江苏省徐州市铜山区2019-2020学年中考数学二模试卷(Word版,含答案解析)
- 格式:doc
- 大小:594.50 KB
- 文档页数:22
江苏省徐州市2019-2020学年度九年级数学下学期二模测试试卷(时间:120分钟 满分:140分)一. 选择题(本大项共有8个题,每题3分,共24分.将正确答案填涂在答题卡相应位置)1. −3的绝对值是(▲)A .3B .−3C .13D .13- 2. 下列计算中,正确的是(▲)A .325()a a =B .325a a a +=C .32()a a a a -÷= D .331a a ÷=3. 国家统计局数据:截至2019年底,中国大陆总人口为1400 000 000.将1400 000 000用科学记数法表示是(▲)A .81410⨯B .91410⨯C .81.410⨯D .91.410⨯ 4. 矩形具有而平行四边形不一定具有的性质是(▲)A .对边相等B .对角线相等C .对角相等D .对角线互相平分 5. 关于一组数据:2,6,1,10,6,下列说法中正确的是(▲)A .这组数据的众数是6B .这组数据的中位数是1C .这组数据的平均数是6D .这组数据的方差是10 6. 如果反比例函数ay x=的图象分布在第一、三象限,那么a 的值可以是(▲) A . −3 B .2C .0D .−17. 把抛物线224y x x =-+向左平移2个单位,再向下平移6个单位,所得抛物线的顶点坐标是(▲)A .(3,−3)B .(3,9)C .(−1,−3)D .(−1,9) 8. 如图,正方形ABCD 的边长为4,延长CB 至E 使EB =2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于点M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN =∠HFG ;③FN =2NK ;④S △AFN ∶S △ADM =1∶4.其中正确结论的个数是(▲)HF EMA .1B .2C .3D .4二. 填空题(本大项共10小题,每小题3分,共30分.将正确答案填写在答题卡相应位置)9. 计算:123-⎛⎫= ⎪⎝⎭▲.10. 分解因式:244x -=▲.11. 已知∠α=60°32′,则∠α的补角是▲.12. 如果一元二次方程2320x x --=的一个根是m ,则代数式24122m m -+的值是▲. 13. 若正n 边形的一个内角是140º,那么它的边数 n =▲. 14. 命题“同位角相等,两直线平行”的逆命题是▲.15. 已知扇形的半径为6cm ,圆心角为150°,则此扇形的弧长是▲cm .16. 如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形的两条直角边相交成∠1、∠2,则∠2-∠1=▲º. 17. 如图,在矩形ABCD 中,AB =2,BC =3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长 为 ▲ .18. 如图,在平面直角坐标系中,函数2y x =和y x =-的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 2于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 2于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…依次进行下去,则点A 2020的坐标为▲.三. 解答题(本大项共10小题,共86分.在答题卡指定区域写出文字说明、证明过程或演算步骤) 19. (本题10分)计算:(1)020202(1)3⎛⎫--- ⎪⎝⎭(2)1)1(a a a ⎛⎫-÷+ ⎪⎝⎭.(第18题图)1AB (第17题图)20. (本题10分)解方程或不等式:(1)解方程:2514x x -=;(2)解不等式组:2(1)3, 10. x x x ->⎧⎨<-⎩①②21. (本题7分)某地铁站入口检票处有A 、B 、C 三个闸机. (1)某人需要从此站入站乘地铁,那么他选择A 闸机通过的概率是▲; (2)现有甲、乙两人需要从此站进站乘地铁,求这两个人选择不同闸机通过的概率(用画村状图或列表.......的方法求解).22. (本题7分)为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表和统计图.请根据图表信息解答以下问题: (1)本次调查一共随机抽取了▲个参赛学生的成绩; (2)表1中a =▲; (3)所抽取的参赛学生的成绩的中位数落在的“组别”是▲; (4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有▲人.23. (本题8分)如图,正方形ABCD 中,G 为BC 边上一点,BE ⊥AG于E ,DF ⊥AG 于F ,连接DE .(1)求证:△ABE ≌△DAF ;(2)若AF =1,四边形ABED 的面积为6,求EF 的长.(第22题图)E FAB CD(第21题图)24.(本题8分)某商场用3000元购进某种干果销售,由于销售状况良好,商场又用9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克。
2019年江苏省徐州市铜山区中考数学二模试卷一.选择题(共8小题,满分24分,每小题3分)1.﹣2018的绝对值的相反数是()A.B.﹣C.2018D.﹣20182.下列计算正确的是()A.3a﹣a=2B.a2+a3=a5C.a6÷a2=a4D.(a2)3=a53.在下图的四个立体图形中,从正面看是四边形的立体图形有()A.1个B.2个C.3个D.4个4.式子有意义的x的取值范围是()A.x≥﹣且x≠1B.x≠1C.D.x>﹣且x≠15.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A.B.C.D.6.为庆祝首个“中国农民丰收节”,十渡镇西河村举办“西河稻作文化节”活动.西河水稻种植历史悠久,因“色白粒粗,味极香美,七煮不烂”而享誉京城.已知每粒稻谷重约0.000035千克,将0.000035用科学记数法表示应为()A.35×10﹣6B.3.5×10﹣6C.3.5×10﹣5D.0.35×10﹣47.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°8.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.二.填空题(共10小题,满分30分,每小题3分)9.如图,将一副三角板叠在一起,使它们的直角顶点重合于O点,且∠AOB=155°,则∠COD=.10.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为.11.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.12.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是.13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.下列四个命题中:①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等.其中,真命题的有(填序号).15.在Rt△ABC中,∠ABC=90°,AB=6,BC=8,则这个三角形的外接圆的直径长为.16.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则在①3.6②4,③5.5,④7,这四个数中AP长不可能是(填序号)17.如图:已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为;第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形,如此继续下去,第n次得到的长方形的周长为.18.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为.三.解答题(共10小题,满分86分)19.计算:(1)|﹣2|+2 0100﹣(﹣)﹣1+3tan30°.(2)÷(a+1)﹣.20.解方程:(1)x2﹣8x+1=0(2)=1(3)解不等式组21.为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:学生最喜爱的节目人数统计表节目人数(名)百分比最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.22.在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.23.如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,并证明你的结论.24.从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.25.小亮一家到桃林口水库游玩.在岸边码头P处,小亮和爸爸租船到库区游玩,妈妈在岸边码头P处观看小亮与爸爸在水面划船,小船从P处出发,沿北偏东60°方向划行,划行速度是20米/分钟,划行10分钟后到A处,接着向正南方向划行一段时间到B处,在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米?(精确到1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)26.某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x >5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?27.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC 的中线,AF⊥BE,垂足为P.像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)①如图1,当∠ABE=45°,c=2时,a=,b=;②如图2,当∠ABE=30°,c=4时,求a和b的值.归纳证明(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.(3)利用(2)中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图4所示,求MG2+MH2的值.28.如图1,抛物线y=﹣x2+x+6与x轴交于A、B(B在A的左侧)两点,与y轴交于点C,将直线AC沿y轴正方向平移2个单位得到直线A′C′,将抛物线的对称轴沿x轴正方向平移个单位得到直线l.(1)求直线AC的解析式;(2)如图2,点P为直线A′C′上方抛物线上一动点,连接PC,PA与直线AC分别交于点E、F,过点P 作PP1⊥l于点P1,M是线段AC上一动点,过M作MN⊥A′C′于点N,连接P1M,当△PCA的面积最大时,求P1M+MN+NA′的最小值;(3)如图3,连接BC,将△BOC绕点A顺时针旋转60°后得到△B1O1C1,点R是直线l上一点,在直角坐标平面内是否存在一点S,使得以点O1、C1、R、S为顶点的四边形是矩形?若存在,求出点S的坐标;若不存在,请说明理由.2019年江苏省徐州市铜山区中考数学二模试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.【分析】直接利用绝对值以及相反数的定义分析得出答案.【解答】解:﹣2018的绝对值为:2018,故2018的相反数是:﹣2018.故选:D.【点评】此题主要考查了绝对值以及相反数,正确把握相关定义是解题关键.2.【分析】依据合并同类项法则、同底数幂的除法法则以及幂的乘方法则进行判断即可.【解答】解:3a﹣a=2a,故A选项错误;a2+a3≠a5,故B选项错误;a6÷a2=a4,故C选项正确;(a2)3=a6,故D选项错误;故选:C.【点评】本题主要考查了合并同类项法则、同底数幂的除法法则以及幂的乘方,合并同类项是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.3.【分析】找到从正面看所得到的图形比较即可.【解答】解:正方体的正视图是四边形;球的正视图是圆;圆锥的正视图是等腰三角形;圆柱的正视图是四边形;是四边形的有两个.故选:B.【点评】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.4.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1,故选:A.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数且分母不等于零得出不等式是解题关键.5.【分析】根据中心对称图形的概念对各个选项中的图形进行判断即可.【解答】解:A、B、C都不是中心对称图形,D是中心对称图形,故选:D.【点评】本题考查的是中心对称图形的概念,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形.6.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000035=3.5×10﹣5,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【分析】作所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【解答】解:作所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.【分析】根据题意,分两种情况:(1)当点P在AB上移动时,点D到直线PA的距离不变,恒为4;(2)当点P在BC上移动时,根据相似三角形判定的方法,判断出△PAB∽△ADE,即可判断出y=(3<x≤5),据此判断出y关于x的函数大致图象是哪个即可.【解答】解:(1)当点P在AB上移动时,点D到直线PA的距离为:y=DA=BC=4(0≤x≤3).(2)如图1,当点P在BC上移动时,,∵AB=3,BC=4,∴AC=,∵∠PAB+∠DAE=90°,∠ADE+∠DAE=90°,∴∠PAB=∠ADE,在△PAB和△ADE中,∴△PAB∽△ADE,∴,∴,∴y=(3<x≤5).综上,可得y关于x的函数大致图象是:.故选:D.【点评】(1)此题主要考查了动点问题的函数图象,要熟练掌握,解答此题的关键是要明确:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.(2)此题还考查了相似三角形的判定和性质的应用,要熟练掌握.二.填空题(共10小题,满分30分,每小题3分)9.【分析】先根据直角三角板的性质得出∠AOC+∠DOB=180°,进而可得出∠COD的度数.【解答】解:∵△AOC△BOD是一副直角三角板,∴∠AOC+∠DOB=180°,∴∠AOB+∠COD=∠DOB+∠AOD+∠COD=∠DOB+∠AOC=90°+90°=180°,∵∠AOB=155°,∴∠COD=180°﹣∠AOB=180°﹣155°=25°,故答案为:25°【点评】本题考查的是角的计算,熟知直角三角板的特点是解答此题的关键.10.【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:∵45出现了2次,出现的次数最多,∴这组数据的众数为45;故答案为:45.【点评】此题考查了众数,掌握众数的定义是解题的关键;众数是一组数据中出现次数最多的数.11.【分析】设反比例函数解析式为y=(k为常数,k≠0),根据反比例函数图象上点的坐标特征得到k=3m=﹣2n,即可得的值.