2020年中考数学全真模拟试卷(广东专用)(一)(解析版)
- 格式:docx
- 大小:361.28 KB
- 文档页数:17
2020年广东省中考数学全真模拟试卷一数学(本卷满分120分,考试时间90分钟)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.﹣的绝对值是()A.2B.C.﹣D.﹣22.下列图形中是中心对称图形的是()A.B.C.D.3.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30B.25和29C.28和30D.28和294.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.4.4×10105.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)6.不等式3(x﹣1)≤5﹣x的非负整数解有()A.1个B.2个C.3个D.4个7.下列运算正确的是()A.(2a2)2=2a4B.6a8÷3a2=2a4C.2a2•a=2a3D.3a2﹣2a2=18.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(2,3),B(6,1)两点,当k1x+b<时,x的取值范围为()A.x<2B.2<x<6C.x>6D.0<x<2或x>69.如图,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2二、填空题(本大题共7小题,每小题4分,共28分)11.分解因式:3x2﹣6x+3=.12.一个正多边形的每个内角等于108°,则它的边数是.13.如图,已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=.14.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.15.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.16.如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.17.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形共有个○.三、解答题(本大题共3小题,每小题6分,共18分)18.计算:+(﹣)﹣1+|1﹣|﹣4sin 45°.19.解分式方程:﹣1=.20.在△ABC中,∠A=90°.(1)请在图1中作出BC边上的中线(保留作图痕迹,不写作法);(2)如图2,设BC边上的中线为AD,求证:BC=2AD.四、解答题(本大题共3小题,每小题8分,共24分)21.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.22.如图,某市郊外景区内一条笔直的公路l经过A,B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B 的北偏东30°的方向上,且AB=10 km.(1)求景点B与C的距离;(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长(结果保留根号).23.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1 200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.五、解答题(本大题共2小题,每小题10分,共20分)24.如图,在以线段AB为直径的⊙O上取一点C,连接AC、BC.将△ABC沿AB 翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC•AE.求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE,CB相交于点F,若BC=2,AC=4,求线段EF的长.25.(1)课本情境如图,已知矩形AOBC,AB=6 cm,BC=16 cm,动点P从点A出发,以3 cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动,出发时,点P和点Q之间的距离是10 cm;(2)逆向发散当运动时间为2 s时,P,Q两点的距离为多少?当运动时间为4 s时,P,Q两点的距离为多少?(3)拓展应用若点P沿着AO→OC→CB移动,点P,Q分别从A,C同时出发,点Q从点C移动到点B 停止时,点P随点Q的停止而停止移动,求经过多长时间△POQ的面积为12 cm2?参考答案1.B2.C3.D4.C5.C6.C7.C8.D9.B10.C11.3(x﹣1)212.五13.414.x(x+40)=1 200 15.116.9﹣517.6 05818.解:原式=2﹣3+﹣1﹣4×=2﹣3+﹣1﹣2=﹣4.19.解:两边都乘3(x﹣1),得3x﹣3(x﹣1)=2x,解得x=1.5,检验:x=1.5时,3(x﹣1)=1.5≠0,所以分式方程的解为x=1.5.20.(1)解:如图1,AD为所作.(2)证明:如图2,延长AD到E,使ED=AD,连接EB,EC,∵CD=BD,AD=ED,∴四边形ABEC为平行四边形,∵∠CAB=90°,∴四边形ABEC为矩形,∴AE=BC,∴BC=2AD.21.(1)证明:∵D,E分别是AB,AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形.(2)解:∵四边形CDEF是平行四边形,∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25 cm,AC的长5 cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得AB=13 cm. 22.解:(1)如图,由题意得∠CAB=30°,∠ABC=90°+30°=120°,∴∠C=180°﹣∠CAB﹣∠ABC=30°,∴∠CAB=∠C=30°,∴BC=AB=10 km,即景点B,C相距的路程为10 km.(2)如图,过点C作CE⊥AB于点E,∵BC=10 km,C位于B的北偏东30°的方向上,∴∠CBE=60°,在Rt△CBE中,CE=km.23.解:(1)n=5÷10%=50.(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1 200×=240,所以估计该校喜爱看电视的学生人数为240人.(3)画树状图如图:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.24.解:(1)∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,∴点D在以AB为直径的⊙O上.(2)∵△ABC≌△ABD,∴AC=AD,∵AB2=AC•AE,∴AB2=AD•AE,即=,∵∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABE=∠ADB=90°,∵AB为⊙O的直径,∴BE是⊙O的切线.(3)∵AD=AC=4,BD=BC=2,∠ADB=90°,∴AB===2,∵=,∴=,解得DE=1,∴BE==,∵四边形ACBD内接于⊙O,∴∠FBD=∠FAC,即∠FBE+∠DBE=∠BAE+∠BAC,又∵∠DBE+∠ABD=∠BAE+∠ABD=90°,∴∠DBE=∠BAE,∴∠FBE=∠BAC,又∠BAC=∠BAD,∴∠FBE=∠BAD,∴△FBE∽△FAB,∴=,即==,∴FB=2FE,在Rt△ACF中,∵AF2=AC2+CF2,∴(5+EF)2=42+(2+2EF)2,整理,得3EF2﹣2EF﹣5=0,解得EF=﹣1(舍去)或EF=,∴EF=.25.解:(1)设运动时间为t秒时,如图,过点P作PE⊥BC于E,由运动知,AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P和点Q之间的距离是10 cm,∴62+(16﹣5t)2=100,∴t=或s.故答案为s或s(2)由运动知AP=3×2=6 cm,CQ=2×2=4 cm,∴四边形APEB是矩形,∴PE=AB=6,BE=6,∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,根据勾股定理得,当t=2 s时,P,Q两点的距离为6cm;同理:当t=4 s时,P,Q两点的距离为2cm.(3)当点P在AO上时,S△POQ===12,解得t=4.当点P在OC上时,S△POQ===12,解得t=6或﹣(舍弃).当点P在CB上时,S△POQ===12,解得t=18>8(不符合题意舍弃),综上所述,经过4 s或6 s时,△POQ的面积为12 cm2.。
