运筹学4.5 动态规划应用举例
- 格式:ppt
- 大小:777.50 KB
- 文档页数:27
动态规划算法应用场景动态规划(Dynamic Programming)在数学上属于运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法,同时也是计算机科学与技术领域中一种常见的算法思想。
动态规划算法与我们前面提及的分治算法相似,都是通过组合子问题的解来求解原问题的解。
但是两者之间也有很大区别:分治法将问题划分为互不相交的子问题,递归的求解子问题,再将他们的解组合起来求解原问题的解;与之相反,动态规划应用于子问题相互重叠的情况,在这种情况下,分治法还是会做很多重复的不必要的工作,他会反复求解那些公共的子问题,而动态规划算法则对相同的每个子问题只会求解一次,将其结果保存起来,避免一些不必要的计算工作。
Tips: 这里说到的动态规划应用于子问题相互重叠的情况,是指原问题不同的子问题之间具有相同的更小的子子问题,他们的求解过程和结果完全一样。
动态规划算法更多的时候是用来求解一些最优化问题,这些问题有很多可行解,每个解都有一个值,利用动态规划算法是希望找到具有最优值的解。
接下来,就让我们具体看看动态规划算法的求解思路及相关应用场景。
1. 动态规划算法求解分析1.1 适用问题首先,在利用动态规划算法之前,我们需要清楚哪些问题适合用动态规划算法求解。
一般而言,能够利用动态规划算法求解的问题都会具备以下两点性质:最优子结构:利用动态规划算法求解问题的第一步就是需要刻画问题最优解的结构,并且如果一个问题的最优解包含其子问题的最优解,则此问题具备最优子结构的性质。
因此,判断某个问题是否适合用动态规划算法,需要判断该问题是否具有最优子结构。
Tips: 最优子结构的定义主要是在于当前问题的最优解可以从子问题的最优解得出,当子问题满足最优解之后,才可以通过子问题的最优解获得原问题的最优解。
重叠子问题:适合用动态规划算法去求解的最优化问题应该具备的第二个性质是问题的子问题空间必须足够”小“,也就是说原问题递归求解时会重复相同的子问题,而不是一直生成新的子问题。
动态规划算法及其应用案例解析动态规划算法是计算机科学中一种非常重要的算法,它在许多领域都有大量的应用。
在本文中,我们将介绍动态规划算法的基本思想和特点,并通过一些常见的应用案例来深入理解这个算法。
1. 动态规划算法的基本思想动态规划算法是一种算法设计技术,用于在多阶段决策过程中寻找最优解。
它的基本思想是将一个大问题分解成较小的子问题来解决,然后将这些子问题的解组合起来得到原问题的解。
它与分治算法很类似,但是动态规划算法通常是针对问题的重复性结构进行优化的。
动态规划算法通常适用于满足以下几个条件的问题:(1)问题具有重叠子问题的特点,即一个大问题可以分解为多个子问题,且这些子问题存在相同的子结构;(2)问题具有最优子结构的特点,即一个问题的最优解包含其子问题的最优解。
通过以上两个条件,在通过子问题的最优解推导出大问题的最优解时,我们可以避免重复计算并且保证得到的结果是最优的。
2. 动态规划算法的特点动态规划算法的主要特点包括以下几个方面:(1)动态规划算法使用一个递推公式来计算问题的解,这个递推公式通常是由原问题和子问题之间的关系建立而来的。
(2)动态规划算法使用一个表格来存储子问题的解,这个表格通常称为动态规划表或者状态转移表。
(3)动态规划算法通常需要进行一些预处理操作,例如初始化表格的值,以及确定递推公式的边界条件。
(4)动态规划算法的时间复杂度通常是由子问题的个数和计算每个子问题的时间复杂度来决定的。
3. 应用案例解析下面我们将通过一些常见的应用案例来更好地理解动态规划算法。
(1)背包问题背包问题是指给定一组物品和一个容量为W的背包,选择一些物品放入背包中,使得放入背包的物品的总价值最大。
这个问题可以通过动态规划算法来解决。
我们可以定义一个二维数组f[i][j],表示前i个物品放进容量为j的背包所得到的最大价值。
递推公式可以定义为:f[i][j] = max(f[i-1][j], f[i-1][j-w[i]] + v[i]),其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。
本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。
二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。
其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。
具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。
这种分解可以通过递归的方式进行。
2. 定义状态:确定每个子问题的独立变量,即问题的状态。
状态具有明确的定义和可计算的表达式。
3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。
这个方程可以是简单的递推关系式、递归方程或其他形式的方程。
4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。
三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。
假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。
目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。