【解答】解:设反比例函数解析式为y=,根据题意得:k=3m=﹣2n∴=﹣故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.【分析】设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.【解答】解:设正多边形的边数为n,由题意得,=144°,解得n=10.故答案为:10.【点评】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.13.【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.14.【分析】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.【解答】解:①对顶角相等是真命题;②两直线平行,同位角相等,是假命题;③全等三角形对应边相等是真命题;④菱形的对角线垂直,是假命题;故答案为:①③【点评】本题主要考查了命题与定理的运用,解题时注意:命题的“真”“假”是就命题的内容而言,任何一个命题非真即假.15.【分析】根据这个三角形的外接圆直径是斜边长即可得到结论.【解答】解:根据题意得:斜边是AC,即外接圆直径===10,这个三角形的外接圆的直径长为10,故答案为:10.【点评】本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.16.【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故答案为:④【点评】本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.17.【分析】先根据题意列出前3个长方形的周长,得出规律即可.【解答】解:第1个长方形的周长为4a+2×a,第2个长方形的周长为2×4a+2×a,第3个长方形的周长为2×8a+2×a,……∴第n个长方形的周长为2n﹣1•4a+2×()n a,故答案为:4a+2×a,2n﹣1•4a+2×()n a.【点评】本题主要考查图形的变化规律,解题的关键是根据题意得出前几个长方形的周长,并据此得出周长的变化规律.18.【分析】由AE⊥BE知点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,当点E位于点E′位置时,线段CE取得最小值,利用勾股定理可得答案.【解答】解:如图,∵AE⊥BE,∴点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,∴当点E位于点E′位置时,线段CE取得最小值,∵AB=4,∴OA=OB=OE′=2,∵BC=6,∴OC===2,则CE′=OC﹣OE′=2﹣2,故答案为:2﹣2.【点评】本题主要考查圆周角定理、圆的基本性质及矩形的性质、勾股定理,根据AE⊥BE知点E在以AB 为直径的半⊙O上是解题的关键.三.解答题(共10小题,满分86分)19.【分析】(1)根据绝对值、零次幂、负整数指数幂、特殊角的三角函数值计算即可.(2)按照分式的混合运算法则化简即可.【解答】解:(1)原式=2﹣+1+3+3×=6;(2)原式=•﹣=﹣==﹣1.【点评】本题考查分式的混合运算,有理数的混合运算,零次幂,负整数指数幂,特殊角的三角函数值等知识,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.20.【分析】(1)把1移到等号的右边,然后等号两边同时加上一次项一半的平方,再开方求解;(2)根据去分母、去括号、移项、合并同类项、化系数为1的步骤求出x的值,再把x的值代入原分式方程的公分母中进行检验;(3)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)x2﹣8x+1=0x2﹣8x=﹣1,x2﹣8x+16=﹣1+16,即(x﹣4)2=15,∴∴x﹣4=±,∴x1=4+,x2=4﹣;(2)去分母得,x(x+3)﹣3=x2﹣9,去括号得,x2+3x﹣3=x2﹣9,移项、合并同类项得,3x=﹣6,系数化为1得,x=﹣2,经检验,x=﹣2是原方程的根;(3),由①x≤1;由②x>﹣2;∴原不等式组的解是﹣2<x≤1.【点评】本题考查的是解一元二次方程、解分式方程及解一元一次不等式组,在解(2)时要注意验根,这是此题的易错点.21.【分析】(1)根据最强大脑的人数除以占的百分比确定出x的值,进而求出a与b的值即可;(2)根据a的值,补全条形统计图即可;(3)由中国诗词大会的百分比乘以1000即可得到结果.【解答】解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)根据题意得:1000×40%=400(名),则估计该校最喜爱《中国诗词大会》节目的学生有400名.【点评】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.22.【分析】(1)画树状图展示所有20种等可能的结果数,再找出从袋中同时摸出的两个球都是黄球的结果数,然后根据概率公式求解;(2)设放入袋中的黑球的个数为x,利用概率公式得到=,然后解方程即可.【解答】解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率==;(2)设放入袋中的黑球的个数为x,根据题意得=,解得x=2,所以放入袋中的黑球的个数为2.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【分析】(1)根据平行四边形的性质得出BO=DO,AO=OC,求出OE=OF,根据全等三角形的判定定理推出即可;(2)根先推出四边形EBFD是平行四边形,再根据矩形的判定得出即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BO=DO,AO=OC,∵AE=CF,∴AO﹣AE=OC﹣CF,即:OE=OF,在△BOE和△DOF中,∴△BOE≌△DOF(SAS);(2)矩形,证明:∵BO=DO,OE=OF,∴四边形BEDF是平行四边形,∵BD=EF,∴平行四边形BEDF是矩形.【点评】本题考查了平行四边形的性质和判定,全等三角形的判定和矩形的判定,能灵活运用定理进行推理是解此题的关键.24.【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点评】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.25.【分析】作PQ⊥AB于Q,根据已知,∠APQ=30°.解直角三角形求出PB即可;【解答】解:作PQ⊥AB于Q,根据已知,∠APQ=30°.则AQ=AP∵AP=20×10=200∴AQ=100∴PQ==100,在Rt△BPQ中,sin B=,∴PB=100÷0.60≈288米∴此时,小亮与妈妈相距288米.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.26.【分析】(1)根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据题意用含x的代数式表示出y1、y2即可;(3)把x=50代入两个函数关系式进行计算,比较得到答案.【解答】解:(1)设A、B两种品牌的计算器的单价分别为x、y元,由题意得,,解得.答:A、B两种品牌的计算器的单价分别为30元、32元;(2)y1=24x,y2=160+(x﹣5)×32×0.7=22.4x+48;(3)当x=50时,y1=24x=1200,y2=22.4x+48=1168,∵1168<1200,∴买B品牌的计算器更合算.【点评】本题考查的是二元一次方程组的应用和一次函数的应用,正确找出等量关系列出方程组并正确解出方程组、掌握一次函数的性质是解题的关键.27.【分析】(1)在图1中,PB=AB sin45°=2=PA,即可求解;同理可得:a=2,b=2;(2)PB=AB cosα=c cosα,PA=c sinα,PF=PA=c sinα,PE=c sinα,则a2+b2=(2AE)2+(2BF)2,即可求解;(3)证明:MG=ME=MB,MH=MC,则MG2+MH2=(MB2+MC2),即可求解.【解答】解:如图1、2、3、4,连接EF,则EF是△ABC的中位线,则EF=AB,EF∥AB,∴△EFP∽△BPA,∴…①,(1)在图1中,PB=AB sin45°=2=PA,由①得:PF=1,b=2BF=2=2=a;②同理可得:a=2,b=2;(2)关系为:a2+b2=5c2,证明:如图3,设:∠EAB=α,则:PB=AB cosα=c cosα,PA=c sinα,由①得:PF=PA=c sinα,PE=c sinα,则a2+b2=(2AE)2+(2BF)2=c2×5[(sinα)2+(cosα)2]=5c2;(3)∵AE=OE=EC,AG∥BC,∴AG=BC=AD,则EF=BC=AD,同理HG=AD,∴GH=AD,∴GH=EF,∵GH∥BC,EF∥BC,∴HG∥EF,∴MG=ME=MB,同理:MH=MC,则MG2+MH2=(MB2+MC2)=×5×BC2=5.【点评】本题为四边形综合题,考查了三角形相似、中位线等知识,其中(3),直接利用(2)的结论是本题的新颖点和突破点.28.【分析】(1)根据抛物线的解析式,令y=0,求出点A和点B的横坐标,令x=0,求出点C的纵坐标,再根据待定系数法求出直线AC的解析式;(2)先求出使△PCA面积最大时点P的坐标,再根据题意求出点P1的坐标,因为直线A'C'与直线AC的距离是定值,所以MN的长度不变,然后通过作对称点,平移,由两点之间线段最终最短求出结果;(3)根据题意画出图形,由旋转求出相关点的坐标,再通过矩形的性质和平移规律求出点S的坐标.【解答】解:(1)令y=0,则﹣x2+x+6=0,解得x1=6,x2=﹣2,∵B在A的左侧∴A(6,0),B(﹣2,0)令x=0,则y=6,即C(0,6),设直线AC解析式为y=kx+b,把A(6,0),C(0,6)代入,∴,解得:,所以直线AC解析式为:.(2)如图,过P作PH⊥x轴交AC于点H,∴S=PH•(x A﹣x C)=3PH,△PCA最大,∴当PH取最大值时,S△PCA设P(m,m2+m+6),H(m,m+6),∴PH=m2+m,(0<m<6),=(m﹣3)2+,∴当m=3时,PH取最大值,此时P(3,),在抛物线y=﹣x2+x+6中,对称轴为x==2,∴由平移知直线l为:x=,∴P1(,),设直线l与x轴的垂足为Q,连接P1A,在Rt△P1AQ中,QA=,P1Q=,P1A=5,∴tan∠P1AQ=,∴∠P1AQ=60°,作P1关于直线AC的对称点P1′,连接P1P1′,与直线AC、A’C’分别交于S、T点,则△AP1P1′是等边三角形,∴P1′A=P1A=5,P1′(,0),∵MN⊥AC,CC'=2,∠C'A'A=30°,∴MN=,将P1′沿MN方向平移个单位得到P1′'(,),将直线A’C’绕点A’顺时针旋转45°得到直线l1,过点P1′'作P1′'G⊥l1于点G,与A’C’的交点即为N点,易知△P1′'TN和△A'GN都为等腰直角三角形,∴P1′'N=P1′'T=,A'N=A'T﹣TN=,∴GN=﹣,∴(P1M+MN+NA′)=+;最小(3)连接OO1,则△OO1B为等边三角形,∴∠O1OA=∠OAO1=∠OO1A=60°,OO1=O1A=OA=6,∴O1(3,9),B1(2,12),C1(6,12),①如图2﹣1,当四边形Q1RS1C1为矩形时,x R﹣x O1=﹣3=,∵由题意知,QR与直线l的夹角为30°,∴y Q1﹣y R=×=,∴x S1=x C1+=,y S1=y C1﹣=,∴S1(,),同理可求出S2(,),S3(,﹣),S4(,+),综上所述:在直角坐标平面内存在一点S,使得以点O1、C1、R、S为顶点的四边形是矩形,坐标是S1(,),S2(,),S3(,﹣),S4(,+).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
江苏省徐州市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( )A .∠3=∠AB .∠D=∠DCEC .∠1=∠2D .∠D+∠ACD=180° 2.若分式12x -有意义...,则x 的取值范围是( ) A .2x =;B .2x ≠;C .2x >;D .2x <. 3.如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于( )A .30°B .35°C .40°D .50°4.已知a 为整数,且3<a<5,则a 等于( )A .1B .2C .3D .45.近似数25.010⨯精确到( )A .十分位B .个位C .十位D .百位6.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )A .4.995×1011B .49.95×1010C .0.4995×1011D .4.995×10107.如图,边长为2a 的等边△ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .12aB .aC .32aD .3a8.下列运算正确的是( )A .(﹣2a )3=﹣6a 3B .﹣3a 2•4a 3=﹣12a 5C .﹣3a (2﹣a )=6a ﹣3a 2D .2a 3﹣a 2=2a9.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .14B .12C .34D .5610.下列计算正确的是( )A .2x ﹣x =1B .x 2•x 3=x 6C .(m ﹣n)2=m 2﹣n 2D .(﹣xy 3)2=x 2y 611.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x ,则去年二月份之前房价为( )A .(1+40%)×30%xB .(1+40%)(1﹣30%)xC .x (140%)30%+⨯D .()()130%140%x +﹣ 12.如图,已知∠1=∠2,要使△ABD ≌△ACD ,需从下列条件中增加一个,错误的选法是( )A .∠ADB =∠ADC B .∠B =∠C C .AB =ACD .DB =DC二、填空题:(本大题共6个小题,每小题4分,共24分.)13.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3h ,若静水时船速为26km/h ,水速为2km/h ,则A 港和B 港相距_____km .14.若334x x --+,则x+y= .15.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .16.如图,等边三角形AOB 的顶点A 的坐标为(﹣4,0),顶点B 在反比例函数k y x=(x <0)的图象上,则k= .17.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.18.可燃冰是一种新型能源,它的密度很小,31cm可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.20.(6分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.21.(6分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元) 1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?22.(8分)如图,平面直角坐标系中,直线AB:13y x b=-+交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB 的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.23.