初中数学八年级《全等三角形的判断“角边角”“角角边”》优秀教学设计
- 格式:docx
- 大小:29.93 KB
- 文档页数:4
角角边判定三角形全等-人教版八年级数学上册教案
一、教学目标
1.掌握角角边全等的定义;
2.掌握角角边全等的判定方法;
3.能够运用角角边全等的方法解决实际问题。
二、教学内容
1.什么是角角边全等;
2.角角边全等的判定方法;
3.解决实际问题。
三、教学重点
1.掌握角角边全等的定义;
2.掌握角角边全等的判定方法。
四、教学难点
能够运用角角边全等的方法解决实际问题。
五、教学方法
讲授、示范、练习。
六、教学过程
1. 导入新知
通过展示一个等腰三角形和一个一般三角形:
/|
/ |
/__|
/|
/ |\\
/__|_\\
引导学生讨论它们之间的不同。
然后问学生,如何证明这两个三角形是相等的?引入角角边全等定理。
2. 角角边全等的定义
引入角角边全等的定义,并让学生用自己的话说出来。
3. 角角边全等的判定方法
讲解角角边全等的判定方法:
1.如果两个三角形的两个角分别相等,且它们的夹边也相等,那么这两个三角形就全等。
2.如果两个三角形的两个角和一边分别相等,另一边也相等,那么这两个三角形也全等。
4. 解决实际问题
通过一些实际问题的解答,让学生学会如何使用角角边全等定理。
七、教学总结
通过本节课的学习,学生们掌握了角角边全等的定义,掌握了角角边全等的判定方法,并且学会了如何使用角角边全等定理解决实际问题。
八、作业
1.完成课后练习;
2.准备下一节课的内容。
教学设计复习引入一、巩固旧知1、能够的两个三角形叫做全等三角形。
2、全等三角形的性质有哪些?全等三角形的对应边,对应角。
3、已学的判定两个三角形全等方法有哪些?边边边:对应相等的两个三角形全等。
符号语言:边角边:和它们的对应相等的两个三角形全等。
符号语言:二、自主学习1.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?2.现实情境一张教学用的三角板硬纸不小心被撕坏了,如图:你能制作一张与原来同样大小的新道具吗?能恢复原来三角形的原貌吗?(1)以①为模板,画一画,能还原吗?(2)以②为模板,画一画,能还原吗?(3)以③为模板,画一画,能还原吗?(4)第③块中,三角形的边角六个元素中,固定不变的元素是_____________.猜想:两角及夹边对应相等的两个三角形_______.根据学生完成情况,了解学生对已学知识的掌握程度。
通过学生自主学习与思考,初步发现结论,同时激发学生勇于探索的科学精神。
教学过程教学环节教学活动评估要点ABCF ED探究新知 探究点1:三角形全等的判定定理3--“角边角”活动:先任意画出一个△ABC ,再画一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B .把画好的△A ′B ′C ′剪下,放到△ABC 上,它们全等吗?你能得出什么结论?要点归纳: 相等的两个三角形全等(简称“角边角”或“ASA ”).几何语言:如图,在△ABC 和△DE F 中,∴△ABC ≌△DEF .典例精析例1:如图,已知:∠ABC =∠DCB ,∠ACB = ∠DBC .求证:△ABC ≌△DCB .例2:如图,点D 在AB 上,点E 在AC 上,AB =AC , ∠B =∠C .求证:AD=AE .方法总结:证明线段或角度相等,可先证两个三角形全等,利用对应边或对应角相等来解决.针对训练如图,AD ∥BC ,BE ∥DF ,AE =CF .求证:△ADF ≌△CBE .引导学生通过动手画图、剪下来等操作,观察所画的图与原图是否重合,进而得出“角边角”的判定条件,并会用几何语言表述。
第3课时“角边角”“角角边”1.理解并掌握三角形全等的判定方法——“角边角”,“角角边”.(重点)2.能运用“角边角”“角角边”判定方法解决有关问题.(重点)3.“角边角”和“角角边”判定方法的探究以及适合“角边角”判定方法的条件的寻找.(难点)一、情境导入如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪块去?学生活动:学生先自主探究出答案,然后再与同学进行交流.教师点拨:显然仅仅带①或②是无法配成完全一样的玻璃的,而仅仅带③则可以,为什么呢?本节课我们继续研究三角形全等的判定方法.二、合作探究探究点一:应用“角边角”、“角角边”判定三角形全等【类型一】应用“ASA”判定两个三角形全等如图,AD∥BC,BE∥DF,AE=CF,求证:△ADF≌△CBE.解析:根据平行线的性质可得∠A=∠C,∠DFE=∠BEC,再根据等式的性质可得AF=CE,然后利用ASA可证明△ADF≌△CBE.证明:∵AD∥BC,BE∥DF,∴∠A=∠C,∠DFE=∠BEC.∵AE=CF,∴AE+EF=CF+EF,即AF=CE .在△ADF 和△CBE 中,∵⎩⎪⎨⎪⎧∠A =∠C ,AF =CE ,∠DFA =∠BEC ,∴△ADF ≌△CBE (ASA).方法总结:在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分;在“ASA ”中,“边”必须是“两角的夹边”.【类型二】 应用“AAS ”判定两个三角形全等如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于E .AD 与BE 交于F ,若BF =AC ,求证:△ADC ≌△BDF .解析:先证明∠ADC =∠BDF ,∠DAC =∠DBF ,再由BF =AC ,根据AAS 即可得出两三角形全等. 证明:∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =∠BDF =∠BEA =90°.