2020年广东中考数学各地区模拟试题分类(深圳专版)(一)——反比例函数一.选择题1.(2020•福田区一模)如图,是函数y =ax 2+bx +c 的图象,则函数y =ax +c ,y =,在同一直角坐标系中的图象大致为( )A .B .C .D .2.(2020•福田区校级模拟)以下说法正确的是( )A .小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是B .一组对边平行,另一组对边相等的四边形是平行四边形C .点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =图象上,且x 1<x 2,则y 1<y 2D .对于一元二元方程ax 2+bx +c =0(ac <0),若b =0,则方程的两个根互为相反数3.(2020春•福田区校级期中)将反比例函数y =的图象绕坐标原点O 逆时针旋转30°,得到如图的新曲线,与过点A (﹣3,3),B (,)的直线相交于点C 、D ,则△OCD 的面积为( )A.8 B.3 C.2D.4.(2020•南山区校级一模)已知:如图,直线l经过点A(﹣2,0)和点B(0,1),点M在x轴上,过点M作x轴的垂线交直线l于点C,若OM=2OA,则经过点C的反比例函数表达式为()A.B.C.D.5.(2020•福田区校级模拟)如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线y=(x>0)上,若图中S=4,则k的值为()△OBPA.B.﹣C.﹣4 D.46.(2020春•罗湖区校级月考)函数y=﹣2x,y=,y=﹣x2的共同性质是()A.它们的图象都经过原点B.它们的图象都不经过第二象限C.在x>0的条件下,y都随x的增大而增大D.在x>0的条件下,y都随x的增大而减小7.(2020春•宝安区校级月考)如图,矩形ABCD的边AB在x轴上,反比例函数y=(k ≠0)的图象过D点和边BC的中点E,连接DE,若△CDE的面积是2,则k的值是()A.3 B.4 C.2D.8 8.(2020•龙岗区校级模拟)以下说法正确的有()①正八边形的每个内角都是135°;②反比例函数y=﹣,当x<0时,y随x的增大而增大;③长度等于半径的弦所对的圆周角为30°;④分式方程的解为x=;A.1个B.2个C.3个D.4个9.(2020•龙岗区模拟)如图,点A、B在双曲线(x<0)上,连接OA、AB,以OA、AB为边作▱OABC.若点C恰落在双曲线(x>0)上,此时▱OABC的面积为()A.B.C.D.4二.填空题10.(2020•深圳模拟)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(0,2),点C是反比例函数y=(x>0)图象上一点,∠ABC=135°,AC交y轴于点D,=,则k的值为.11.(2020•南山区校级二模)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D是斜边AC的中点,连接DB并延长交y轴于点E,若△BCE的面积为7,则k的值为.12.(2020•深圳模拟)如图,直线y=﹣2x+4与y轴,x轴分别相交于A,B两点,将射线AB绕B点顺时针旋转到BC,使得∠ABC=∠ABO,反比例函数y=(x>0)的图象经过C点,CD⊥OB于D点,且S=,则k值=.△BCD13.(2020•大鹏新区一模)已知:如图,在平面直角坐标系xOy中,点A在x轴的正半轴上,点B、C在第一象限,且四边形OABC是平行四边形,AB=2,sin B=,反比例函数y=的图象经过点C以及边AB的中点D,则四边形OABC的面积为.14.(2020•盐田区二模)如图,在平面直角坐标系中,半径为的⊙B经过原点O,且与x,y轴分别交于点A,C,点C的坐标为(0,2),AC的延长线与⊙B的切线OD交于点D,则经过D点的反比例函数的解析式为.15.(2020•罗湖区一模)如图,平行于x轴的直线与函数y=(k>0,x>0)和y=(x >0)的图象分别相交于B,A两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC 的面积为1,则k的值为.16.(2020•龙华区二模)如图,已知直线y=﹣2x+4与x轴交于点A,与y轴交于点B,与双曲线y=(x>0)交于C、D两点,且∠AOC=∠ADO,则k的值为.17.(2020•福田区模拟)如图,在平面直角坐标系中,边长为1的正方形OABC的顶点O 与原点重合,顶点A,C分别在x轴、y轴上,反比例函数y=(k≠0,x>0)的图象与正方形的两边AB、BC分别交于点M、N,连接OM、ON、MN.若∠MON=45°,则k的值为.18.(2020•坪山区一模)如图,Rt△OAB的边AB延长线与反比例函数y=在第一象限的图象交于点C,连接OC,且∠AOB=30°,点C的纵坐标为1,则△OBC的面积是.=(x>0)的图象在第一象限,反比例函19.(2020•光明区一模)如图,反比例函数y1=﹣(x>0)的图象在第四象限,把一个含45°角的直角三角板如图放置,三数y2个顶点分别落在原点O和这两个函数图象上的A,B点处,若点B的横坐标为2,则k的值为.三.解答题20.(2020•大鹏新区一模)如图1,直线y 1=kx +3与双曲线y 2=(x >0)交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,直线y 1=kx +3分别交x 轴、y 轴于点C 和点D ,且S △DBP =27,.(1)求OD 和AP 的长;(2)求m 的值;(3)如图2,点M 为直线BP 上的一个动点,连接CB 、CM ,当△BCM 为等腰三角形时,请直接写出点M 的坐标.21.(2020•深圳模拟)如图,在平面直角坐标系中,▱ABCO 的顶点A 在x 轴正半轴上,两条对角线相交于点D ,双曲线y =(x >0)经过C ,D 两点.(1)求▱ABCO 的面积.(2)若▱ABCO 是菱形,请直接写出:①tan ∠AOC = .②将菱形ABCO 沿x 轴向左平移,当点A 与O 点重合时停止,则平移距离t 与y 轴所扫过菱形的面积S 之间的函数关系式: .22.(2020•宝安区二模)如图,一次函数y1=﹣x+3与反比例函数y2=的图象交于A、B两点,A点的横坐标为3.(1)求反比例函数的解析式;(2)结合图象,直接写出y1<y2时,x的取值范围.23.(2020•南山区校级一模)如图,点A、B分别在x轴和y轴的正半轴上,以线段AB为边在第一象限作等边△ABC,,且CA∥y轴.(1)若点C在反比例函数的图象上,求该反比例函数的解析式;(2)在(1)中的反比例函数图象上是否存在点N,使四边形ABCN是菱形,若存在请求出点N坐标,若不存在,请说明理由.(3)点P在第一象限的反比例函数图象上,当四边形OAPB的面积最小时,求出P点坐标.参考答案一.选择题1.解:∵二次函数y =ax 2+bx +c 的图象开口向下,∴a <0,∵二次函数y =ax 2+bx +c 的图象交y 轴的负半轴,∴c <0,∵二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,∴b 2﹣4ac >0,∴一次函数y =ax +c ,图象经过第二、三、四象限,反比例函数y =的图象分布在第一、三象限,故选:A .2.解:A 、小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的频率是,故A 选项的说法错误; B 、一组对边平行,另一组对边相等的四边形有可能是等腰梯形,故B 选项说法错误; C 、点A (x 1,y 1),B (x 2,y 2)都在反比例函数y =图象上,若x 1<x 2<0,则y 1<y 2,故C 选项说法错误;D ,若b =0,ac <0,由根与系数的关系可知:x 1+x 2==0,x 1•x 2=<0,所以x 1、x 2互为相反数,故D 选项说法正确;故选:D .3.解:连接OA 、OB ,过点A 、B ,分别作AM ⊥x 轴,BN ⊥x 轴,垂足为M 、N ,∵点A (﹣3,3),B (,), ∵OM =3,AM =3,BN =,ON =, ∴OA ==6,OB ==3, ∵tan ∠AOM ==,∴∠AOM =60°,同理,∠BON =30°,因此,旋转前点A所对应的点A′(0,6),点B所对应的点B′(3,0),设直线A′B′的关系式为y=kx+b,故有,,解得,k=﹣2,b=6,∴直线A′B′的关系式为y=﹣2x+6,由题意得,,解得,,因此,点C、D在旋转前对应点的坐标为C′(1,4),D′(2,2),如图2所示,过点C′、D′,分别作C′P⊥x轴,D′Q⊥x轴,垂足为P、Q,则,C′P=4,OP=1,D′Q=2,OQ=2,∴S△COD =S△C′OD′=S梯形C′PQD′=(2+4)×(2﹣1)=3,故选:B.4.解:设直线l的解析式为:y=kx+b,∵直线l经过点A(﹣2,0)和点B(0,1),∴,解得:,∴直线l的解析式为:y=x+1,∵点A(﹣2,0),∴OA=2,∵OM=2OA,∴OM=4,∴点C的横坐标为4,当x=4时,y=3,∴点C(4,3),设反比例函数表达式为y=,∴m=12,∴反比例函数表达式为y=,故选:B.5.