(8分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P 从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.(1)线段AE=______;(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.24.(10分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.(1)求证:四边形ABEF是平行四边形;(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.25.(10分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示分组频数4.0≤x<4.2 24.2≤x<4.4 34.4≤x<4.6 54.6≤x<4.8 84.8≤x<5.0 175.0≤x<5.2 5(1)求活动所抽取的学生人数;(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.26.(12分)我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是人,并将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有人达标;(3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?27.(12分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为1.(1)当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【详解】A.∵∠3=∠A,本选项不能判断AB∥CD,故A错误;B.∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C.∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D.∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.2.B【解析】【分析】分式的分母不为零,即x-2≠1.【详解】∵分式12x-有意义...,∴x-2≠1,∴2x≠.故选:B.【点睛】考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.C【解析】试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.考点:平行线的性质.4.B【解析】【分析】351,进而得出答案.【详解】∵a35∴a=1.故选:B.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.5.C【解析】【分析】【详解】根据近似数的精确度:近似数5.0×102精确到十位.故选C.考点:近似数和有效数字6.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】将499.5亿用科学记数法表示为:4.995×1.故选D.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.A【解析】【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=12 AB,∴HB=BG ,又∵MB 旋转到BN ,∴BM=BN ,在△MBG 和△NBH 中,BG BH MBG NBH MB NB ⎧⎪∠∠⎨⎪⎩===,∴△MBG ≌△NBH (SAS ),∴MG=NH ,根据垂线段最短,MG ⊥CH 时,MG 最短,即HN 最短,此时∵∠BCH=12×60°=30°,CG=12AB=12×2a=a , ∴MG=12CG=12×a=2a , ∴HN=2a , 故选A .【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.8.B【解析】【分析】先根据同底数幂的乘法法则进行运算即可。
江苏省徐州市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列几何体中,俯视图为三角形的是( )A .B .C .D .2.计算1+2+22+23+…+22010的结果是( )A .22011–1B .22011+1C .()20111212-D .()201112+12 3.下列几何体中,主视图和左视图都是矩形的是( )A .B .C .D .4.如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .25πcmB .210πcmC .215πcmD .220πcm5.如图,在△ABC 中,AB=AC,点D 是边AC 上一点,BC=BD=AD,则∠A 的大小是( ).A .36°B .54°C .72°D .30°6.下列运算正确的是( )A .2510a a a ⋅=B .326(3)6a a =C .222()a b a b +=+D .2(2)(3)6a a a a +-=--7.如果将直线l 1:y =2x ﹣2平移后得到直线l 2:y =2x ,那么下列平移过程正确的是( ) A .将l 1向左平移2个单位 B .将l 1向右平移2个单位C .将l 1向上平移2个单位D .将l 1向下平移2个单位8.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条边DF =50cm ,EF =30cm ,测得边DF 离地面的高度AC =1.5m ,CD =20m ,则树高AB 为( )A .12mB .13.5mC .15mD .16.5m9.如图,两张完全相同的正六边形纸片(边长为2a)重合在一起,下面一张保持不动,将上面一张纸片沿水平方向向左平移a 个单位长度,则空白部分与阴影部分面积之比是( )A .5:2B .3:2C .3:1D .2:110.已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则a ﹣2b 的值是( ) A .﹣2 B .2 C .3 D .﹣311.如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( )A .183π-B .39πC .9932πD .1833π12.方程5x +2y =-9与下列方程构成的方程组的解为212x y =-⎧⎪⎨=⎪⎩的是( ) A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-8二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知长方体的三条棱AB 、BC 、BD 分别为4,5,2,蚂蚁从A 点出发沿长方体的表面爬行到M 的最短路程的平方是_____.14.现有一张圆心角为108°,半径为40cm的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm的圆锥形纸帽(接缝处不重叠),则剪去的扇形纸片的圆心角θ为_____.15.函数y=的自变量x的取值范围是_____.16.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.17.观察下列一组数13,25,37,49,511,…探究规律,第n个数是_____.18.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?20.(6分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.21.(6分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)(1)求抛物线的表达式;(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.22.(8分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.23.(8分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.(1)判断:一个内角为120°的菱形等距四边形.(填“是”或“不是”)(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为端点均为非等距点的对角线长为(3)如图1,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连结A D,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求∠BCD的度数.24.(10分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED =∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC =8,cos ∠BED =,求AD 的长.25.(10分)解分式方程:28124x x x -=-- 26.(12分)已知抛物线y=a (x-1)2+3(a≠0)与y 轴交于点A (0,2),顶点为B ,且对称轴l 1与x 轴交于点M(1)求a 的值,并写出点B 的坐标;(2)将此抛物线向右平移所得新的抛物线与原抛物线交于点C ,且新抛物线的对称轴l 2与x 轴交于点N ,过点C 做DE ∥x 轴,分别交l 1、l 2于点D 、E ,若四边形MDEN 是正方形,求平移后抛物线的解析式.27.(12分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a 的值为 %,该扇形圆心角的度数为 ;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】俯视图是从上面所看到的图形,可根据各几何体的特点进行判断.【详解】A.圆锥的俯视图是圆,中间有一点,故本选项不符合题意,B.几何体的俯视图是长方形,故本选项不符合题意,C.三棱柱的俯视图是三角形,故本选项符合题意,D.圆台的俯视图是圆环,故本选项不符合题意,故选C.【点睛】此题主要考查了由几何体判断三视图,正确把握观察角度是解题关键.2.A【解析】【分析】可设其和为S,则2S=2+22+23+24+…+22010+22011,两式相减可得答案.【详解】设S=1+2+22+23+ (22010)则2S=2+22+23+…+22010+22011②②-①得S=22011-1.故选A.【点睛】本题考查了因式分解的应用;设出和为S,并求出2S进行做差求解是解题关键.3.C【解析】【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C.【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.4.B【解析】试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD 的面积+扇形BOC 的面积=2扇形BOC 的面积=27252360π⨯⨯=10π .故选B . 5.A【解析】【分析】由BD=BC=AD 可知,△ABD ,△BCD 为等腰三角形,设∠A=∠ABD=x ,则∠C=∠CDB=2x ,又由AB=AC可知,△ABC 为等腰三角形,则∠ABC=∠C=2x .在△ABC 中,用内角和定理列方程求解.【详解】解:∵BD=BC=AD ,∴△ABD ,△BCD 为等腰三角形,设∠A=∠ABD=x ,则∠C=∠CDB=2x .又∵AB=AC ,∴△ABC 为等腰三角形,∴∠ABC=∠C=2x .在△ABC 中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故选A .【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.6.D【解析】【分析】根据同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的法则逐项进行计算即可得.【详解】A. 257a a a ⋅= ,故A 选项错误,不符合题意;B. ()2363a 9a =,故B 选项错误,不符合题意;C. ()222a b a 2ab b +=++ ,故C 选项错误,不符合题意;D. ()()2a 2a 3a a 6+-=--,正确,符合题意, 故选D.【点睛】本题考查了整式的运算,熟练掌握同底数幂的乘法、积的乘方、完全平方公式、多项式乘法的运算法则是解题的关键.7.C【解析】【分析】根据“上加下减”的原则求解即可.【详解】将函数y =2x ﹣2的图象向上平移2个单位长度,所得图象对应的函数解析式是y =2x .故选:C .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则是解答此题的关键.8.D【解析】【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB .【详解】∵∠DEF=∠BCD=90°,∠D=∠D ,∴△DEF ∽△DCB , ∴BC DC EF DE=, ∵DF=50cm=0.5m ,EF=30cm=0.3m ,AC=1.5m ,CD=20m ,∴由勾股定理求得DE=40cm , ∴200.30.4BC =, ∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m .【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.9.C【解析】【分析】求出正六边形和阴影部分的面积即可解决问题;【详解】解:正六边形的面积226(2a)==,阴影部分的面积2a =⋅=,∴空白部分与阴影部分面积之比是2=:23=:1,故选C.【点睛】本题考查正多边形的性质、平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.10.B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.11.B【解析】【分析】由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积,根据面积公式计算即可.【详解】∵四边形ABCD是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°-60°=120°,∵DF是菱形的高,∴DF⊥AB,∴∴阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积=6×9π.故选B.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.12.D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.61【解析】分析: 要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.详解: 如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.点睛: 此题主要考查了平面展开图,求最短路径,解决此类题目的关键是把长方体的侧面展开“化立体为平面”,用勾股定理解决.14.18°【解析】试题分析:根据圆锥的展开图的圆心角计算法则可得:扇形的圆心角=×360°=90°,则θ=108°-90°=18°. 