∵∠AFE =∠BFD ,∠DAC +∠AEF +∠AFE =180°,∠BDF +∠BFD +∠DBF =180°,∴∠DAC =∠DBF .在△ADC 和△BDF 中,∵⎩⎪⎨⎪⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,∴△ADC ≌△BDF (AAS).方法总结:在“AAS ”中,“边”是“其中一个角的对边”.【类型三】 灵活选用不同的方法证明三角形全等如图,已知AB =AE ,∠BAD =∠CAE ,要使△ABC ≌△AED ,还需添加一个条件,这个条件可以是______________.解析:由∠BAD =∠CAE 得到∠BAC =∠EAD ,加上AB =AE ,所以当添加∠C =∠D 时,根据“AAS ”可判断△ABC ≌△AED ;当添加∠B =∠E 时,根据“ASA ”可判断△ABC ≌△AED ;当添加AC =AD 时,根据“SAS ”可判断△ABC ≌△AED .方法总结:判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.探究点二:运用全等三角形解决有关问题已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:(1)△BDA ≌△AEC ;(2)DE =BD +CE .解析:(1)由垂直的关系可以得到一对直角相等,利用同角的余角相等得到一对角相等,再由AB =AC ,利用AAS 即可得证;(2)由△BDA ≌△AEC ,可得BD =AE ,AD =EC ,根据DE =DA +AE 等量代换即可得证.证明:(1)∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠ABD +∠BAD =90°.∵AB ⊥AC ,∴∠BAD +∠CAE =90°,∴∠ABD =∠CAE .在△BDA 和△AEC 中,∵⎩⎪⎨⎪⎧∠ADB =∠CEA =90°,∠ABD =∠CAE ,AB =AC ,∴△BDA ≌△AEC (AAS);(2)∵△BDA ≌△AEC ,∴BD =AE ,AD =CE ,∴DE =DA +AE =BD +CE .方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.三、板书设计“角边角”“角角边”1.角边角:两角及其夹边分别相等的两个三角形全等.简记为“角边角”或“ASA ”.2.角角边:两角分别相等且其中一组等角的对边相等的两个三角形全等.简记为“角角边”或“AAS ”.3.三角形全等是证明线段相等或角相等的常用方法.本节课的教学借助于动手操作、分组讨论等探究出三角形全等的判定方法.在寻找判定方法证明两个三角形全等的条件时,可先把容易找到的条件列出来,然后再根据判定方法去寻找所缺少的条件.从课堂教学的情况来看,学生对“角边角”掌握较好,达到了教学的预期目的.存在的问题是少数学生在方法“AAS”和“ASA ”的选择上混淆不清,还需要在今后的教学中进一步加强巩固和训练.作者留言:非常感谢!您浏览到此文档。
三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解三角形全等的概念,掌握三角形全等的条件。
2. 引导学生学习“边角边”判定定理,并能运用该定理判断三角形是否全等。
3. 培养学生的观察能力、思考能力和动手操作能力。
二、教学内容1. 三角形全等的概念2. “边角边”判定定理3. 运用“边角边”判定定理判断三角形全等三、教学重点与难点1. 教学重点:三角形全等的概念,“边角边”判定定理及其运用。
2. 教学难点:三角形全等的判断过程,运用“边角边”判定定理时的思路。
四、教学方法1. 采用问题驱动法,引导学生探究三角形全等的条件。
2. 运用案例分析法,让学生通过观察、操作、思考,掌握“边角边”判定定理。
3. 采用小组合作学习法,培养学生的团队协作能力和沟通能力。
五、教学过程1. 导入:通过复习三角形的基本概念,引导学生思考三角形全等的条件。
2. 新课:介绍三角形全等的概念,讲解“边角边”判定定理。
3. 案例分析:展示三角形全等的实例,让学生运用“边角边”判定定理进行判断。
4. 课堂练习:设计相关练习题,让学生巩固所学知识。
5. 总结:对本节课的内容进行总结,强调三角形全等的判断方法。
6. 作业布置:布置相关作业,巩固所学知识。
教学反思:本节课通过问题驱动法和案例分析法,引导学生探究三角形全等的条件,并运用“边角边”判定定理进行判断。
在教学过程中,注意调动学生的积极性,培养学生的观察能力、思考能力和动手操作能力。
采用小组合作学习法,培养学生的团队协作能力和沟通能力。
通过课堂练习和作业布置,巩固所学知识。
在教学反思中,要关注学生的掌握情况,针对性地进行教学调整。
六、教学拓展1. 引导学生思考:除了“边角边”判定定理,还有哪些判定三角形全等的方法?2. 介绍其他判定三角形全等的方法:a. 角角边(AAS)判定定理b. 角边角(ASA)判定定理c. 边边边(SSS)判定定理3. 分析各种判定方法的适用范围和条件。
三角形全等的判定一、教学目标知识技能1掌握三角形全等的“ASA和AAS”条件。
2.能初步应用ASA和AAS”条件判定两个三角形全等.数学思考1.使学生经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.在探索三角形全等条件及其运用过程中,能够进行有条理的思考并进行简单的推理.解决问题会用ASA和AAS”条件证明两个三角形全等.情感态度1.通过探索和实际的过程体会数学思维的乐趣,激发应用数学的意识.2.通过合作交流,培养合作意识,体验成功的喜悦.二、教学方法探究式、讨论式三、教学手段多媒体辅助教学。