解:如图:∵△AOB和△ACD均为正三角形,∴∠AOB=∠CAD=60°,∴AD∥OB,∴S△ABP =S△AOP,∴S△AOB =S△OBP=4,过点B作BE⊥OA于点E,则S△OBE =S△ABE=S△AOB=2,∵点B在反比例函数y=的图象上,∴S△OBE=k,∴k=4故选:D.6.解:函数y=﹣2x,y=,y=﹣x2的共同性质是有当x>0时,y随x的增大而减小,故选:D.7.解:设E的坐标是(m,n),则k=mn,点C的坐标是(m,2n),在y=中,令y=2n,解得:x=,∵S=2,△CDE∴|n|•|m﹣|=2,即n×=2,∴mn=8.∴k=8.故选:D.8.解:①正八边形的每个内角都是:=135°,故①正确;②反比例函数y=﹣中的k=﹣2<0,则其函数图象在每一象限内y的值随x的值增大而增大,故②正确;③如图:∵OA=OB=AB,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴长度等于半径的弦所对的圆周角为:30°或150°,故③错误;④由已知方程得到3x﹣1=1且x≠0.解得x=.经检验,x=是原方程的根,故④正确.;故正确的有①②④,共3个.故选:C .9.解:如图,连接AC ,过A 作AD ⊥x 轴于D ,过C 作CE ⊥x 轴于E ,过B 作BF ⊥AD 于F ,则△ABF ≌△COE ,设A (a ,﹣),C (b ,),则OE =BF =b ,CE =AF =,∴B (a +b ,﹣+),又∵点B 在双曲线y =﹣(x <0)上,∴(a +b )(﹣+)=﹣3, ∴﹣=2, 设=x ,则方程﹣=2可化为3x ﹣=2,解得x =或x =(舍去), ∴=,=, ∴平行四边形OABC 的面积=2×S △OAC=2(S 梯形ADEC ﹣S △AOD ﹣S △COE )=2[(﹣+)(b ﹣a )﹣×|﹣3|﹣×|2|] =﹣+3+2﹣﹣5=﹣3×﹣2×(﹣) =2. 故选:B .二.填空题(共10小题)10.解:∵点A,B的坐标分别为(﹣1,0),(0,2),∴OA=1,OB=2,∴AB==,过A作AH⊥BC于H,∵∠ABC=135°,∴∠HBA=∠HAB=45°,∴AH=BH=×=,∵BH⊥AH,BO⊥AO,∴B,H,A,O四点共圆,连接OH,∴∠BOH=∠BAH=45°,∴H在第二象限角平分线上,作HM⊥x轴于M,HN⊥y轴于N,则四边形HMON是正方形,∴HM=HN,在Rt△AHM与Rt△BHN中,,∴Rt△HAM≌Rt△HBN(HL),∴AM=BN,∵OM=ON,∴AM=BN=,∴H(﹣,),∴直线BH的解析式为y=x+2,过C作CI⊥x轴于I,∴OD∥CI,∴==,∴2OI=3AO=3,∴OI=,把x=代入y=x+2得y=,∴C点坐标为(,),∵点C是反比例函数y=(x>0)图象上一点,∴k=×=,故答案为.11.解:连接OA.∵△BCE的面积为7,∴BC•OE=7,∴BC•OE=14,∵点D为斜边AC的中点,∴BD=DC=AD,∴∠DBC=∠DCB=∠EBO,又∠EOB=∠ABC=90°,∴△EOB∽△ABC,∴,∴AB•OB•=BC•OE,∵•OB•AB=,∴k=AB•BO=BC•OE=14,故答案为14.12.解:∵直线y=﹣2x+4与y轴,x轴分别相交于A,B两点,∴A(0,4),B(2,0),∴OA=4,OB=2,在BC是截取BP=OB,连接OP交AB于Q,∵∠ABC=∠ABO,∴OP⊥AB,OQ=QP,∴在直线OP的解析式为y=x,解得,∴Q(,),∴p(,),设直线BC的解析式为y=kx+b,把B(2,0),P(,)代入得,解得,∴直线BC的解析式为y=x﹣,设CD=h,∵S=,△BCD∴BD•CD=,∴BD=,∴OD=2+,∴C(2+,h),代入y=x﹣得,h=(2+)﹣,解得h=2或h=﹣2(舍去),∴C(,2),∵反比例函数y=(x>0)的图象经过C点,∴k=×2=7,故答案为7.13.解:延长BC交y轴于E,如图,∵四边形OABC为平行四边形,∴BC=OA,BC∥OA,OC∥AB,OC=AB=2,∴BE⊥y轴,∠OCE=∠B,在Rt△OCE中,sin∠OCE==sin B=,∴OE=×2=4,∴CE==2,∴C(2,4),设B(t+2,4),∵D点为AB的中点,∴D(t+1,2),∵点C、D在反比例函数y=的图象上,∴2(t+1)=2×4,解得t=3,∴BC=4,∴四边形OABC的面积=3×4=12.故答案为12.14.解:连接OB,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵C(0,2),∴OC=2,∵⊙B的半径为,∴OB=,AC=2,∴,∴OE=2,A(﹣4,0),∴,∵OD是⊙B的切线,∴∠BOD=90°,∴∠BOE+∠DOF=∠DOF+∠ODF=90°,∴∠BOE=∠ODF,∵∠BEO=∠OFD=90°,∴△OBE∽△DOF,∴,设OD的解析式为:y=kx(k≠0),设D(a,b),则k=,∴OD的解析式为:y=2x,设直线AC的解析式为:y=mx+n(m≠0),则,解得,,∴直线AC的解析式为:y=x+2,联立方程组,解得,,设经过点D的反比例函数解析式为:y=,∴,∴k=,∴反比例函数的解析式为:.故答案为:.15.解:设点A的坐标为(,a),点B的坐标为(,a),∵△ABC的面积为1,∴×((﹣)×a=1,解得,k =1,故答案为:1.16.解:由已知得OA =2,OB =4,根据勾股定理得出,AB =2,如图,过点C 作CE ⊥x 轴于E ,作CG ⊥y 轴G ,过点D 作DH ⊥x 轴于H ,作DF ⊥y 轴于F ,连接GH ,GD ,CH ,∵点C ,D 是反比例图象上的点,∴S 矩形FDHO =S 矩形GCEO , ∴S 矩形FDHO =S 矩形GOEC .∴S △DGH =S △GHC .∴点C ,D 到GH 的距离相等.∴CD ∥GH .∴四边形BDHG 和四边形GHAC 都是平行四边形.∴BD =GH ,GH =CA .即BD =AC ;设AC =BD =m ,∵∠AOC =∠ADO ,CAO =∠DAO ,∴△AOC ∽△ADO , ∴,∴AO 2=AC •AD ,∴22=m (2﹣m ), ∴m =±1(舍去+1), 过点C 作CE ⊥x 轴于点E ,∴△ACE ∽△ABO , ∴, ∴, ∴AE =,CE =,∴OE=OA﹣AE=2﹣=∴CE•OE==,故答案为:.17.解:∵点M、N都在y=的图象上,∴S△ONC =S△OAM=|k|.∵四边形ABCO为正方形,∴OC=OA,∠OCN=∠OAM=90°,∴OC•CN=OA•AM.∴CN=AM.将△OAM绕点O逆时针旋转90°,点M对应M′,点A对应C,如图所示.∵∠OCM′+∠OCN=180°,∴N、C、M′共线.∵∠COA=90°,∠NOM=45°,∴∠CON+∠MOA=45°.∵△OAM旋转得到△OCM′,∴∠MOA=∠M′OC,∴∠CON+∠COM'=45°,∴∠M'ON=∠MON=45°.在△M'ON与△MON中,,∴△M'ON≌△MON(SAS),∴MN=M'N.∵CN=AM.又∵BC=BA,∴BN=BM.设AM=CN=x,则BM=BN=1﹣x,MN=2x,又∵∠B=90°,∴BN2+BM2=MN2,∴(1﹣x)2+(1﹣x)2=(2x)2,解得,x=﹣1,或x=﹣﹣1(舍去),∴AM=﹣1,∴M(1,﹣1),∵M点在反比例函数y=(k≠0,x>0)的图象上,∴k=1×(﹣1)=﹣1),故答案为:﹣1).18.解:如图,过点C作CH⊥x轴于H,∵点C在反比例函数图象上,点C的纵坐标为1,∴点C(3,1)∴CH =1,OH =3,∵∠ABO =∠CBH ,∠A =∠BHC =90°,∴∠HCB =∠AOB =30°,∴CH =BH , ∴BH =,∴OB =OH ﹣BH =,∴△OBC 的面积=×OB ×CH =, 故答案为:.19.解:如图所示,过B 作BC ⊥y 轴于C ,过A 作AD ⊥CB 于D , ∵△ABO 是等腰直角三角形,∴∠ABO =∠ADB =∠BCO =90°,BO =AB ,∴∠CBO =∠BAD ,∴△BCO ≌△ADB (AAS ),∴BC =AD ,CO =BD ,∵点B 在反比例函数y 2=﹣(x >0)的图象上,点B 的横坐标为2,∴可设B (2,﹣k ),∴CO =BD =k ,CB =AD =2,∴A (2+k ,2﹣k ),∵点A 在反比例函数y 1=(x >0)的图象上, ∴(2+k )(2﹣k )=3k ,解得k 1=1,k 2=﹣4(舍去),∴k 的值为1,故答案为:1.三.解答题(共4小题)20.解:(1)设P(a,b),则OA=a,∵=,∴OC=AC,∴C(a,0),∵点C在直线y=kx+3上,∴0=ak+3,即ka=﹣9,∴DB=3﹣b=3﹣(ka+3)=﹣ka=9,∵BP=a,=×DB•BP=27,∴S△DBP∴×9a=27,∴a=6,∴k=﹣,∴一次函数的表达式为y=﹣x+3;将x=6代入一次函数解析式得:y=﹣6,即P(6,﹣6),∴AP=6,由一次函数表达式得:点D(0,3),故OD=3;(2)将点P的坐标代入反比例解析式得:m2﹣13m=﹣36,解得:m=4或9;(3)由(1)得,点C(2,0)、而点B(0,﹣6),设点M(m,﹣6);则BC2=4+36=40,CM2=(m﹣2)2+36,MB2=m2,当BC=CM时,40=(m﹣2)2+36,解得:m=4或0(舍去0);当BC=MB时,同理可得:m=±2;当MB=CM时,同理可得:m=10,故点M的坐标为(4,﹣6)或(10,﹣6)或(±,﹣6).21.