这个问题可以通过动态规划算法来求解。
具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。
(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。
(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。
(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。
2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。
动态规划运筹学例题动态规划是运筹学中常用的一种优化技术,它利用规划、三角函数和其他数学技术来解决日常生活中的各种问题,比如最优路线问题、最优资源分配问题、最优出行路线问题等。
本文将通过一个例题,来介绍动态规划的基本思想,以及如何利用动态规划来解决问题。
例题一:已知一条路线,由A点到B点,有N个途经的节点,每个节点之间的距离已知。
求从A到B的最短路线。
按照动态规划的思想,首先将该问题分解为若干个子问题,并根据子问题的解来解决原问题,这种分解和解决问题的方式称为动态规划。
对于上面的问题,可以将其分解为N个子问题,分别是从A到第1个节点、从第1个节点到第2个节点、从第2个节点到第3个节点,以此类推,最后一个子问题是从第N-1个节点到B点的最短路程。
将上面的N个子问题中,从第i个节点到B点的最短路程记为d[i],由于从第i个节点到B点可能经过i+1、i+2、……、N-1节点,因此要找到d[i],只需要找到经过i+1、i+2、……、N-1节点的最短路程即可,即求d[i]=Min{d[i+1]+length[i][i+1],d[i+2]+length[i][i+2],…,d[N-1]+length[i][N-1]},其中length[i][j]是第i个节点到第j个节点的距离。
以上就是动态规划的解题步骤,它能将原问题分解成若干个子问题,并找到最优解。
对于本例来说,通过上述步骤,就可以得到从A 到B的最短路程。
这种分解和求解问题的方法是动态规划,可以用来解决许多类似的问题,如:1)最优路线问题;2)旅行推销员问题;3)硬币找零问题。
动态规划的一大特点是,他能很好地将问题分解为多个子问题,并能从子问题的解中求解出最优解。
总之,动态规划是一种很有用的优化技术,它可以有效解决各种运筹学问题。
它不仅可以帮助我们解决许多具体问题,而且还能使我们更好地理解问题及其解法。
动态规划典型案例解析及计算过程梳理动态规划(Dynamic Programming)是一种通过将问题分解为子问题来解决复杂问题的算法策略。
它通常用于优化问题,通过将问题的解决方案划分为相互重叠的子问题来降低计算复杂度。
下面将通过几个典型案例,详细解析动态规划的应用及其计算过程。
1. 斐波那契数列斐波那契数列是一种经典的动态规划问题。
它的定义是:F(n) =F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
我们需要计算第n个斐波那契数。
通过动态规划的思想,可以将该问题划分为子问题,即计算第n-1和第n-2个斐波那契数。
可以使用一个数组来保存已经计算过的斐波那契数,避免重复计算。
具体的计算过程如下:1. 初始化一个长度为n+1的数组fib,将fib[0]设置为0,fib[1]设置为1。
2. 从i=2开始遍历到n,对于每个i,计算fib[i] = fib[i-1] + fib[i-2]。
3. 返回fib[n]作为结果。
通过上述过程,我们可以快速地得到第n个斐波那契数。
这个案例展示了动态规划的重要特性,即将问题分解为子问题进行求解,并利用已经计算过的结果来避免重复计算。
2. 背包问题背包问题是另一个常见的动态规划问题。
问题的定义是:有一组物品,每个物品有自己的重量和价值,在限定的背包容量下,如何选择物品使得背包中的总价值最大化。
通过动态规划的思想,背包问题可以被划分为子问题。
我们可以定义一个二维数组dp,其中dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。
具体的计算过程如下:1. 初始化一个大小为n+1行,m+1列的二维数组dp,其中n为物品数量,m为背包容量。
将所有元素初始化为0。
2. 从i=1开始遍历到n,对于每个i,从j=1开始遍历到m,对于每个j,进行如下判断:- 若当前物品的重量大于背包容量j,则dp[i][j] = dp[i-1][j],即不选择当前物品;- 若当前物品的重量小于等于背包容量j,则dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi),即选择当前物品或不选择当前物品所能获得的最大价值。
南京航空航天大学运筹学课程论文题目:动态规划应用举例学号:姓名:完成日期:2013。
5。
16摘 要动态规划是解决最优控制的一种重要方法之一,算法的优点有:(1)易于确定全局最优解;(2)能得到一族解,有利于分析结果;(3)能利用经验,提高求解的效率。
动态规划方法虽然存在许多不足之处,但随着计算机的日益普及,动态规划的应用越来越广泛,它能够巧妙地解决科学技术和实际生活中的许多实例。
本文列举了一些典型例题,介绍了如何用动态规划去求解,不足之处是这些问题大多数都是确定型的,而对于连续型、随机型问题接触较少。
关键词:动态规划;应用;正 文一、 资源分配问题所谓分配问题,就是将数量一定的一种或若干种资源(例如原材料、资金、机器设备、劳力、食品等等),恰当地分配给若干个使用者,而使目标函数为最优。