四、教学过程Ⅰ、创设情境,引入新课一天, 小明的妈妈叫他去玻璃店画一块三角形玻璃,小明不小心把画的三角形玻璃打碎成了三块,他为了省事,他从打碎的三块玻璃中选一块去,小明想法能办得到吗?若能,你认为小明应该拿哪块玻璃去呢?为什么?【师生行为】教师通过(Flash课件)展示视频内容,提出情境问题.学生独立思考,发表自己的见解。
【设计意图】创设性的设计问题,变“教教材”为“用教材”.①使学生快速集中精力,调整听课状态.②知识的呈现过程与学生已有的生活密切联系起来,学有用的数学,激发学生的学习兴趣。
③使学生产生认知上的冲突,从而引入本课课题,明确本节课的探究方向,激发学习欲望。
Ⅱ、实践操作、探索新知问题1、如图,△ABC是任意一个三角形,画△A1B1C1,使A1B1=AB,∠A1=∠A,∠B1=∠B把画得△A1B1C1剪下来放在△ABC进行比较,它们是否重合?问题2、如图,△ABC是任意一个三角形,画△A1B1C1,使A1C1=AC, ∠A1=∠A,∠B1=∠B,请你猜测△A1B1C1与△ABC是否全等?若它们全等,你能用"ASA"来证明你猜测结论成立吗?【师生行为】教师提出问题,学生思考问题,动手实践、小组讨论、交流.学生在探索过程中,难免有困难,教师要鼓励学生争论和启发引导下及时作出正确的结论。
第3课时“角边角”“角角边”
教学目标
1.三角形全等的条件:角边角、角角边.
2.三角形全等条件小结.
3.掌握三角形全等的“角边角”“角角边”条件.
4.能运用全等三角形的条件,解决简单的推理证明问题.
教学重点
已知两角一边的三角形全等探究.
教学难点
灵活运用三角形全等条件证明.
教学过程
Ⅰ.提出问题,创设情境
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边.
(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?
三种:①定义;②SSS;③SAS.
2.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?
Ⅱ.导入新课
问题1:三角形中已知两角一边有几种可能?
1.两角和它们的夹边.
2.两角和其中一角的对边.
问题2:三角形的两个内角分别是60°和80°,它们的夹边为4cm,•你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:
两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).
问题3:我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC ,•能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢? ①先用量角器量出∠A 与∠B 的度数,再用直尺量出AB 的边长. ②画线段A′B′,使A′B′=AB .
③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A ,使∠D′AB=∠CAB ,∠EB′A′=∠CBA .
④射线A′D 与B′E 交于一点,记为C′ 即可得到△A′B′C′.
将△A′B′C′与△ABC 重叠,发现两三角形全等.
两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”). 思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢? 探究问题4:
如图,在△ABC 和△DEF 中,∠A=∠D ,∠B=∠E ,BC=EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?
证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°
∠A=∠D ,∠B=∠E ∴∠A+∠B=∠D+∠E ∴∠C=∠F
在△ABC 和△DEF 中
C '
A '
B '
D
C
A
E
D C
A
B
F
E
∴△ABC ≌△DEF (ASA ).
两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).
[例]如下图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C .
求证:AD=AE .
[分析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD=AE ,只需证明△ADC ≌△AEB 即可. 证明:在△ADC 和△AEB 中
所以△ADC ≌△AEB (ASA ) 所以AD=AE . Ⅲ.随堂练习 (一)课本练习. (二)补充练习
图中的两个三角形全等吗?请说明理由.
答案:图(1)中由“ASA”可证得△ACD ≌△ACB .图(2)由“AAS”可证得△ACE ≌△BDC . Ⅳ.课时小结
至此,我们有五种判定三角形全等的方法:
B E B
C EF C F ∠=∠⎧⎪
=⎨⎪∠=∠⎩
A A AC A
B
C B ∠=∠⎧⎪
=⎨⎪∠=∠⎩
50︒50︒
45︒
45︒D
C
A
B (1)
29︒
29︒
D
C A B
(2)
E
D C
A
B
E
1.全等三角形的定义
2.判定定理:边边边(SSS)边角边(SAS)角边角(ASA)角角边(AAS)推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.Ⅴ.作业。