解:(1)设点C(a,),点A(b,0),∵四边形ABCO是平行四边形,∴CD=AD,∴点D(,),∵双曲线y=(x>0)经过C,D两点,∴×=6,∴b=3a,∴点A(3a,0),∴▱ABCO的面积=3a×=18;(2)①∵▱ABCO是菱形,∴OA=CO=3a,∴(a﹣0)2+(﹣0)2=9a2,∴a=,∴点C(,2),∴tan∠AOC==2,故答案为2;②∵a=,∴点A坐标为(3,0),点C(,2),当0≤t≤,y=×t×2t=t2,当<t≤3,y=×2×(t+t﹣)=2t﹣3,当3<t ≤4,y =×2×(t +t ﹣)﹣×2×(t ﹣3)×(t ﹣3)=﹣t 2+8t ﹣30,综上所述:y =.22.解:(1)当x =3时,y 1=﹣3+3=2,∴A (3,2), 把A (3,2)代入y 2=得,k =3×2=6,∴反比例函数的解析式为:y 2=;(2)解得,,,当y 1<y 2时,x 的取值范围为:0<x <3或x >6.23.解:(1)如图1中,作CD ⊥y 轴于D .∵CA ∥y 轴,CD ⊥y 轴,∴CD ∥OA ,AC ∥OD ,∴四边形OACD 是平行四边形,∵∠AOD =90°,∴四边形OACD 是矩形,∴k =S 矩形OACD =2S △ABC =2,∴反比例函数的解析式为y =.(2)如图2中,作BD ⊥AC 于D ,交反比例函数图象于N ,连接CN ,AN .∵△ABC是等边三角形,面积为,设CD=AD=m,则BD=m,∴×2m×m=,∴m=1或﹣1(舍弃),∴B(0,1),C(,,2),A(,0),∴N(2,1),∴BD=DN,∵AC⊥BN,∴CB=CN,AB=AN,∵AB=BC,∴AB=BC=CN=AN,∴四边形ABCN是菱形,∴N(2,1).(3)如图3中,连接PB,PA,OP.设P(a,).S四边形OAPB =S△POB+S△POA=×1×a+××=a+=(﹣)2+,∴当a=时,四边形OAPB的面积最小,解得a=或﹣(舍弃),此时P(,).。
2020年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.﹣9B.9C.D.﹣2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.53.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.75.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣26.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.47.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+38.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤19.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.C.D.210.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c <0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=.12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=.13.(4分)若+|b+1|=0,则(a+b)2020=.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.2020年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)9的相反数是()A.﹣9B.9C.D.﹣【分析】根据相反数的定义即可求解.【解答】解:9的相反数是﹣9,故选:A.2.(3分)一组数据2,4,3,5,2的中位数是()A.5B.3.5C.3D.2.5【分析】中位数是指一组数据从小到大排列之后,如果数据的总个数为奇数,则中间的数即为中位数;如果数据的总个数为偶数个,则中间两个数的平均数即为中位数.【解答】解:将数据由小到大排列得:2,2,3,4,5,∵数据个数为奇数,最中间的数是3,∴这组数据的中位数是3.故选:C.3.(3分)在平面直角坐标系中,点(3,2)关于x轴对称的点的坐标为()A.(﹣3,2)B.(﹣2,3)C.(2,﹣3)D.(3,﹣2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【解答】解:点(3,2)关于x轴对称的点的坐标为(3,﹣2).故选:D.4.(3分)若一个多边形的内角和是540°,则该多边形的边数为()A.4B.5C.6D.7【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:B.5.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x≠2B.x≥2C.x≤2D.x≠﹣2【分析】根据二次根式中的被开方数是非负数,即可确定二次根式被开方数中字母的取值范围.【解答】解:∵在实数范围内有意义,∴2x﹣4≥0,解得:x≥2,∴x的取值范围是:x≥2.故选:B.6.(3分)已知△ABC的周长为16,点D,E,F分别为△ABC三条边的中点,则△DEF的周长为()A.8B.2C.16D.4【分析】根据中位线定理可得DF=AC,DE=BC,EF=AC,继而结合△ABC的周长为16,可得出△DEF的周长.【解答】解:∵D、E、F分别为△ABC三边的中点,∴DE、DF、EF都是△ABC的中位线,∴DF=AC,DE=BC,EF=AC,故△DEF的周长=DE+DF+EF=(BC+AB+AC)=16=8.故选:A.7.(3分)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3【分析】先求出y=(x﹣1)2+2的顶点坐标,再根据向右平移横坐标加,求出平移后的二次函数图象顶点坐标,然后利用顶点式解析式写出即可.【解答】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.8.(3分)不等式组的解集为()A.无解B.x≤1C.x≥﹣1D.﹣1≤x≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2﹣3x≥﹣1,得:x≤1,解不等式x﹣1≥﹣2(x+2),得:x≥﹣1,则不等式组的解集为﹣1≤x≤1,故选:D.9.(3分)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为()A.1B.C.D.2【分析】由正方形的性质得出∠EFD=∠BEF=60°,由折叠的性质得出∠BEF=∠FEB'=60°,BE=B'E,设BE=x,则B'E=x,AE=3﹣x,由直角三角形的性质可得:2(3﹣x)=x,解方程求出x即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.10.(3分)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c <0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【分析】根据抛物线的开口方向、对称轴、与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:xy﹣x=x(y﹣1).【分析】直接提取公因式x,进而分解因式得出答案.【解答】解:xy﹣x=x(y﹣1).故答案为:x(y﹣1).12.(4分)如果单项式3x m y与﹣5x3y n是同类项,那么m+n=4.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)可得m=3,n=1,再代入代数式计算即可.【解答】解:∵单项式3x m y与﹣5x3y n是同类项,∴m=3,n=1,∴m+n=3+1=4.故答案为:4.13.(4分)若+|b+1|=0,则(a+b)2020=1.【分析】根据非负数的意义,求出a、b的值,代入计算即可.【解答】解:∵+|b+1|=0,∴a﹣2=0且b+1=0,解得,a=2,b=﹣1,∴(a+b)2020=(2﹣1)2020=1,故答案为:1.14.(4分)已知x=5﹣y,xy=2,计算3x+3y﹣4xy的值为7.【分析】由x=5﹣y得出x+y=5,再将x+y=5、xy=2代入原式=3(x+y)﹣4xy计算可得.【解答】解:∵x=5﹣y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)﹣4xy=3×5﹣4×2=15﹣8=7,故答案为:7.15.