考点:圆锥的展开图15.x≠﹣1【解析】【分析】根据分母不等于2列式计算即可得解.【详解】解:根据题意得x+1≠2,解得x≠﹣1.故答案为:x≠﹣1.【点睛】考查的知识点为:分式有意义,分母不为2.16.3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.17.21n n + 【解析】【分析】根据已知得出数字分母与分子的变化规律,分子是连续的正整数,分母是连续的奇数,进而得出第n 个数分子的规律是n ,分母的规律是2n+1,进而得出这一组数的第n 个数的值.【详解】解:因为分子的规律是连续的正整数,分母的规律是2n+1,所以第n 个数就应该是:21n n +, 故答案为21n n +. 【点睛】 此题主要考查了数字变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.解题的关键是把数据的分子分母分别用组数n 表示出来.18. (,) 【解析】如图,过点Q 作QD ⊥OA 于点D ,∴∠QDO=90°.∵四边形OABC 是正方形,且边长为2,OQ=OC ,∴∠QOA=45°,OQ=OC=2,∴△ODQ 是等腰直角三角形,∴OD=OQ==.∴点Q 的坐标为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)2w 2x 120x 1600=-+-;(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【解析】【分析】(1)根据销售额=销售量×销售价单x ,列出函数关系式.(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.(3)把y=150代入(2)的函数关系式中,解一元二次方程求x ,根据x 的取值范围求x 的值.【详解】解:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为2.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.(3)当w=150时,可得方程﹣2(x ﹣30)2+2=150,解得x 1=25,x 2=3.∵3>28,∴x 2=3不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.20.4小时.【解析】【分析】本题依据题意先得出等量关系即客车由高速公路从A 地道B 的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【详解】解:设客车由高速公路从甲地到乙地需x 小时,则走普通公路需2x 小时,根据题意得:60048045,2x x += 解得x =4经检验,x =4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点睛】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.21. (1)y=﹣12x 2+32x+2;(2)满足条件的点P 的坐标为(32,54)或(32,﹣54)或(32,5)或(32,﹣5).【解析】【分析】(1)利用待定系数法求抛物线的表达式;(2)使△BMP与△ABD相似的有三种情况,分别求出这三个点的坐标. 【详解】(1)∵抛物线与x轴交于点A(﹣1,0),B(4,0),∴设抛物线的解析式为y=a(x+1)(x﹣4),∵抛物线与y轴交于点C(0,2),∴a×1×(﹣4)=2,∴a=﹣12,∴抛物线的解析式为y=﹣12(x+1)(x﹣4)=﹣12x2+32x+2;(2)如图1,连接CD,∵抛物线的解析式为y=﹣12x2+32x+2,∴抛物线的对称轴为直线x=32,∴M(32,0),∵点D与点C关于点M对称,且C(0,2),∴D(3,﹣2),∵MA=MB,MC=MD,∴四边形ACBD是平行四边形,∵A(﹣1,0),B(4,0),C(3,﹣22),∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,∴AD2+BD2=AB2,∴△ABD是直角三角形,∴∠ADB=90°,设点P(32,m),∴MP=|m|,∵M(32,0),B(4,0),∴BM=52,∵△BMP与△ABD相似,∴①当△BMP∽ADB时,∴BM MP AD BD,52255m =, ∴m=±54, ∴P (32,54)或(32,﹣54), ②当△BMP ∽△BDA 时,BM MP BD AD=, 52525m =, ∴m=±5,∴P (32,5)或(32,﹣5), 即:满足条件的点P 的坐标为P (32,54)或(32,﹣54)或(32,5)或(32,﹣5). 【点睛】本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.22.(1)60°;(2)证明略;(3)83π 【解析】【分析】(1)根据∠ABC 与∠D 都是劣弧AC 所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°; (2)根据AB 是⊙O 的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA ⊥AE ,可得AE 是⊙O 的切线;(3)连结OC ,证出△OBC 是等边三角形,算出∠BOC=60°且⊙O 的半径等于4,可得劣弧AC 所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC 的长.【详解】(1)∵∠ABC 与∠D 都是弧AC 所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB 是⊙O 的直径,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为120180Rπ=1204180πg=83π.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.23.(1)是;(2)见解析;(3)150°.【解析】【分析】(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS证明△AEC≌△BED,得出AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,△ABD是等边三角形,得出∠DAB=60°,由SSS证明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB和∠ACD的度数,即可得出答案.【详解】解:(1)一个内角为120°的菱形是等距四边形;故答案为是;(2)如图2,图3所示:在图2中,由勾股定理得:221310,CD=+=在图3中,由勾股定理得:223332,CD=+=10,3 2.(3)解:连接BD .如图1所示:∵△ABE 与△CDE 都是等腰直角三角形,∴DE=EC ,AE=EB ,∠DEC+∠BEC=∠AEB+∠BEC ,即∠AEC=∠DEB ,在△AEC 和△BED 中,,DE CE AEC BED AE BE =⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△BED (SAS ),∴AC=BD ,∵四边形ABCD 是以A 为等距点的等距四边形,∴AD=AB=AC ,∴AD=AB=BD ,∴△ABD 是等边三角形,∴∠DAB=60°,∴∠DAE=∠DAB ﹣∠EAB=60°﹣45°=15°,在△AED 和△AEC 中,,AD AC DE CE AE AE =⎧⎪=⎨⎪=⎩∴△AED ≌△AEC (SSS ),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE ﹣∠CAE=30°,∵AB=AC ,AC=AD , ∴180301803075,75,22ACB ACD --∠==∠==o o o oo o ∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【点睛】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.24.(1)AC与⊙O相切,证明参见解析;(2).【解析】试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD.试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB•cos∠OAD=12×=.考点:1.切线的判定;2.解直角三角形.25.无解【解析】【分析】首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零.【详解】解:两边同乘以(x+2)(x-2)得:x(x+2)-(x+2)(x-2)=8去括号,得:2x+2x-2x+4=8移项、合并同类项得:2x=4解得:x=2经检验,x=2是方程的增根∴方程无解【点睛】本题考查解分式方程,注意分式方程结果要检验.26.(1)a=-1,B坐标为(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.【解析】【分析】(1)利用待定系数法即可解决问题;(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,再用m表示点C的坐标,需分两种情况讨论,用待定系数法即可解决问题.【详解】(1)把点A(0,2)代入抛物线的解析式可得,2=a+3,∴a=-1,∴抛物线的解析式为y=-(x-1)2+3,顶点为(1,3)(2)如图,设抛物线向右平移后的解析式为y=-(x-m)2+3,由()()22133y xy x m⎧=--+⎪⎨=--+⎪⎩解得x=12+m∴点C的横坐标为1 2 + m∵MN=m-1,四边形MDEN是正方形,∴C(12+m,m-1)把C点代入y=-(x-1)2+3,得m-1=-2 (1)4m-+3,解得m=3或-5(舍去)∴平移后的解析式为y=-(x-3)2+3,当点C在x轴的下方时,C(12+m,1-m)把C点代入y=-(x-1)2+3,得1-m=-2 (1)4m-+3,解得m=7或-1(舍去)∴平移后的解析式为y=-(x-7)2+3综上:平移后的解析式为y=-(x-3)2+3,或y=-(x-7)2+3.【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知正方形的性质与函数结合进行求解. 27.(1)25,90°;(2)见解析;(3)该市“活动时间不少于5天”的大约有1.【解析】试题分析:(1)根据扇形统计图的特征即可求得a的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°;(2)“活动时间为6天” 的人数,如图所示:(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1∴该市“活动时间不少于5天”的大约有1人.考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.。
2020年江苏省徐州市铜山区中考数学二模试卷一.选择题(共8小题,满分24分,每小题3分)1.﹣2020的绝对值的相反数是()A.B.﹣C.2020D.﹣20202.下列计算正确的是()A.3a﹣a=2B.a2+a3=a5C.a6÷a2=a4D.(a2)3=a53.在下图的四个立体图形中,从正面看是四边形的立体图形有()A.1个B.2个C.3个D.4个4.式子有意义的x的取值范围是()A.x≥﹣且x≠1B.x≠1C.D.x>﹣且x≠15.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A.B.C.D.6.为庆祝首个“中国农民丰收节”,十渡镇西河村举办“西河稻作文化节”活动.西河水稻种植历史悠久,因“色白粒粗,味极香美,七煮不烂”而享誉京城.已知每粒稻谷重约0.000035千克,将0.000035用科学记数法表示应为()A.35×10﹣6B.3.5×10﹣6C.3.5×10﹣5D.0.35×10﹣47.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°8.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.二.填空题(共10小题,满分30分,每小题3分)9.如图,将一副三角板叠在一起,使它们的直角顶点重合于O点,且∠AOB=155°,则∠COD =.10.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为.11.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.12.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是.13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.下列四个命题中:①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等.其中,真命题的有(填序号).15.在Rt△ABC中,∠ABC=90°,AB=6,BC=8,则这个三角形的外接圆的直径长为.16.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则在①3.6②4,③5.5,④7,这四个数中AP长不可能是(填序号)17.如图:已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为;第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形,如此继续下去,第n次得到的长方形的周长为.18.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE 的最小值为.三.解答题(共10小题,满分86分)19.计算:(1)|﹣2|+2 0100﹣(﹣)﹣1+3tan30°.(2)÷(a+1)﹣.20.解方程:(1)x2﹣8x+1=0(2)=1(3)解不等式组21.为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:学生最喜爱的节目人数统计表节目人数(名)百分比最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.22.在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.23.如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,并证明你的结论.24.从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.25.小亮一家到桃林口水库游玩.在岸边码头P处,小亮和爸爸租船到库区游玩,妈妈在岸边码头P处观看小亮与爸爸在水面划船,小船从P处出发,沿北偏东60°方向划行,划行速度是20米/分钟,划行10分钟后到A处,接着向正南方向划行一段时间到B处,在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米?(精确到1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)26.某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x>5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?27.