程如下:AAS证明思路5.2 角角边(ASA)全等判定法角角边全等判定法又称ASA定理,是指在两个三角形中,若其中一个三角形的两个角和一边分别与另一个三角形中的两个角和同一边对应相等,则这两个三角形全等。
具体的证明过程如下:ASA证明思路5.3 两者的比较在实际运用中,需要注意两种全等判定法的区别和联系:1.两种判定法都涉及到三个共同点:一个角、一条边和另一个角;2.两种全等判定法不能互换,若角边角不成立,用角角边也不一定成立。
例如,下图中,已知∠ABC=∠DEF,AC=DE,BC=EF,则两个三角形全等、对应的角和线段分别为:•∠ABC≌∠DEF•AC≌DE•BC≌EF•ΔABC≌ΔDEF (角边角定理成立)角边角形成的等边三角形而下图中,已知∠ABC=∠DEF,AB=DE,AC=DF,则两个三角形全等、对应的角和线段分别为:•∠ABC≌∠DEF•AB≌DE•AC≌DF•ΔABC≇ΔDEF (角角边定理不成立)角角边不成立的情况六、课后练习6.1 选择题1.若有两个三角形的其中一对对应的角和另一对对应的边分别相等,则称这两个三角形为________。
(AAS / SSS / SAS / ASA)2.若有两个三角形的其中两条边和它们之间的夹角分别相等,则称这两个三角形为________。
§11.2 三角形全等的判定-“边角边”导学案【学习过程】(2)前面我们学习了两种判定方法:1、定义(重合)2、边边边(SSS)。
还有没有其他判定方法呢?本节课我们一起来探究两边及一角的情况。
边角边,边边角板书课题:§11.2三角形全等的判定---—“边角边”师:首先请我们看看本节课的学习目标。
一、展示目标:(1)1.知道三角形全等“边角边”的内容.2.会使用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程。
师:为了使大家顺利达到学习目标,老师制作了一个导学单,请大家看一看。
二、自学检查:(1)昨天已布置大家自学,大家按我的自学指导带着我提的三个问题认真看了课本P37-39的内容,能初步理解“边角边”定理的请举手。
表现很好,那我们就一起来探究。
首先请看导学单第二局部第1个内容并填好。
三、课堂探究:1.如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO 是否能完全重合呢?(2)(1)从图中我们能够看出AO= ,BO= ,∠AOB=∠(2)由(1)中的回答,你能得到什么猜测?2.上述猜测是否准确呢?小组合作完成下面实验:(5)先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB, A'C'=AC,∠A'=∠A。
把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?(1)、画∠DA'E=∠A ;(昨天已学画一个角等于已知角,教师示范)(2)、在射线A'D上截取A'B'=AB,在射线A' E上截取A'C'=AC;(3)、连结B'C'。
(4)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?C 'B 'A 'C B AD CBA 归纳总结: 相等的两个三角形全等(简称“边角边”或“SAS ”)归纳:只要满足:边=边,两边的夹角=两边的夹角,边=边。
课题:§19.2三角形全等的判定(2.边角边)
执笔:刘朝雄
【内容范围】课本第60页~62页.
【学习目标】通过自主学习经历“全等三角形的判定一(边角边)”的发现、验证和运用过程;能正确识别图形中使两个三角形全等的条件(边角边)并能规范的写出识别的过程;通过对图形的观察培养自己的识图能力,同时通过对“边边角”的辨析提高自己的思辨能力.
【学习重点】能用“边角边”证明两个三角形全等,并能严谨、规范地写出证明的过程. 【学习难点】正确寻找判定三角形全等所需的条件.
一、导读思考:
1.如果两个三角形有3组对应相等的元素,那么含有几种情况?其中哪一种已经确定不能判定两个三角形全等?
2.画一个三角形,使三角形有其中两边长分别为3cm和4cm,一个内角为45°.试一试你能画出几个?
3.在你所画的三角形中,长度3cm和4cm的两边的夹角是45°的三角形有几种?45°角的一边是4cm,它所对的边长是3cm的三角形有几种?你从中发现了什么?
二、探究新知:
1.下面针对“如果两个三角形有两边和一个角分别对应相等,这两个三角形全等吗?”进行探究.此时应该有几种情况?分别是怎样的条件?
2.把你画的三角形与其他同学画的三角形进行比较,下列哪种条件的三角形能完全重合(全等)?
3.如图,在△ABC 和△A ′B ′C ′中,已知AB =A ′B ′,∠B =∠B ′,BC =B ′C ′.试说明通过怎样的变换,可以使两个三角形重合
?
4.概括:如果两个三角形有 及其 分别对应相等,那么这两个三角形全等.简称S.A.S.(或边角边).用数学符号表达为:在△ABC 和△A ′B ′C ′中(上图)
(1)⎪⎩⎪⎨⎧''='∠=∠''=C B BC B B B A AB (2) ⎪⎩
⎪⎨⎧='∠=∠''=______A A B A AB
∴C B A ABC '''∆≅∆( S.A.S.) ∴C B A ABC '''∆≅∆( S.A.S.)
(3) ⎪⎩
⎪⎨⎧''=∠=∠''=C B BC C A AC ____
∴C B A ABC '''∆≅∆
( S.A.S.)
5. 如果两个三角形有两边和其中一边的对角分别对应相等,这两个三角形全等吗?说明理由(或举反例说明).
三、精练反馈:
1.根据题目条件,判断下面的三角形是否全等.
(1)AC=DF,∠C=∠F,BC=EF;
(2)BC=BD,∠ABC =∠ABD.
(第1题)
2.如图2,△AOB和△COD全等吗?
3.如图,在△ABC中,AB=AC, AD平分∠BAC,求证:△ABD≌△ACD.
∴∠=∠.
在△ABD与△ACD中,
∵AB=,(已知)
∠BAD=∠CAD,
AD=,(边)
∴△ABD≌△ACD().
思路:证明两个三角形全等时,要先看这两个三角形已经具有哪些对应相等的元素,要全等还需怎样的条件,再设法寻求所需的条件.
延伸:由△ABD与△ACD全等,还能证得∠B=∠,即证得等腰三角形的相等.你
还能证得哪些结论?
4.如图3,已知AD∥BC,AD=CB,证明△ABC≌△CDA.
分析:要证明△ABC≌△CDA,需要个条件,已
有①AD=CB(),②AC= ( ),还需要的
条件是,这可根据已知中的
可以得到.
证明:
5.如图4,已知AB=AC,AD=AE,∠1=∠2,证明△ABD≌ACE.
6.如图,已知AB=AC,AE=AD,那么图中哪两个三角形全等?并进行证明.
四、拓展延伸:
已知: AD∥BC,AD= CB(如图).现有条件能证明△ADC≌△CBA吗?如果能请写出证明过程,若不能,那么还需添加怎样的条件才能证明?
五、课堂小结:
六、课后作业:《课时达标》第41页(其中5、6、7写在作业本上,第8题选做). 七.课后反思:。