(4分)如图,在菱形ABCD中,∠A=30°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD的度数为45°.【分析】根据∠EBD=∠ABD﹣∠ABE,求出∠ABD,∠ABE即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AD=AB,∴∠ABD=∠ADB=(180°﹣∠A)=75°,由作图可知,EA=EB,∴∠ABE=∠A=30°,∴∠EBD=∠ABD﹣∠ABE=75°﹣30°=45°,故答案为45°.16.(4分)如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为m.【分析】求出阴影扇形的弧长,进而可求出围成圆锥的底面半径.【解答】解:由题意得,阴影扇形的半径为1m,圆心角的度数为120°,则扇形的弧长为:,而扇形的弧长相当于围成圆锥的底面周长,因此有:2πr=,解得,r=,故答案为:.17.(4分)有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC 的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为2﹣2.【分析】如图,连接BE,BD.求出BE,BD,根据DE≥BD﹣BE求解即可.【解答】解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.故答案为2﹣2.三、解答题(一)(本大题3小题,每小题6分,共18分)18.(6分)先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=,y=.【分析】根据整式的混合运算过程,先化简,再代入值求解即可.【解答】解:(x+y)2+(x+y)(x﹣y)﹣2x2,=x2+2xy+y2+x2﹣y2﹣2x2=2xy,当x=,y=时,原式=2××=2.19.(6分)某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【分析】(1)根据四个等级的人数之和为120求出x的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例.【解答】解:(1)x=120﹣(24+72+18)=6;(2)1800×=1440(人),答:根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有1440人.20.(6分)如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.【分析】先证△BDF≌△CEF(AAS),得出BF=CF,DF=EF,则BE=CD,再证△ABE≌△ACD(AAS),得出AB=AC即可.【解答】证明:∵∠ABE=∠ACD,∴∠DBF=∠ECF,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BF=CF,DF=EF,∴BF+EF=CF+DF,即BE=CD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AB=AC,∴△ABC是等腰三角形.四、解答题(二)(本大题3小题,每小题8分,共24分)21.(8分)已知关于x,y的方程组与的解相同.(1)求a,b的值;(2)若一个三角形的一条边的长为2,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.【分析】(1)关于x,y的方程组与的解相同.实际就是方程组的解,可求出方程组的解,进而确定a、b的值;(2)将a、b的值代入关于x的方程x2+ax+b=0,求出方程的解,再根据方程的两个解与2为边长,判断三角形的形状.【解答】解:(1)由题意得,关于x,y的方程组的相同解,就是方程组的解,解得,,代入原方程组得,a=﹣4,b=12;(2)当a=﹣4,b=12时,关于x的方程x2+ax+b=0就变为x2﹣4x+12=0,解得,x1=x2=2,又∵(2)2+(2)2=(2)2,∴以2、2、2为边的三角形是等腰直角三角形.22.(8分)如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠BCD.(1)求证:直线CD与⊙O相切;(2)如图2,记(1)中的切点为E,P为优弧上一点,AD=1,BC=2.求tan∠APE的值.【分析】(1)证明:作OE⊥CD于E,证△OCE≌△OCB(AAS),得出OE=OB,即可得出结论;(2)作DF⊥BC于F,连接BE,则四边形ABFD是矩形,得AB=DF,BF=AD=1,则CF=1,证AD、BC是⊙O的切线,由切线长定理得ED=AD=1,EC=BC=2,则CD=ED+EC=3,由勾股定理得DF=2,则OB=,证∠ABE=∠BCH,由圆周角定理得∠APE=∠ABE,则∠APE=∠BCH,由三角函数定义即可得出答案.【解答】(1)证明:作OE⊥CD于E,如图1所示:则∠OEC=90°,∵AD∥BC,∠DAB=90°,∴∠OBC=180°﹣∠DAB=90°,∴∠OEC=∠OBC,∵CO平分∠BCD,∴∠OCE=∠OCB,在△OCE和△OCB中,,∴△OCE≌△OCB(AAS),∴OE=OB,又∵OE⊥CD,∴直线CD与⊙O相切;(2)解:作DF⊥BC于F,连接BE,如图所示:则四边形ABFD是矩形,∴AB=DF,BF=AD=1,∴CF=BC﹣BF=2﹣1=1,∵AD∥BC,∠DAB=90°,∴AD⊥AB,BC⊥AB,∴AD、BC是⊙O的切线,由(1)得:CD是⊙O的切线,∴ED=AD=1,EC=BC=2,∴CD=ED+EC=3,∴DF===2,∴AB=DF=2,∴OB=,∵CO平分∠BCD,∴CO⊥BE,∴∠BCH+∠CBH=∠CBH+∠ABE=90°,∴∠ABE=∠BCH,∵∠APE=∠ABE,∴∠APE=∠BCH,∴tan∠APE=tan∠BCH==.23.(8分)某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米.建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元.用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不少于A类摊位数量的3倍.求建造这90个摊位的最大费用.【分析】(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的这个等量关系列出方程即可.(2)设建A摊位a个,则建B摊位(90﹣a)个,结合“B类摊位的数量不少于A类摊位数量的3倍”列出不等式并解答.【解答】解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,根据题意得:,解得:x=3,经检验x=3是原方程的解,所以3+2=5,答:每个A类摊位占地面积为5平方米,每个B类摊位的占地面积为3平方米;(2)设建A摊位a个,则建B摊位(90﹣a)个,由题意得:90﹣a≥3a,解得a≤22.5,∵建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,∴要想使建造这90个摊位有最大费用,所以要多建造A类摊位,即a取最大值22时,费用最大,此时最大费用为:22×40×5+30×(90﹣22)×3=10520,答:建造这90个摊位的最大费用是10520元.五、解答题(三)(本大题2小题,每小题10分,共20分)24.(10分)如图,点B是反比例函数y=(x>0)图象上一点,过点B分别向坐标轴作垂线,垂足为A,C.反比例函数y=(x>0)的图象经过OB的中点M,与AB,BC分别相交于点D,E.连接DE并延长交x轴于点F,点G与点O关于点C对称,连接BF,BG.(1)填空:k=2;(2)求△BDF的面积;(3)求证:四边形BDFG为平行四边形.【分析】(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD,即可求解;(3)确定直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),即可求解.【解答】解:(1)设点B(s,t),st=8,则点M(s,t),则k=s•t=st=2,故答案为2;(2)△BDF的面积=△OBD的面积=S△BOA﹣S△OAD=×8﹣×2=3;(3)设点D(m,),则点B(4m,),∵点G与点O关于点C对称,故点G(8m,0),则点E(4m,),设直线DE的表达式为:y=sx+n,将点D、E的坐标代入上式得并解得:直线DE的表达式为:y=﹣,令y=0,则x=5m,故点F(5m,0),故FG=8m﹣5m=3m,而BD=4m﹣m=3m=FG,则FG∥BD,故四边形BDFG为平行四边形.25.(10分)如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.【分析】(1)先求出点A,点B坐标,代入交点式,可求抛物线解析式,即可求解;(2)过点D作DE⊥AB于E,由平行线分线段成比例可求OE=,可求点D坐标,利用待定系数法可求解析式;(3)利用两点距离公式可求AD,AB,BD的长,利用锐角三角函数和直角三角形的性质可求∠ABD=30°,∠ADB=45°,分∠ABP=30°或∠ABP=45°两种情况讨论,利用相似三角形的性质可求解.【解答】解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标为(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△DAB∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).。