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P.像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)①如图1,当∠ABE=45°,c=2时,a=,b=;②如图2,当∠ABE=30°,c=4时,求a和b的值.归纳证明(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.(3)利用(2)中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图4所示,求MG2+MH2的值.28.如图1,抛物线y=﹣x2+x+6与x轴交于A、B(B在A的左侧)两点,与y轴交于点C,将直线AC沿y轴正方向平移2个单位得到直线A′C′,将抛物线的对称轴沿x轴正方向平移个单位得到直线l.(1)求直线AC的解析式;(2)如图2,点P为直线A′C′上方抛物线上一动点,连接PC,PA与直线AC分别交于点E、F,过点P作PP1⊥l于点P1,M是线段AC上一动点,过M作MN⊥A′C′于点N,连接P1M,当△PCA的面积最大时,求P1M+MN+NA′的最小值;(3)如图3,连接BC,将△BOC绕点A顺时针旋转60°后得到△B1O1C1,点R是直线l上一点,在直角坐标平面内是否存在一点S,使得以点O1、C1、R、S为顶点的四边形是矩形?若存在,求出点S的坐标;若不存在,请说明理由.2020年江苏省徐州市铜山区中考数学二模试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.【分析】直接利用绝对值以及相反数的定义分析得出答案.【解答】解:﹣2020的绝对值为:2020,故2020的相反数是:﹣2020.故选:D.【点评】此题主要考查了绝对值以及相反数,正确把握相关定义是解题关键.2.【分析】依据合并同类项法则、同底数幂的除法法则以及幂的乘方法则进行判断即可.【解答】解:3a﹣a=2a,故A选项错误;a2+a3≠a5,故B选项错误;a6÷a2=a4,故C选项正确;(a2)3=a6,故D选项错误;故选:C.【点评】本题主要考查了合并同类项法则、同底数幂的除法法则以及幂的乘方,合并同类项是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.3.【分析】找到从正面看所得到的图形比较即可.【解答】解:正方体的正视图是四边形;球的正视图是圆;圆锥的正视图是等腰三角形;圆柱的正视图是四边形;是四边形的有两个.故选:B.【点评】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.4.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1,故选:A.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数且分母不等于零得出不等式是解题关键.5.【分析】根据中心对称图形的概念对各个选项中的图形进行判断即可.【解答】解:A、B、C都不是中心对称图形,D是中心对称图形,故选:D.【点评】本题考查的是中心对称图形的概念,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形.6.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000035=3.5×10﹣5,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【分析】作所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【解答】解:作所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.【分析】根据题意,分两种情况:(1)当点P在AB上移动时,点D到直线PA的距离不变,恒为4;(2)当点P在BC上移动时,根据相似三角形判定的方法,判断出△PAB∽△ADE,即可判断出y=(3<x≤5),据此判断出y关于x的函数大致图象是哪个即可.【解答】解:(1)当点P在AB上移动时,点D到直线PA的距离为:y=DA=BC=4(0≤x≤3).(2)如图1,当点P在BC上移动时,,∵AB=3,BC=4,∴AC=,∵∠PAB+∠DAE=90°,∠ADE+∠DAE=90°,∴∠PAB=∠ADE,在△PAB和△ADE中,∴△PAB∽△ADE,∴,∴,∴y=(3<x≤5).综上,可得y关于x的函数大致图象是:.故选:D.【点评】(1)此题主要考查了动点问题的函数图象,要熟练掌握,解答此题的关键是要明确:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.(2)此题还考查了相似三角形的判定和性质的应用,要熟练掌握.二.填空题(共10小题,满分30分,每小题3分)9.【分析】先根据直角三角板的性质得出∠AOC+∠DOB=180°,进而可得出∠COD的度数.【解答】解:∵△AOC△BOD是一副直角三角板,∴∠AOC+∠DOB=180°,∴∠AOB+∠COD=∠DOB+∠AOD+∠COD=∠DOB+∠AOC=90°+90°=180°,∵∠AOB=155°,∴∠COD=180°﹣∠AOB=180°﹣155°=25°,故答案为:25°【点评】本题考查的是角的计算,熟知直角三角板的特点是解答此题的关键.10.【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:∵45出现了2次,出现的次数最多,∴这组数据的众数为45;故答案为:45.【点评】此题考查了众数,掌握众数的定义是解题的关键;众数是一组数据中出现次数最多的数.11.【分析】设反比例函数解析式为y=(k为常数,k≠0),根据反比例函数图象上点的坐标特征得到k=3m=﹣2n,即可得的值.【解答】解:设反比例函数解析式为y=,根据题意得:k=3m=﹣2n∴=﹣故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.【分析】设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.【解答】解:设正多边形的边数为n,由题意得,=144°,解得n=10.故答案为:10.【点评】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.13.【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.14.【分析】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.【解答】解:①对顶角相等是真命题;②两直线平行,同位角相等,是假命题;③全等三角形对应边相等是真命题;④菱形的对角线垂直,是假命题;故答案为:①③【点评】本题主要考查了命题与定理的运用,解题时注意:命题的“真”“假”是就命题的内容而言,任何一个命题非真即假.15.【分析】根据这个三角形的外接圆直径是斜边长即可得到结论.【解答】解:根据题意得:斜边是AC,即外接圆直径===10,这个三角形的外接圆的直径长为10,故答案为:10.【点评】本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.16.【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB =6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故答案为:④【点评】本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.17.【分析】先根据题意列出前3个长方形的周长,得出规律即可.【解答】解:第1个长方形的周长为4a+2×a,第2个长方形的周长为2×4a+2×a,第3个长方形的周长为2×8a+2×a,……∴第n个长方形的周长为2n﹣1•4a+2×()n a,故答案为:4a+2×a,2n﹣1•4a+2×()n a.【点评】本题主要考查图形的变化规律,解题的关键是根据题意得出前几个长方形的周长,并据此得出周长的变化规律.18.【分析】由AE⊥BE知点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,当点E位于点E′位置时,线段CE取得最小值,利用勾股定理可得答案.【解答】解:如图,∵AE⊥BE,∴点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,∴当点E位于点E′位置时,线段CE取得最小值,∵AB=4,∴OA=OB=OE′=2,∵BC=6,∴OC===2,则CE′=OC﹣OE′=2﹣2,故答案为:2﹣2.【点评】本题主要考查圆周角定理、圆的基本性质及矩形的性质、勾股定理,根据AE⊥BE知点E在以AB为直径的半⊙O上是解题的关键.三.解答题(共10小题,满分86分)19.【分析】(1)根据绝对值、零次幂、负整数指数幂、特殊角的三角函数值计算即可.(2)按照分式的混合运算法则化简即可.【解答】解:(1)原式=2﹣+1+3+3×=6;(2)原式=•﹣=﹣==﹣1.【点评】本题考查分式的混合运算,有理数的混合运算,零次幂,负整数指数幂,特殊角的三角函数值等知识,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.20.【分析】(1)把1移到等号的右边,然后等号两边同时加上一次项一半的平方,再开方求解;(2)根据去分母、去括号、移项、合并同类项、化系数为1的步骤求出x的值,再把x的值代入原分式方程的公分母中进行检验;(3)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)x2﹣8x+1=0x2﹣8x=﹣1,x2﹣8x+16=﹣1+16,即(x﹣4)2=15,∴∴x﹣4=±,∴x1=4+,x2=4﹣;(2)去分母得,x(x+3)﹣3=x2﹣9,去括号得,x2+3x﹣3=x2﹣9,移项、合并同类项得,3x=﹣6,系数化为1得,x=﹣2,经检验,x=﹣2是原方程的根;(3),由①x≤1;由②x>﹣2;∴原不等式组的解是﹣2<x≤1.【点评】本题考查的是解一元二次方程、解分式方程及解一元一次不等式组,在解(2)时要注意验根,这是此题的易错点.21.【分析】(1)根据最强大脑的人数除以占的百分比确定出x的值,进而求出a与b的值即可;(2)根据a的值,补全条形统计图即可;(3)由中国诗词大会的百分比乘以1000即可得到结果.【解答】解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)根据题意得:1000×40%=400(名),则估计该校最喜爱《中国诗词大会》节目的学生有400名.【点评】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.22.【分析】(1)画树状图展示所有20种等可能的结果数,再找出从袋中同时摸出的两个球都是黄球的结果数,然后根据概率公式求解;(2)设放入袋中的黑球的个数为x,利用概率公式得到=,然后解方程即可.【解答】解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率==;(2)设放入袋中的黑球的个数为x,根据题意得=,解得x=2,所以放入袋中的黑球的个数为2.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【分析】(1)根据平行四边形的性质得出BO=DO,AO=OC,求出OE=OF,根据全等三角形的判定定理推出即可;(2)根先推出四边形EBFD是平行四边形,再根据矩形的判定得出即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BO=DO,AO=OC,∵AE=CF,∴AO﹣AE=OC﹣CF,即:OE=OF,在△BOE和△DOF中,∴△BOE≌△DOF(SAS);(2)矩形,证明:∵BO=DO,OE=OF,∴四边形BEDF是平行四边形,∵BD=EF,∴平行四边形BEDF是矩形.【点评】本题考查了平行四边形的性质和判定,全等三角形的判定和矩形的判定,能灵活运用定理进行推理是解此题的关键.24.【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点评】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.25.【分析】作PQ⊥AB于Q,根据已知,∠APQ=30°.解直角三角形求出PB即可;【解答】解:作PQ⊥AB于Q,根据已知,∠APQ=30°.则AQ=AP∵AP=20×10=200∴AQ=100∴PQ==100,在Rt△BPQ中,sin B=,∴PB=100÷0.60≈288米∴此时,小亮与妈妈相距288米.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.26.【分析】(1)根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据题意用含x的代数式表示出y1、y2即可;(3)把x=50代入两个函数关系式进行计算,比较得到答案.【解答】解:(1)设A、B两种品牌的计算器的单价分别为x、y元,由题意得,,解得.答:A、B两种品牌的计算器的单价分别为30元、32元;(2)y1=24x,y2=160+(x﹣5)×32×0.7=22.4x+48;(3)当x=50时,y1=24x=1200,y2=22.4x+48=1168,∵1168<1200,∴买B品牌的计算器更合算.【点评】本题考查的是二元一次方程组的应用和一次函数的应用,正确找出等量关系列出方程组并正确解出方程组、掌握一次函数的性质是解题的关键.27.【分析】(1)在图1中,PB=AB sin45°=2=PA,即可求解;同理可得:a=2,b=2;(2)PB=AB cosα=c cosα,PA=c sinα,PF=PA=c sinα,PE=c sinα,则a2+b2=(2AE)2+(2BF)2,即可求解;(3)证明:MG=ME=MB,MH=MC,则MG2+MH2=(MB2+MC2),即可求解.【解答】解:如图1、2、3、4,连接EF,则EF是△ABC的中位线,则EF=AB,EF∥AB,∴△EFP∽△BPA,∴…①,(1)在图1中,PB=AB sin45°=2=PA,由①得:PF=1,b=2BF=2=2=a;②同理可得:a=2,b=2;(2)关系为:a2+b2=5c2,证明:如图3,设:∠EAB=α,则:PB=AB cosα=c cosα,PA=c sinα,由①得:PF=PA=c sinα,PE=c sinα,则a2+b2=(2AE)2+(2BF)2=c2×5[(sinα)2+(cosα)2]=5c2;(3)∵AE=OE=EC,AG∥BC,∴AG=BC=AD,则EF=BC=AD,同理HG=AD,∴GH=AD,∴GH=EF,∵GH∥BC,EF∥BC,∴HG∥EF,∴MG=ME=MB,同理:MH=MC,则MG2+MH2=(MB2+MC2)=×5×BC2=5.【点评】本题为四边形综合题,考查了三角形相似、中位线等知识,其中(3),直接利用(2)的结论是本题的新颖点和突破点.28.【分析】(1)根据抛物线的解析式,令y=0,求出点A和点B的横坐标,令x=0,求出点C 的纵坐标,再根据待定系数法求出直线AC的解析式;(2)先求出使△PCA面积最大时点P的坐标,再根据题意求出点P1的坐标,因为直线A'C'与直线AC的距离是定值,所以MN的长度不变,然后通过作对称点,平移,由两点之间线段最终最短求出结果;(3)根据题意画出图形,由旋转求出相关点的坐标,再通过矩形的性质和平移规律求出点S的坐标.【解答】解:(1)令y=0,则﹣x2+x+6=0,解得x1=6,x2=﹣2,∵B在A的左侧∴A(6,0),B(﹣2,0)令x=0,则y=6,即C(0,6),设直线AC解析式为y=kx+b,把A(6,0),C(0,6)代入,∴,解得:,所以直线AC解析式为:.(2)如图,过P作PH⊥x轴交AC于点H,∴S=PH•(x A﹣x C)=3PH,△PCA最大,∴当PH取最大值时,S△PCA设P(m,m2+m+6),H(m,m+6),∴PH=m2+m,(0<m<6),=(m﹣3)2+,∴当m=3时,PH取最大值,此时P(3,),在抛物线y=﹣x2+x+6中,对称轴为x==2,∴由平移知直线l为:x=,∴P1(,),设直线l与x轴的垂足为Q,连接P1A,在Rt△P1AQ中,QA=,P1Q=,P1A=5,∴tan∠P1AQ=,∴∠P1AQ=60°,作P1关于直线AC的对称点P1′,连接P1P1′,与直线AC、A’C’分别交于S、T点,则△AP1P1′是等边三角形,∴P1′A=P1A=5,P1′(,0),∵MN⊥AC,CC'=2,∠C'A'A=30°,∴MN=,将P1′沿MN方向平移个单位得到P1′'(,),将直线A’C’绕点A’顺时针旋转45°得到直线l1,过点P1′'作P1′'G⊥l1于点G,与A’C’的交点即为N点,易知△P1′'TN和△A'GN都为等腰直角三角形,∴P1′'N=P1′'T=,A'N=A'T﹣TN=,∴GN=﹣,=+;∴(P1M+MN+NA′)最小(3)连接OO1,则△OO1B为等边三角形,∴∠O1OA=∠OAO1=∠OO1A=60°,OO1=O1A=OA=6,∴O1(3,9),B1(2,12),C1(6,12),①如图2﹣1,当四边形Q1RS1C1为矩形时,x R﹣x O1=﹣3=,∵由题意知,QR与直线l的夹角为30°,∴y Q1﹣y R=×=,∴x S1=x C1+=,y S1=y C1﹣=,∴S1(,),同理可求出S2(,),S3(,﹣),S4(,+),综上所述:在直角坐标平面内存在一点S,使得以点O1、C1、R、S为顶点的四边形是矩形,坐标是S1(,),S2(,),S3(,﹣),S4(,+).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