设有某种原料,总数量为a ,用于生产n 种产品。
若分配数量i x 用于生产第i 种产品,其收益为()i i g x ,问应如何分配,才能使生产n 产品的总收入最大? 此问题可写成静态规划问题:112212max ()()()0, 1,2,,n n n iz g x g x g x x x x a x i n =+++⎧⎪+++=⎨⎪≥=⎩当()i i g x 都是线性函数时,它是一个线性规划问题;当()i i g x 是非线性函数时,它是一个非线性规划问题。
但当n 比较大时,具体求解是比较麻烦的。
由于这类问题的特殊结构,可以将它看成一个多阶段决策问题,并利用动态规划的递推关系来求解。
在应用动态规划方法处理这类“静态规划”问题时,通常以把资源分配给一个或几个使用者的过程作为一个阶段,把问题中的变量i x 为决策变量,将累计的量或随递推过程变化的量选为状态变量。
设状态变量k s 表示分配用于生产第k 种产品至第n 种产品的原料数量。
决策变量k u 表示分配给生产第k 种产品的原料数,即k u =k x 状态转移方程:1k k k k k s s u s x +=-=- 允许决策集合:{}()0k k k k k k D s u u x s =≤=≤令最优值函数()k k f s 表示以数量为k s 的原料分配给第k 种产品至第n 种产品所得到的最大总收入。
动态规划应用案例动态规划是一种解决复杂问题的优化算法。
它通过将问题拆分成多个子问题,并记录每个子问题的解,以避免重复计算,从而提高算法的效率。
在实际应用中,动态规划被广泛用于解决各种问题,包括最优化问题、路径搜索问题、序列问题等。
本文将介绍几个动态规划的应用案例,以展示其在实际问题中的强大能力。
案例一:背包问题背包问题是动态规划中经典的一个例子。
假设有一个背包,容量为V,现有n个物品,每个物品的重量为wi,价值为vi。
要求在不超过背包容量的前提下,选取一些物品放入背包,使得背包中的物品总价值最大。
这个问题可以用动态规划来解决。
首先定义一个二维数组dp,其中dp[i][j]表示在前i个物品中选择一些物品,使得它们的总重量不超过j时的最大总价值。
然后,可以得到如下的状态转移方程:dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)最后,根据状态转移方程,可以循环计算出dp[n][V]的值,即背包中物品总价值的最大值,从而解决了背包问题。
案例二:最长递增子序列最长递增子序列是指在一个序列中,选取一些数字,使得这些数字按照顺序排列,且长度最长。
动态规划也可以应用于解决最长递增子序列问题。
假设有一个序列nums,长度为n。
定义一个一维数组dp,其中dp[i]表示以nums[i]为结尾的最长递增子序列的长度。
然后,可以得到如下的状态转移方程:dp[i] = max(dp[j] + 1),其中j < i且nums[j] < nums[i]最后,循环计算出dp数组中的最大值,即为最长递增子序列的长度。
案例三:最大子数组和最大子数组和问题是指在一个数组中,选取一段连续的子数组,使得子数组的和最大。
动态规划也可以用于解决最大子数组和问题。
假设有一个数组nums,长度为n。
定义一个一维数组dp,其中dp[i]表示以nums[i]为结尾的连续子数组的最大和。
然后,可以得到如下的状态转移方程:dp[i] = max(dp[i-1] + nums[i], nums[i])最后,循环计算出dp数组中的最大值,即为最大子数组的和。
徐州工程学院数理学院案例分析报告课程名称运筹学及应用案例分析题目农场五年计划的制定专业班级姓名学号指导教师成绩等级2013年 12 月 4 日目录小组成员分工 (1)一.问题描述 (2)二.问题分析 (2)三.模型建立 (3)四.模型求解与程序设计 (15)小组人员详细分工一.问题描述农场五年计划的制定英国某农场主有200英亩土地的农场,现在要为未来五年制定生产计划:现在他有120头母牛,其中20头为不到2岁的幼牛,100头为产奶牛。
每头幼牛需用2/3英亩土地供养,每头产奶牛需用1英亩。
产奶牛平均每头每年生1.1头牛,其中一半为公牛,生出后不久即卖掉,平均每头卖30英镑。
另一半为母牛,可以在生出后不久卖掉, 平均每头卖40英镑,也可以留下饲养,养至2岁成为产奶牛。
幼牛每年损失5%,产奶牛每年损失2%。
产奶牛养至12岁就卖掉,平均每头卖120英镑。
现有的幼牛0岁和1岁各10头,100头产奶牛,从2岁到11岁,每一年龄的都有10头,应该卖掉的小母牛都已卖掉。
现有的20头是要饲养成产奶牛的,一头牛所产的奶提供年收入370英镑。
现在最多只能养130头牛,超过此数每多养一头,要投资200英镑。
每头产奶牛每年消耗0.6吨粮食和0.7吨甜菜,粮食和甜菜可由农场种植出来.每英亩产甜菜1.5吨,只有80英亩的土地适于种粮食,且产量不同,按产量可分为4组:第一组20英亩,亩产1.1吨;第二组30英亩,亩产0.9吨;第三组20英亩,亩产0.8吨;第四组10英亩,亩产0.65吨。
从市场购粮食每吨90英镑,卖粮食每吨75英镑,买甜菜每吨70英镑,卖出50英镑。
养牛和种植所需劳动量为:每头幼牛每年10小时,每头产奶牛每年42小时,种一英亩粮食每年需4小时,种一英亩甜菜每年需14小时,其它费用:每头幼牛每年50英镑,每头产奶牛每年100英镑,种粮食每英亩每年15英镑,种甜菜每英亩每年10英镑。
劳动费用现在每年为4000英镑,提供5500小时的劳动量,超过此数的劳动量每小时费用为1.20英镑。