2023年广东省深圳市中考数学初中学业水平考试模拟试卷(一)学校:___________姓名:___________班级:___________考号:___________一、单选题1.23-的绝对值是()A .23-B .123C .23D .123-2.下面的几何体中,主视图为三角形的是()A.B.C.D.3.深圳2022年市地区生产总值约为32400亿元,32400用科学记数法表示为()A .123.2410⨯B .83240010⨯C .43.2410⨯D .1132.410⨯4.某班进行演讲比赛,其中6人的成绩如下:9.4,9.0,9.6,9.6,9.3,9.5(单位:分),则下列说法不正确的是()A .这组数据的众数是9.6分B .这组数据的方差是13300C .这组数据的平均数是9.4分D .这组数据的中位数是9.5分5.下列运算正确的是()A .()222a b a b +=+B .()326a a -=C .()22236ab a b =D .()()2224b a ab -⋅-=-6.如图,将一副三角尺按图中所示位置摆放,点F 在AC 上,其中90ACB ∠=︒,60ABC ∠=︒,90EFD ∠=︒,45DEF ∠=︒,//AB DE ,则AFD ∠的度数是()A .15︒B .30︒C .45︒D .60︒7.一元一次不等式组71143x x +>⎧⎪-⎨≤⎪⎩解集为()A .B .C .D .8.下列命题中真命题是()A .平分弦的直径必垂直于弦B .有一组邻边相等的四边形为菱形C .()43-,关于x 轴的对称点为()43,-D .有两边及其夹角对应相等的两个三角形全等9.《九章算术》中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?现有一类似问题:今有人组团购一物,如果每人出10元,则多了6元;如果每人出8元,则少了8元,问组团人数和物价各是多少?若设x 人参与组团,物价为y 元,则以下列出的方程组正确的是()A .10688x y x y -=⎧⎨-=⎩B .10688y x y x -=⎧⎨-=⎩C .10688x y y x -=⎧⎨-=⎩D .10688y x x y -=⎧⎨-=⎩10.如图,在菱形ABCD 中,120BAD ∠=︒,DE BC ⊥交BC 的延长线于点E .连接AE 交BD 于点F ,交CD 于点G .FH CD ⊥于点H ,连接CF .有下列结论:①AF CF =;②2CF EF FG =⋅;③:4:5FG EG =;④cos 14GFH ∠=则上述结论中正确的有()A .1个B .2个C .3个D .4个二、填空题11.分解因式:3244x x x -+=______.12.欢欢考试需要复习语文、数学和英语三科,现在需要安排科目顺序,从前到后的顺序恰好为“数学、英语、语文”的概率是____________.13.如图,在Rt △ABC 中,∠C =90°,AC =BC ,按以下步骤作图:①以点A 为圆心,以任意长为半径作弧,分别交AC ,AB 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在∠BAC 内交于点O ;③作射线AO ,交BC 于点D .若点D 到AB 的距离为2,则BC 的长为___.14.如图,在平面直角坐标系中,OABC 的顶点A ,B 在第一象限内,顶点C 在y 轴上,经过点A 的反比例函数()0ky x x=>的图象交BC 于点D .若3BC BD =,OABC 的面积为6,则k 的值为___.15.如图,在ABC 中,90ACB ∠=︒,AC DC =,AB AE ⊥,且AE=AB ,连接DE 交AC 的延长线于点F ,32AC CF =,则BD CD=______.三、解答题16.计算:()202311|12cos302π⎛⎫-+---+︒ ⎪⎝⎭.17.先化简,再求值:2361693x x x x +⎛⎫÷+ ⎪-+-⎝⎭,其中3x =.18.6月14日是“世界献血日”,某市组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A 型”、“B 型”、“AB 型”、“O 型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型A B AB O 人数*105*(1)这次随机抽取的献血者人数为________人,m =________;(2)本次抽取的样本中,A 型部分所占的圆心角的度数是________°;(3)若这次活动中该市有3000人义务献血,请你根据抽样结果估计这3000人中大约有多少人是A 型血?19.如图,O 是ABC 的外接圆,点E 是BAC ∠和ABC ∠角平分线的交点,AE 的延长线交BC 于点F ,O 交于点D ,连接BD .(1)求证:DB DE =;(2)若34AE DF ==,,求DB 的长.20.某公司根据市场需求代理甲,乙两种型号的电脑,每台甲型电脑比每台乙型电脑进价多600元,用5万元购进甲型电脑与用4.4万元购进乙型电脑的数量相等.(1)求每台甲型、乙型平板的进价各是多少元?(2)该公司计划购进甲、乙两种型号的电脑共80台进行试销,其中甲型电脑为m 台,购买资金不超过39.16万元.并且甲型电脑不少于乙型电脑的3倍,试销时甲型电脑每台售价5500元,乙型电脑每台售价4800元,问该公司应如何购进甲、乙两种型号的电脑使得销售完后获得的利润W 最大?21.小爱同学学习二次函数后,对函数()21y x =--进行了探究,在经历列表、描点、连线步骤后,得到如下的函数图像.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:__________;②方程()211x --=-的解为:__________;③若方程()21x a --=有四个实数根,则a 的取值范围是__________.(2)延伸思考:将函数()21y x =--的图象经过怎样的平移可得到函数()21213y x =---+的图象?写出平移过程,并直接写出当123y <≤时,自变量x 的取值范围.22.如图,在Rt ABC 中,∠ACB =90°,∠A =60°,点D 为AB 的中点,连接CD ,将线段CD 绕点D 顺时针旋转α(60°<α<120°)得到线段ED ,且ED 交线段BC 于点G ,∠CDE 的平分线DM 交BC 于点H .(1)如图1,若α=90°,则线段ED 与BD 的数量关系是,GDCD=;(2)如图2,在(1)的条件下,过点C 作CF ∥DE 交DM 于点F ,连接EF ,BE .①试判断四边形CDEF 的形状,并说明理由;②求证:BE FH =(3)如图3,若AC =2,tan(60)a m ︒-=,过点C 作过点C 作CF ∥DE 交DM 于点F ,连接EF ,BE ,请直接写出BEFH的值(用含m 的式子表示).参考答案:1.C【分析】直接利用绝对值的定义得出答案.【详解】解:23-的绝对值是23.故选:C .【点睛】此题主要考查了绝对值,解答此题的关键是要明确:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数a -;③当a 是零时,a 的绝对值是零.2.A【分析】分别判断每个选项中的正视图是否满足条件即可.【详解】解:A 的主视图是三角形,符合题意;B 的主视图不是三角形,不符合题意;C 的主视图是矩形,不符合题意;D 的主视图是矩形,不符合题意;故选:A .【点睛】本题主要考查空间几何体的三视图的判断,要求熟练掌握常见空间几何体的三视图.3.C【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.【详解】∵432400=3.2410⨯,故选C .【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.4.D【分析】根据平均数、众数、中位数和方差的定义分别计算即可.【详解】解:这组数据从大到小排列为9.6,9.6,9.5,9.4,9.3,9.0,9.6分出现次数最多,则这组数据的众数是9.6分,故A 选项正确,不符合题意;处于中间的两个数是9.5,9.4,则这组数据的中位数是9.45分,故D 选项错误,符合题意;这组数据的平均数为9.629.59.49.399.46⨯++++=,故C 选项正确,不符合题意;方差为()()()()()22222129.69.49.59.49.49.49.39.49.09.46⎡⎤⨯⨯-+-+-+-+-⎣⎦13300=,故B 选项正确,不符合题意;故选:D .