江苏省徐州市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI熏合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合2.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF 的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:13.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.104.在0,﹣2,35)A.0 B.﹣2 C.3 D55.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.26.下列运算正确的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2•a3=a6D.5a+2b=7ab7.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是()A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高8.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是()A.2k-2 B.k-1 C.k D.k+19.一、单选题如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.210.近似数2精确到()5.010A.十分位B.个位C.十位D.百位11.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为6,则GE+FH的最大值为()A.6 B.9 C.10 D.12 12.若()292mm--=1,则符合条件的m有()A.1个B.2个C.3个D.4个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系xOy中,直线l:y=33x-33与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A3的横坐标为______;点A2018的横坐标为______.14.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为______.15.二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,则a+b+2c__________0(填“>”“=”或“<”).16.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.17.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.18.如图,在△ABC 中,AB =AC =10cm ,F 为AB 上一点,AF =2,点E 从点A 出发,沿AC 方向以2cm/s 的速度匀速运动,同时点D 由点B 出发,沿BA 方向以lcm/s 的速度运动,设运动时间为t (s )(0<t <5),连D 交CF 于点G .若CG =2FG ,则t 的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题: 成绩 频数 频率 优秀 45 b 良好 a 0.3 合格 105 0.35 不合格60c(1)该校初三学生共有多少人?求表中a ,b ,c 的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.20.(6分)如图,在正方形ABCD 中,点P 是对角线AC 上一个动点(不与点,A C 重合),连接PB 过点P 作PF PB ⊥,交直线DC 于点F .作PE AC ⊥交直线DC 于点E ,连接,AE BF .(1)由题意易知,ADC ABC ∆∆≌,观察图,请猜想另外两组全等的三角形∆ ∆≌ ;∆∆≌ ;(2)求证:四边形AEFB 是平行四边形;(3)已知22AB =,PFB ∆的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.21.(6分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.22.(8分)如图,以AD 为直径的⊙O 交AB 于C 点,BD 的延长线交⊙O 于E 点,连CE 交AD 于F 点,若AC =BC .(1)求证:»»AC CE =;。
江苏省徐州市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知5a b =r r ,下列说法中,不正确的是( )A .50a b -=r rB .a r 与b r方向相同 C .//a b r r D .||5||a b =r r2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A . B . C . D . 3.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( )A .8.1×106B .8.1×105C .81×105D .81×1044.如图,直线m ∥n ,直角三角板ABC 的顶点A 在直线m 上,则∠α的余角等于( )A .19°B .38°C .42°D .52°5.下列计算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 6C .a 6﹣a 2=a 4D .a 5+a 5=a 106.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A .①②B .②③C .①③D .②④7.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示,下列说法错误的是( )A .小明中途休息用了20分钟B .小明休息前爬山的平均速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度8.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .12 9.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,﹣4),顶点C 在x 轴的负半轴上,函数y=k x(x <0)的图象经过菱形OABC 中心E 点,则k 的值为( )A .6B .8C .10D .1210.下列计算中,正确的是( )A .a•3a=4a 2B .2a+3a=5a 2C .(ab )3=a 3b 3D .7a 3÷14a 2=2a11.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为()A .1(1)282x x -=B .1(1)282x x +=C .(1)28x x -=D .(1)28x x +=12.如图:已知AB ⊥BC ,垂足为B ,AB=3.5,点P 是射线BC 上的动点,则线段AP 的长不可能是( )A .3B .3.5C .4D .5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,3.将矩形OABC 绕点O顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为_____.14.A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.15.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)16.如图,这是一幅长为3m ,宽为1m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m 1.17.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.18.若关于x 的一元二次方程()2k 1x 4x 10-++=有两个不相等的实数根,则k 的取值范围是______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程:3122x x =-+ 20.(6分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC 长为4米,求新传送带AC 的长及新、原传送带触地点之间AB 的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,2取1.41421.(6分)如图,要修一个育苗棚,棚的横截面是Rt ABC V ,棚高 1.5m AB =,长10m d =,棚顶与地面的夹角为27ACB ∠=︒.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:sin 270.45︒=,cos270.89︒=,tan 270.51︒=)22.(8分)某汽车制造公司计划生产A 、B 两种新型汽车共40辆投放到市场销售.已知A 型汽车每辆成本34万元,售价39万元;B 型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少? (3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)23.(8分)如图,抛物线y=x 2﹣2mx (m >0)与x 轴的另一个交点为A ,过P (1,﹣m )作PM ⊥x 轴于点M ,交抛物线于点B ,点B 关于抛物线对称轴的对称点为C(1)若m=2,求点A 和点C 的坐标;(2)令m >1,连接CA ,若△ACP 为直角三角形,求m 的值;(3)在坐标轴上是否存在点E ,使得△PEC 是以P 为直角顶点的等腰直角三角形?若存在,求出点E 的坐标;若不存在,请说明理由.24.(10分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C 测得教学楼顶部D 的仰角为18°,教学楼底部B 的俯角为20°,量得实验楼与教学楼之间的距离AB=30m .(1)求∠BCD 的度数.(2)求教学楼的高BD .(结果精确到0.1m ,参考数据:tan20°≈0.36,tan18°≈0.32)25.(10分)已知y 关于x 的二次函数22(0).y ax bx a =--≠(1)当2,4a b ==时,求该函数图像的顶点坐标.(2)在(1)条件下,(,)P m t 为该函数图像上的一点,若p 关于原点的对称点p '也落在该函数图像上,求m 的值(3)当函数的图像经过点(1,0)时,若12113(,),(,)22A y B y a -是该函数图像上的两点,试比较1y 与2y 的大小.26.(12分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。
2020年中考数学第二次模拟试题答案9.3210.4(1)(1)x x +- 11.119°28′ 12.10 13.9 14.两直线平行,同位角相等 15.5π 16.90 17 18.(21010,−21010) 三. 解答题19. (10分)计算:(1)113原式=-+3= ……3分 ……5分(2)21(1)a a a a ⎛⎫=-÷+ ⎪⎝⎭原式 211 1a a a -=⋅+ (1)(1)11a a a a +-=⋅+ 1 a a -=……1分……3分……4分……5分20. (10分)解方程或不等式:(1) 25140x x --= (2)(7)0x x +-= 122; 7.x x =-= ……1分……3分 ……5分(2) 由○1得 2.5x > 由○2得5x < 所以 2.55x << ……2分 ……4分 ……5分21. (7分)解答:(1)13;……2分 (2)画树状图如下:……5分由分析可知,共有9种等可能结果,其中,从不同闸机进站的结果有6种,所以两人选择不同闸机进站的概率是6293=.……7分22. (7分)(1)50.……2分(2)8.……3分 (3)C .……5分 (4)320.……7分23. (8分)解答:(1)证明:因为四边形ABCD 是正方形,所以AD =BA ,∠BAD =90°,…………1分因为BE ⊥AG ,DF ⊥AG ,所以∠DF A =∠BEA =90°,…………2分 所以∠DAF +∠BAE =∠BAE +∠ABE =90°,所以∠DAF =∠ABE ,…………3分 所以△ABE ≌△DAF .…………4分(2)由(1)得△ABE ≌△DAF ,所以BE =AF ,DF =AE ,…………5分 设EF =x ,则DF =AE =x +1,…………6分由ABE ADE ABED S S S =+V V 四边形,即11622AE BEAE DF ??,得方程111111622x x x ????=()()()…………7分解得2x =,即EF =2.…………8分24. (8分)解:设第一次进货价格是x 元/千克,……1分由题意得3000900023002x x⨯+=……3分 解得5x =,……5分 经检验,5x =是原方程的解且符合题意.……6分 答:设第一次进货价格是5元/千克.……7分 (2)5800.……8分 25. (8分)解答:(1)过点M 作MD ⊥AB 于点D ,……1分因为∠AME =45º,所以∠AMD =∠MAD =45º,……2分因为AM =180,所以MD =cos45AM ⋅︒=答:渔船从A 到B 的航行过程中,与小岛的最小距离是海里.