【点睛】本题主要考查方差,解题的关键是掌握平均数、众数、中位数和方差的定义.5.D【分析】直接利用同底数幂的乘法运算法则以及积的乘方、幂的乘方运算法则、完全平方公式分别计算得出答案.【详解】解:A 、()222222a b a ab b a b +=++≠+,该选项不符合题意;B 、()3266a a a -=-≠,该选项不符合题意;C 、()22222396ab a b a b =≠,该选项不符合题意;D 、()()2224b a ab -⋅-=-,该选项符合题意;故选:D .【点睛】此题考查同底数幂的乘法运算以及积的乘方、幂的乘方、完全平方公式,正确掌握相关运算法则是解题关键.6.A【分析】设AB 与EF 交于点M ,根据//AB DE ,得到45AMF E ∠=∠=︒,再根据三角形的内角和定理求出结果.【详解】解:设AB 与EF 交于点M ,∵//AB DE ,∴45AMF E ∠=∠=︒,∵90ACB ∠=︒,60ABC ∠=︒,∴30A ∠=︒,∴1803045105AFM ∠=︒-︒-︒=︒,∵90EFD ∠=︒,∴AFD ∠=15︒,故选:A ..【点睛】此题考查平行线的性质,三角形的内角和定理,熟记平行线的性质并应用是解题的关键.7.B【分析】先解每个不等式的解集,再求两个不等式的解集的公共部分即可.【详解】解:解不等式71x +>得:6x >-,解不等式143x -≤得:13x ≤,∴不等式组的解集为613x -<≤,在数轴上表示为:,故选:B .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的步骤是解题的关键.8.D【分析】根据菱形的判定、垂径定理、轴对称和全等三角形的判定判断即可.【详解】解:A 、平分弦(非直径)的直径必垂直于弦,原命题是假命题,本选项不符合题意;B 、有一组邻边相等的平行四边形为菱形,原命题是假命题,本选项不符合题意;C 、()43-,关于x 轴的对称点为()43--,,原命题是假命题,本选项不符合题意;D 、有两边及其夹角对应相等的两个三角形全等,真命题,本选项符合题意;故选:D .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.C【分析】根据等量关系“每人出10元,则多了6元;每人出8元,则少了8元”列出方程组即可.【详解】解:设x 人参与组团,物价为y 元,由题意可得,10688x y y x -=⎧⎨-=⎩.故选:C .【点睛】此题考查了由实际问题抽象出二元一次方程组,根据物价得到等量关系是解决本题的关键.10.D【分析】利用菱形的性质和全等三角形的判定证明①,证明FCE FGC △∽,从而证明②,由含30°直角三角形的性质和相似三角形的性质分析求解,从而证明③和④.【详解】解:在菱形ABCD 中,AD DC ADB CDB =∠=∠,,又∵DF DF =,∴()SAS ADF CDF ≌,∴DAF DCF AF CF ∠=∠=,,故①正确;∵AD BC ∥,∴DAF FEC ∠=∠,∴DCF FEC ∠=∠,又∵CFG EFC ∠∠=,∴CFG CFG ∠=∠,∴FC FGEF FC=,即2FC EF FG =⋅,故②正确;∵在菱形ABCD 中,120BAD ∠=︒,∴113022DBC BDC ABC ADC ∠=∠===︒∠∠,又∵DE BC ⊥,∴在Rt DCF 中,30∠=︒CDE ,∴12CE DC =,∴在菱形ABCD 中,12,23CE AD AD BE ==,又∵AD BC ∥,∴ADF BEF ∽,∴23AF AD EF BE ==,∴23FC EF =由②已证2FC EF FG =⋅,设23FC k EF k ==,,∴43FG k =,53EG k =,∴:4:5FG EG =,故③正确;由③已知23DF AD BF BE ==,设23DF a BF a ==,,∴5BD a =,∴在Rt BDE △中,1522DE BD ==,在Rt CDE △中,CE DE a,23CD CE ==,在Rt DFH △中,12FH FD a ==,DH ,∴CH =,∴在Rt FCH △中,3FC a =,又由②③已证,2FC EF FG =⋅,:4:5FG EG =,设45FG m EG m ==,,则9EF m =,∴2493m m ⎛⎫⋅= ⎪ ⎪⎝⎭,解得18m a =±(负值舍去),∴FG a =,∴4cos 1GFH FH FG ∠==,故④正确,故选D .【点睛】本题考查菱形的性质,相似三角形的性质与判定,勾股定理以及解直角三角形,题目有一定难度,掌握相关性质定理正确推理计算是解题关键.11.2(2)x x -【分析】首先提取公因式x ,然后利用完全平方式进行因式分解即可.【详解】解:3244x x x-+()244x x x =-+2(2)x x =-,故答案为2(2)x x -.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.16【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顺序恰好为“数学、英语、语文”的情况,再利用概率公式求解即可求得答案.【详解】解:画树形图由树形图可知所有可能情况共6种,其中顺序恰好为“数学、英语、语文”的情况只有1种,所以顺序恰好为“数学、英语、语文”的概率为16.故答案为:16.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率等于所求情况数与总情况数之比.13.2+【分析】由题目作图知,AD 是∠CAB 的平分线,过点D 作DH ⊥AB ,则CD =DH =2,进而求解.【详解】解:过点D 作DH ⊥AB ,则DH =2,由题目作图知,AD 是∠CAB 的平分线,则CD =DH =2,∵△ABC 为等腰直角三角形,故∠B =45°,则△DHB 为等腰直角三角形,故BD ,则BC =CD +BD =2+,故答案为:2+【点睛】本题考查的是角平分线的性质,涉及到几何作图、等腰直角三角形的性质等,解题的关键是灵活运用所学知识解决问题.14.365【分析】过点D 作DN y ⊥轴于N ,过点B 作BM y ⊥轴于M ,可得2CN MN =,设OC a =,2CN b =,则MN b =,根据OABC 的面积为6表示出BM 的长度,根据3BC BD =求出ND 的长,进而表示出A ,D 两点的坐标,根据反比例函数系数k 的几何意义即可求出.【详解】解:过点D 作DN y ⊥轴于N ,过点B 作BM y ⊥轴于M ,∴DN BM ∥,∴CN CD MN BD=,∵3BC BD =,∴2CN CD MN BD ==,即2CN MN =,设OC a =,2CN b =,则MN b =,∵OABC 的面积为6,∴6BM a=,∵DN BM ∥,∴CDN CBM ∽△△,∴DN CD BM CB=,∵3BC BD =,∴23CD CB =,∴243ND BM a ==,∴A ,D 点坐标分别为6432b a b a a ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,,,,∴()6432b a b a a⋅=+,∴25b a =,∴623356365k b a a a =⋅=⨯=,故答案为:365.【点睛】本题主要考查了平行四边形的性质和反比例函数的几何意义,相似三角形的性质和判定,利用数形结合思想是解题的关键.15.43【分析】在CD 上截取CG =CF ,连接AG ,可得ACG DCF ≌,设AC =CD =3x ,则CF =CG =2x ,GD =x ,再证明GAB FEA ≌,进而即可求解.【详解】解:在CD 上截取CG =CF ,连接AG ,∵AC =CD ,∠ACG =∠DCF =90°,∴ACG DCF ≌,∴∠AGC =∠CFD ,设AC =CD =3x ,则CF =CG =2x ,GD =x ,∵∠EAB =∠EAF +∠CAB =∠CAB +∠B =90°,∴∠EAF =∠B ,∴∠E =∠CFD -∠EAF =∠AGC -∠B =∠GAB ,又∵AE =AB ,∴GAB FEA ≌,∴AF =BG =5x ,∴BD =BG -GD =4x ,∴BD CD =43.【点睛】本题主要考查全等三角形的判定和性质,添加辅助线,构造全等三角形,是解题的关键.16.1【分析】利用有理数的乘方、零指数幂法则、绝对值的意义以及特殊角的三角函数值进行化简即可得到结果.【详解】解:()0202311|12cos302π⎛⎫-+---+︒ ⎪⎝⎭11122=-+-+⨯1=++1=.【点睛】本题考查有理数的乘方,零指数幂,化简绝对值,特殊角的三角函数值,准确熟练地化简各式是解题的关键.17.13x -,3.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【详解】解:2361693x x x x +⎛⎫÷+ ⎪-+-⎝⎭()2336333x x x x x +-⎛⎫=÷+ --⎝⎭-()23333x x x x ++=÷--()23333x x x x +-=⋅+-13x =-,当3x =+时,原式3=.