……4分 (2)在Rt △DMB 中,因为∠BMF =60º,所以∠DMB =30º,……5分所以cos30MDMB ==︒7分203 2.457.357.4=≈⨯=≈,答:渔船从B 到达小岛M 的航行时间约为7.4小时.……8分 26. (8分)解:(1)240,…………1分(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC 段,…………2分 设直线BC 对应的函数表达式为y =kx +b ,则有1024025150k b k b +=⎧⎨+=⎩ ,…………3分解得 6300k b =-⎧⎨=⎩,∴y =−6x +300,…………5分由题意(6300)3600x x -+=,…………6分 解得x =20或30(舍弃)…………7分答:参加这次旅游的人数是20人.…………8分27. (10分)解:(1)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6,10AC =;…………2分要使△PCD 是等腰三角形,有如下三种情况: ○1当CP =CD 时,CP =6,∴AP =AC -CP =4 ;…………4分 ○2当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠P AD =∠PDC +∠PDA =90°, ∴∠P AD =∠PDA ,∴PD =P A , ∴P A =PC ,∴AP =,即AP =5;…………6分○3当DP =DC 时,过D 作DQ ⊥AC 于Q , 则PQ =CQ , ∵S △ADC =AD ·DC =AC ·DQ ,∴DQ = ,…………7分∴CQ = ,…………8分∴PC =2CQ = , …………9分 ∴AP =AC -PC =.综上所述,若△PCD 是等腰三角形,AP 的长为4或5或;…………10分QA BCP28. (10分)解:(1)把x =0代入y =﹣3x +3,∴y =3,∴B (0,3),…………1分点B (0,3)在224y ax ax a =-++上, ∴3=a +4,∴a =﹣1,∴抛物线的表达式为:223y x x =-++;…………2分 (2)解330x -+=得1x =,即点A (1,0), 连接OM ,令y =0代入223y x x =-++,得2023x x =++﹣, ∴x =﹣1或3,∴抛物线与x 轴的交点横坐标为﹣1和3,∵M 在抛物线上,且在第一象限内,∴0<m <3,…………3分 由ABM AOB OBM OAM AOB OAMB S S S S S S =-=+-V V V V V 四边形211131(23)13222m m m =醋+创-++-创 22151525()22228m m m =-+=--+…………4分 ∵0<m <3,∴当52m =时,S 有最大值,最大值为258;…………5分 (3)○1由(2)可知,当52m =时,S 有最大值为258, 把52x =代入得74y =,所以点M ′( 52,74).…………7分 ○2分别过点B 、M ’作BD ⊥l ′于点D ,M ’E ⊥ l ′于点E ,则BD =1d ,EM =2d , 由勾股定理可求得:10AB =,M′B =55,M′A =85,…………8分 ∵''1212111()222ACM ABM ABC S S S AC d AC d AC d d =+=创+创=创+V V V , ∴'122ABM S d d AC+=V ,…………9分 ∴当AC 最小时,即AC ⊥BM ′时,12d d +最大,此时25'SAC BM ==,在Rt △ABC 中,∴52cos 10BAC ∠==,故45BAC ∠=︒.…………10分。
江苏省徐州市2019-2020学年度九年级数学下学期二模测试试卷(时间:120分钟满分:140分)一.选择题(本大项共有8个题,每题3分,共24分.将正确答案填涂在答题卡相应位置)1.﹣2的相反数是()A.﹣2 B.2 C.D.﹣2.在﹣2,﹣1,0,1这四个数中,最小的数是()A.﹣2 B.﹣1 C.0 D.13.下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为()A.7×10﹣7B.0.7×10﹣8C.7×10﹣8D.7×10﹣95.下列等式成立的是()A.2+=2B.(a2b3)2=a4b6C.(2a2+a)+a=2a D.5x2y﹣3x2y=26.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°7.把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上),若∠1=23°,则∠2的度数为()A.30°B.45°C.60°D.68°8.如图,在菱形ABCD中,已知AB=4,∠ABC=60°,∠EAF=60°,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∽△EFC;④若∠BAE=15°,则点F到BC的距离为2﹣2.则其中正确结论的个数是()A.1个B.2个C.3个D.4个二. 填空题(本大项共10小题,每小题3分,共30分.将正确答案填写在答题卡相应位置)9. 计算:123-⎛⎫= ⎪⎝⎭▲.10. 分解因式:244x -=▲.11. 已知∠α=60°32′,则∠α的补角是▲.12. 如果一元二次方程2320x x --=的一个根是m ,则代数式24122m m -+的值是▲. 13. 若正n 边形的一个内角是140º,那么它的边数 n =▲. 14. 命题“同位角相等,两直线平行”的逆命题是▲.15. 已知扇形的半径为6cm ,圆心角为150°,则此扇形的弧长是▲cm .16. 如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形的两条直角边相交成∠1、∠2,则∠2-∠1=▲º. 17. 如图,在矩形ABCD 中,AB =2,BC =3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长 为 ▲ .18. 如图,在平面直角坐标系中,函数2y x =和y x =-的图象分别为直线l 1,l 2,过点(1,0)作x 轴的垂线交l 2于点A 1,过点A 1作y 轴的垂线交l 2于点A 2,过点A 2作x 轴的垂线交l 2于点A 3,过点A 3作y 轴的垂线交l 2于点A 4,…依次进行下去,则点A 2020的坐标为▲.三. 解答题(本大项共10小题,共86分.在答题卡指定区域写出文字说明、证明过程或演算步骤) 19. (本题10分)计算:(1)020202(1)3⎛⎫--- ⎪⎝⎭(2)1)1(a a a ⎛⎫-÷+ ⎪⎝⎭.(第18题图)1AB (第17题图)20. (本题10分)解方程或不等式:(1)解方程:2514x x -=;(2)解不等式组:2(1)3, 10. x x x ->⎧⎨<-⎩①②21. (本题7分)某地铁站入口检票处有A 、B 、C 三个闸机. (1)某人需要从此站入站乘地铁,那么他选择A 闸机通过的概率是▲; (2)现有甲、乙两人需要从此站进站乘地铁,求这两个人选择不同闸机通过的概率(用画村状图或列表.......的方法求解).22. (本题7分)为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表和统计图.请根据图表信息解答以下问题: (1)本次调查一共随机抽取了▲个参赛学生的成绩; (2)表1中a =▲; (3)所抽取的参赛学生的成绩的中位数落在的“组别”是▲; (4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有▲人.23. (本题8分)如图,正方形ABCD 中,G 为BC 边上一点,BE ⊥AG于E ,DF ⊥AG 于F ,连接DE .(1)求证:△ABE ≌△DAF ;(2)若AF =1,四边形ABED 的面积为6,求EF 的长.(第22题图)E FAB CD(第21题图)24.(本题8分)某商场用3000元购进某种干果销售,由于销售状况良好,商场又用9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克。
江苏省徐州市铜山区中考二模试卷数学一.选择题(共8小题,满分24分,每小题3分)1.﹣2018的绝对值的相反数是()A.B.﹣C.2018 D.﹣20182.下列计算正确的是()A.3a﹣a=2 B.a2+a3=a5C.a6÷a2=a4D.(a2)3=a53.在下图的四个立体图形中,从正面看是四边形的立体图形有()A.1个B.2个C.3个D.4个4.式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.x>﹣且x≠15.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A.B.C.D.6.为庆祝首个“中国农民丰收节”,十渡镇西河村举办“西河稻作文化节”活动.西河水稻种植历史悠久,因“色白粒粗,味极香美,七煮不烂”而享誉京城.已知每粒稻谷重约0.000035千克,将0.000035用科学记数法表示应为()A.35×10﹣6B.3.5×10﹣6C.3.5×10﹣5D.0.35×10﹣47.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°8.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.二.填空题(共10小题,满分30分,每小题3分)9.如图,将一副三角板叠在一起,使它们的直角顶点重合于O点,且∠AOB=155°,则∠COD =.10.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为.11.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.12.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是.13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.下列四个命题中:①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等.其中,真命题的有(填序号).15.在Rt△ABC中,∠ABC=90°,AB=6,BC=8,则这个三角形的外接圆的直径长为.16.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则在①3.6②4,③5.5,④7,这四个数中AP长不可能是(填序号)17.如图:已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为;第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形,如此继续下去,第n次得到的长方形的周长为.18.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为.三.解答题(共10小题,满分86分)19.计算:(1)|﹣2|+2 0100﹣(﹣)﹣1+3tan30°.(2)÷(a+1)﹣.20.解方程:(1)x2﹣8x+1=0(2)=1(3)解不等式组21.为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:学生最喜爱的节目人数统计表根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.22.在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.23.如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,并证明你的结论.24.从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.25.小亮一家到桃林口水库游玩.在岸边码头P处,小亮和爸爸租船到库区游玩,妈妈在岸边码头P处观看小亮与爸爸在水面划船,小船从P处出发,沿北偏东60°方向划行,划行速度是20米/分钟,划行10分钟后到A处,接着向正南方向划行一段时间到B处,在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米?(精确到1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)26.某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x>5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?27.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P.像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)①如图1,当∠ABE=45°,c=2时,a=,b=;②如图2,当∠ABE=30°,c=4时,求a和b的值.归纳证明(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.(3)利用(2)中的结论,解答下列问题:在边长为3的菱形ABCD 中,O 为对角线AC ,BD 的交点,E ,F 分别为线段AO ,DO 的中点,连接BE ,CF 并延长交于点M ,BM ,CM 分别交AD 于点G ,H ,如图4所示,求MG 2+MH 2的值.28.如图1,抛物线y =﹣x 2+x +6与x 轴交于A 、B (B 在A 的左侧)两点,与y 轴交于点C ,将直线AC 沿y 轴正方向平移2个单位得到直线A ′C ′,将抛物线的对称轴沿x 轴正方向平移个单位得到直线l .(1)求直线AC 的解析式;(2)如图2,点P 为直线A ′C ′上方抛物线上一动点,连接PC ,PA 与直线AC 分别交于点E 、F ,过点P 作PP 1⊥l 于点P 1,M 是线段AC 上一动点,过M 作MN ⊥A ′C ′于点N ,连接P 1M ,当△PCA的面积最大时,求P 1M +MN +NA ′的最小值;(3)如图3,连接BC ,将△BOC 绕点A 顺时针旋转60°后得到△B 1O 1C 1,点R 是直线l 上一点,在直角坐标平面内是否存在一点S ,使得以点O 1、C 1、R 、S 为顶点的四边形是矩形?若存在,求出点S 的坐标;若不存在,请说明理由.江苏省徐州市铜山区中考数学二模试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.【分析】直接利用绝对值以及相反数的定义分析得出答案.【解答】解:﹣2018的绝对值为:2018,故2018的相反数是:﹣2018.故选:D.【点评】此题主要考查了绝对值以及相反数,正确把握相关定义是解题关键.2.【分析】依据合并同类项法则、同底数幂的除法法则以及幂的乘方法则进行判断即可.【解答】解:3a﹣a=2a,故A选项错误;a2+a3≠a5,故B选项错误;a6÷a2=a4,故C选项正确;(a2)3=a6,故D选项错误;故选:C.【点评】本题主要考查了合并同类项法则、同底数幂的除法法则以及幂的乘方,合并同类项是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.3.【分析】找到从正面看所得到的图形比较即可.【解答】解:正方体的正视图是四边形;球的正视图是圆;圆锥的正视图是等腰三角形;圆柱的正视图是四边形;是四边形的有两个.故选:B.【点评】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.4.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1,故选:A.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数且分母不等于零得出不等式是解题关键.5.【分析】根据中心对称图形的概念对各个选项中的图形进行判断即可.【解答】解:A、B、C都不是中心对称图形,D是中心对称图形,故选:D.【点评】本题考查的是中心对称图形的概念,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形.6.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000035=3.5×10﹣5,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【分析】作所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【解答】解:作所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.【分析】根据题意,分两种情况:(1)当点P在AB上移动时,点D到直线PA的距离不变,恒为4;(2)当点P在BC上移动时,根据相似三角形判定的方法,判断出△PAB∽△ADE,即可判断出y=(3<x≤5),据此判断出y关于x的函数大致图象是哪个即可.【解答】解:(1)当点P在AB上移动时,点D到直线PA的距离为:y=DA=BC=4(0≤x≤3).(2)如图1,当点P在BC上移动时,,∵AB=3,BC=4,∴AC=,∵∠PAB+∠DAE=90°,∠ADE+∠DAE=90°,∴∠PAB=∠ADE,在△PAB和△ADE中,∴△PAB∽△ADE,∴,∴,∴y=(3<x≤5).综上,可得y关于x的函数大致图象是:.故选:D.【点评】(1)此题主要考查了动点问题的函数图象,要熟练掌握,解答此题的关键是要明确:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.(2)此题还考查了相似三角形的判定和性质的应用,要熟练掌握.二.填空题(共10小题,满分30分,每小题3分)9.【分析】先根据直角三角板的性质得出∠AOC+∠DOB=180°,进而可得出∠COD的度数.【解答】解:∵△AOC△BOD是一副直角三角板,∴∠AOC+∠DOB=180°,∴∠AOB+∠COD=∠DOB+∠AOD+∠COD=∠DOB+∠AOC=90°+90°=180°,∵∠AOB=155°,∴∠COD=180°﹣∠AOB=180°﹣155°=25°,故答案为:25°【点评】本题考查的是角的计算,熟知直角三角板的特点是解答此题的关键.10.【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:∵45出现了2次,出现的次数最多,∴这组数据的众数为45;故答案为:45.【点评】此题考查了众数,掌握众数的定义是解题的关键;众数是一组数据中出现次数最多的数.11.【分析】设反比例函数解析式为y=(k为常数,k≠0),根据反比例函数图象上点的坐标特征得到k=3m=﹣2n,即可得的值.【解答】解:设反比例函数解析式为y=,根据题意得:k=3m=﹣2n∴=﹣故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.【分析】设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.【解答】解:设正多边形的边数为n,由题意得,=144°,解得n=10.故答案为:10.【点评】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.13.【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.14.【分析】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.【解答】解:①对顶角相等是真命题;②两直线平行,同位角相等,是假命题;③全等三角形对应边相等是真命题;④菱形的对角线垂直,是假命题;故答案为:①③【点评】本题主要考查了命题与定理的运用,解题时注意:命题的“真”“假”是就命题的内容而言,任何一个命题非真即假.15.【分析】根据这个三角形的外接圆直径是斜边长即可得到结论.【解答】解:根据题意得:斜边是AC,即外接圆直径===10,这个三角形的外接圆的直径长为10,故答案为:10.【点评】本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.16.【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB =6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故答案为:④【点评】本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.17.【分析】先根据题意列出前3个长方形的周长,得出规律即可.【解答】解:第1个长方形的周长为4a+2×a,第2个长方形的周长为2×4a+2×a,第3个长方形的周长为2×8a+2×a,……∴第n个长方形的周长为2n﹣1•4a+2×()n a,故答案为:4a+2×a,2n﹣1•4a+2×()n a.【点评】本题主要考查图形的变化规律,解题的关键是根据题意得出前几个长方形的周长,并据此得出周长的变化规律.18.【分析】由AE⊥BE知点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,当点E位于点E′位置时,线段CE取得最小值,利用勾股定理可得答案.【解答】解:如图,∵AE⊥BE,∴点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,∴当点E位于点E′位置时,线段CE取得最小值,∵AB=4,∴OA=OB=OE′=2,∵BC=6,∴OC ===2,则CE ′=OC ﹣OE ′=2﹣2,故答案为:2﹣2.【点评】本题主要考查圆周角定理、圆的基本性质及矩形的性质、勾股定理,根据AE ⊥BE 知点E 在以AB 为直径的半⊙O 上是解题的关键.三.解答题(共10小题,满分86分)19.【分析】(1)根据绝对值、零次幂、负整数指数幂、特殊角的三角函数值计算即可.(2)按照分式的混合运算法则化简即可.【解答】解:(1)原式=2﹣+1+3+3×=6;(2)原式=•﹣=﹣= =﹣1.【点评】本题考查分式的混合运算,有理数的混合运算,零次幂,负整数指数幂,特殊角的三角函数值等知识,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.20.【分析】(1)把1移到等号的右边,然后等号两边同时加上一次项一半的平方,再开方求解;(2)根据去分母、去括号、移项、合并同类项、化系数为1的步骤求出x 的值,再把x 的值代入原分式方程的公分母中进行检验;(3)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)x 2﹣8x +1=0x 2﹣8x =﹣1,x 2﹣8x +16=﹣1+16,即(x ﹣4)2=15,∴∴x ﹣4=±,∴x 1=4+,x 2=4﹣; (2)去分母得,x (x +3)﹣3=x 2﹣9,去括号得,x 2+3x ﹣3=x 2﹣9,移项、合并同类项得,3x =﹣6,系数化为1得,x=﹣2,经检验,x=﹣2是原方程的根;(3),由①x≤1;由②x>﹣2;∴原不等式组的解是﹣2<x≤1.【点评】本题考查的是解一元二次方程、解分式方程及解一元一次不等式组,在解(2)时要注意验根,这是此题的易错点.21.【分析】(1)根据最强大脑的人数除以占的百分比确定出x的值,进而求出a与b的值即可;(2)根据a的值,补全条形统计图即可;(3)由中国诗词大会的百分比乘以1000即可得到结果.【解答】解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)根据题意得:1000×40%=400(名),则估计该校最喜爱《中国诗词大会》节目的学生有400名.【点评】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.22.【分析】(1)画树状图展示所有20种等可能的结果数,再找出从袋中同时摸出的两个球都是黄球的结果数,然后根据概率公式求解;(2)设放入袋中的黑球的个数为x,利用概率公式得到=,然后解方程即可.【解答】解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率==;(2)设放入袋中的黑球的个数为x,根据题意得=,解得x=2,所以放入袋中的黑球的个数为2.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【分析】(1)根据平行四边形的性质得出BO=DO,AO=OC,求出OE=OF,根据全等三角形的判定定理推出即可;(2)根先推出四边形EBFD是平行四边形,再根据矩形的判定得出即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BO=DO,AO=OC,∵AE=CF,∴AO﹣AE=OC﹣CF,即:OE=OF,在△BOE和△DOF中,∴△BOE≌△DOF(SAS);(2)矩形,证明:∵BO=DO,OE=OF,∴四边形BEDF是平行四边形,∵BD=EF,∴平行四边形BEDF是矩形.【点评】本题考查了平行四边形的性质和判定,全等三角形的判定和矩形的判定,能灵活运用定理进行推理是解此题的关键.24.【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点评】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.25.【分析】作PQ⊥AB于Q,根据已知,∠APQ=30°.解直角三角形求出PB即可;【解答】解:作PQ⊥AB于Q,根据已知,∠APQ=30°.则AQ=AP∵AP=20×10=200∴AQ=100∴PQ==100,在Rt△BPQ中,sin B=,∴PB=100÷0.60≈288米∴此时,小亮与妈妈相距288米.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.26.【分析】(1)根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据题意用含x的代数式表示出y1、y2即可;(3)把x=50代入两个函数关系式进行计算,比较得到答案.【解答】解:(1)设A、B两种品牌的计算器的单价分别为x、y元,由题意得,,解得.答:A、B两种品牌的计算器的单价分别为30元、32元;(2)y1=24x,y2=160+(x﹣5)×32×0.7=22.4x+48;(3)当x=50时,y1=24x=1200,y2=22.4x+48=1168,∵1168<1200,∴买B品牌的计算器更合算.【点评】本题考查的是二元一次方程组的应用和一次函数的应用,正确找出等量关系列出方程组并正确解出方程组、掌握一次函数的性质是解题的关键.27.【分析】(1)在图1中,PB=AB sin45°=2=PA,即可求解;同理可得:a=2,b=2;(2)PB=AB cosα=c cosα,PA=c sinα,PF=PA=c sinα,PE=c sinα,则a2+b2=(2AE)2+(2BF)2,即可求解;(3)证明:MG=ME=MB,MH=MC,则MG2+MH2=(MB2+MC2),即可求解.【解答】解:如图1、2、3、4,连接EF,则EF是△ABC的中位线,则EF=AB,EF∥AB,∴△EFP∽△BPA,∴…①,(1)在图1中,PB=AB sin45°=2=PA,由①得:PF=1,b=2BF=2=2=a;②同理可得:a=2,b=2;(2)关系为:a2+b2=5c2,证明:如图3,设:∠EAB=α,则:PB=AB cosα=c cosα,PA=c sinα,由①得:PF=PA=c sinα,PE=c sinα,则a2+b2=(2AE)2+(2BF)2=c2×5[(sinα)2+(cosα)2]=5c2;(3)∵AE=OE=EC,AG∥BC,∴AG=BC=AD,则EF=BC=AD,同理HG=AD,∴GH=AD,∴GH=EF,∵GH∥BC,EF∥BC,∴HG∥EF,∴MG=ME=MB,同理:MH =MC ,则MG 2+MH 2=(MB 2+MC 2)=×5×BC 2=5.【点评】本题为四边形综合题,考查了三角形相似、中位线等知识,其中(3),直接利用(2)的结论是本题的新颖点和突破点.28.【分析】(1)根据抛物线的解析式,令y =0,求出点A 和点B 的横坐标,令x =0,求出点C 的纵坐标,再根据待定系数法求出直线AC 的解析式;(2)先求出使△PCA 面积最大时点P 的坐标,再根据题意求出点P 1的坐标,因为直线A 'C '与直线AC 的距离是定值,所以MN 的长度不变,然后通过作对称点,平移,由两点之间线段最终最短求出结果;(3)根据题意画出图形,由旋转求出相关点的坐标,再通过矩形的性质和平移规律求出点S 的坐标.【解答】解:(1)令y =0,则﹣x 2+x +6=0,解得x 1=6,x 2=﹣2, ∵B 在A 的左侧∴A (6,0),B (﹣2,0)令x =0,则y =6,即C (0,6),设直线AC 解析式为y =kx +b ,把A (6,0),C (0,6)代入,∴,解得:,所以直线AC 解析式为:.(2)如图,过P 作PH ⊥x 轴交AC 于点H ,∴S △PCA =PH •(x A ﹣x C )=3PH ,∴当PH 取最大值时,S △PCA 最大,设P (m ,m 2+m +6),H (m , m +6),∴PH =m 2+m ,(0<m <6),=(m ﹣3)2+,∴当m =3时,PH 取最大值,此时P (3,),在抛物线y =﹣x 2+x +6中,对称轴为x ==2,∴由平移知直线l 为:x =,∴P 1(,),设直线l 与x 轴的垂足为Q ,连接P 1A , 在Rt △P 1AQ 中,QA =,P 1Q =,P 1A =5,∴tan ∠P 1AQ =, ∴∠P 1AQ =60°,作P 1关于直线AC 的对称点P 1′,连接P 1P 1′,与直线AC 、A ’C ’分别交于S 、T 点, 则△AP 1P 1′是等边三角形,∴P 1′A =P 1A =5,P 1′(,0), ∵MN ⊥AC ,CC '=2,∠C 'A 'A =30°,∴MN =,将P 1′沿MN 方向平移个单位得到P 1′'(,),将直线A ’C ’绕点A ’顺时针旋转45°得到直线l 1,过点P 1′'作P 1′'G ⊥l 1于点G ,与A ’C ’的交点即为N 点, 易知△P 1′'TN 和△A 'GN 都为等腰直角三角形,∴P 1′'N =P 1′'T =,A 'N =A 'T ﹣TN =,∴GN =﹣,∴(P 1M +MN +NA ′)最小=+;(3)连接OO 1,则△OO 1B 为等边三角形,∴∠O 1OA =∠OAO 1=∠OO 1A =60°,OO 1=O 1A =OA =6,∴O 1(3,9),B 1(2,12),C 1(6,12),①如图2﹣1,当四边形Q 1RS 1C 1为矩形时,x R ﹣x O 1=﹣3=,∵由题意知,QR 与直线l 的夹角为30°,∴y Q 1﹣y R =×=,∴x S 1=x C 1+=,y S 1=y C 1﹣=,∴S 1(,),同理可求出S 2(,),S 3(,﹣),S 4(, +),综上所述:在直角坐标平面内存在一点S ,使得以点O 1、C 1、R 、S 为顶点的四边形是矩形,坐标是S 1(,),S 2(,),S 3(,﹣),S 4(, +).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。