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.18.(1)50,20;(2)86.4(3)3000人中大约有720人是A 型血【分析】(1)用AB 型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m 的值;(2)计算出A 型人数百分比,从而可计算出A 型部分所占的圆心角的度数;(3)用3000乘以此百分比可估计这3000人中是A 型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m =1050×100=20;故答案为50,20;(2)A 型献血的人所占百分比为:1-46%-10%-20%=24%,A 型部分所占的圆心角的度数是:,360°×24%=86.4°,故答案为∶86.4;(3)这3000人中大约是A 型血约有:3000×24%=720(人).【点睛】本题考查了用样本估计总体、统计表、扇形统计图,解决本题的关键是综合运用以上知识.19.(1)见解析(2)6【分析】(1)依据三角形内心的性质可得BAD CAD ∠=∠,ABE CBE ∠=∠,由圆周角定理的推论可得CAD CBD BAD ∠=∠=∠.从而可证BED DBE ∠=∠,根据等角对等边即可得结论;(2)由D D DBF CAD BAD ∠=∠∠=∠=∠,,即可判定ABD BFD ∽ ,所以BD AD FD BD=,设EF x =,可化为4744x x x ++=+,解得2x =,从而可求DB 的长;【详解】(1)证明: 点E 是BAC ∠和ABC ∠角平分线的交点,∴AE 平分BAC ∠,BE 平分ABC ∠,∴BAD CAD ABE CBE ∠=∠∠=∠,,又 CAD ∠与CBD ∠所对弧为 DC,∴CAD CBD BAD ∠=∠=∠,∴BED ABE BAD DBE CBE CBD ∠=∠+∠∠=∠+∠,,即BED DBE ∠=∠,故DB DE =;(2)解: D D DBF CAD BAD ∠=∠∠=∠=∠,,∴ABD BFD ∽ ,∴BD AD FD BD=①, 43DF AE ==,,设EF x =,由(1)可得4DB DE x ==+,则①式化为4744x x x++=+,解得:1226x x =,=﹣(不符题意,舍去),则4426DB x =+=+=.【点睛】本题考查了三角形内心的性质、圆周角定理的推论,相似三角形的判定与性质,证明ABD BFD ∽ 是解题的关键.20.(1)每台甲型电脑的进价为5000元,每台乙型电脑的进价为4400元(2)购进66台甲型平板,14台乙型平板时利润W 取得最大,最大利润为38600元.【分析】(1)设每台乙型电脑的进价为x 元,则每台甲型电脑的进价为()600x +元,利用“用5万元购进甲型电脑与用4.4万元购进乙型电脑的数量相等”构建分式方程,解之即可得到答案;(2)由题意:购买资金不超过39.16万元,并且甲型电脑不少于乙型电脑的3倍,列出一元一次不等式组,解得6066m ≤≤,然后由一次函数的性质即可得出W 的最大值.【详解】(1)解:设每台乙型电脑的进价为x 元,则每台甲型电脑的进价为()600x +元,依题意,得:5000044000600x x=+,解得:4400x =,经检验,4400x =是原方程的解,且符合题意,∴6005000x +=.答:每台甲型电脑的进价为5000元,每台乙型电脑的进价为4400元;(2)解:设最大利润是W 元,∵购进m 台甲型电脑,∴购进()80m -台乙型电脑,依题意,得:()()()55005000480044008010032000W m m m =-+--=+.∵购买资金不超过39.16万元.甲型电脑不少于乙型电脑的3倍,∴()()5000440080391600380m m m m ⎧+-≤⎪⎨≥-⎪⎩,解得:6066m ≤≤,由10032000W m =+,∵1000k =>,∴W 随m 值的增大而增大,∴当66m =时,利润W 取得最大值,最大值100663200038600max W =⨯+=(元).答:购进66台甲型平板,14台乙型平板时利润W 取得最大,最大利润为38600元.【点睛】本题考查了分式方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.21.(1)①关于y 轴对称;②1232,0,2x x x =-==;③10a -<<;(2)将函数()21y x =--的图象先向右平移2个单位长度,再向上平移3个单位长度可得到函数()21213y x =---+的图象,当123y <≤时,自变量x 的取值范围为02x <<或24x <<.【分析】(1)①根据函数图象可直接进行作答;②由函数图象及方程可得当y =-1时,自变量x 的值,则可看作直线y =-1与函数()21y x =--的图象交点问题,进而问题可求解;③由题意可看作直线y =a 与函数()21y x =--的图象有四个交点的问题,进而问题可求解;(2)由函数图象平移可直接进行求解,然后结合函数图象可求解x 的范围问题.【详解】解:(1)①由图象可得:该函数的一条性质为关于y 轴对称,(答案不唯一);故答案为关于y 轴对称;②由题意及图象可看作直线y =-1与函数()21y x =--的图象交点问题,如图所示:∴方程()211x --=-的解为1232,0,2x x x =-==;故答案为1232,0,2x x x =-==;③由题意可看作直线y =a 与函数()21y x =--的图象有四个交点的问题,如图所示:∴由图象可得若方程()21x a --=有四个实数根,则a 的取值范围是10a -<<;故答案为10a -<<;(2)由题意得:将函数()21y x =--的图象先向右平移2个单位长度,再向上平移3个单位长度可得到函数()21213y x =---+的图象,则平移后的函数图象如图所示:∴由图象可得:当123y <≤时,自变量x 的取值范围为02x <<或24x <<.【点睛】本题主要考查二次函数的图象与性质,熟练掌握二次函数的图象与性质是解题的关键.22.(1)BD =ED (2)正方形,理由见解析【分析】(1)根据直角三角形斜边中线等于斜边的一半可以得到AC =CD =BD ,根据旋转的性质可以得到CD =DE ,则DE =BD ,又在Rt △CGD 中,根据含30°的直角三角形边之间的关系可得结论;(2)①由∠CFD =∠EDM =∠CDM ,得CF =CD =ED ,又CF ∥DE ,则四边形CDEF 是平行四边形,又∠CDE =90°,CD=CE 证出四边形CDEF 是正方形;②由题意可得,∠EGB =∠FCH ,∠EBG =∠CFD ,则BEG FHC ∽,利用相似三角形的性质列比例式,结合DG =BG ,CD =CF ,则得BE BG GD FH FC CD ==;(3)过点D 作DN ⊥BC 于点N ,由()tan tan 60DG NDG a m DN ∠=-︒==,得NG =m ,所以BGm ,根据条件通过角的反复转换求出BEG 和FHC 的两个对应角相等,证明△BEG ∽△FHC ,DG =BG ,CD =CF ,最后得出2BE BG m FH FC ==.【详解】(1)解:∵∠ACB =90°,∴△ACB 为直角三角形,∵点D 为AB 的中点,∴AD =BD =CD ,∵旋转,∴BD =CD ,∴BD =ED ;∵∠A =60°,∴∠B =90°-∠A =30°,∵BD =CD ,∴∠DCG =∠B =30°,∵∠CDE =90°,∴tan tan 303GD DCG CD =∠=︒=;(2)①四边形CDEF 是正方形,理由如下:∵DM 平分∠CDE ,∠CDE =90°,∴∠CDF =∠EDF =45°,∵CF ∥DE ,∴∠DCF =180°-∠CDE =90°,∴△DCF 是等腰直角三角形,∴CD =CF ,∵CD =DE ,∴CF =DE ,∴四边形CDEF 是平行四边形,∵∠CDE =90°,CD =CE ,∴四边形CDEF 是正方形;②由(1)知,∠ADC =60°,∠CGD =60°,BD =DE ,∴∠BDE =∠BDC -∠CDG =30°,∴∠DBG =∠BDG =30°,∠EGB =60°,∴∠DBE =∠DEB =75°,∴45EBG DBE DBC ∠=∠-∠=︒,∵∠GDB =90°-∠ADE =30°,∠ABC =30°,∴∠GDB =∠ABC ,由(1)知∠CFD =∠CDF =45°,∠DCF =90°,∴∠FCH =∠DCF -∠DCB =60°,∴∠EGB =∠FCH ,∠EBG =∠CFD ,∴△BEG ∽△FHC ,∴BE BG FH FC=,∵DG =BG ,CD =CF ,∴BE BG GD FH FC CD ==(3)如图,过点D 作DN ⊥BC 于点N ,∴AC ∥DN ,∴∠ACD =∠CDN ,∵△ACD 是等边三角形,AC =2,∴FC =CD =AC =2,∠CDN =∠ACD =60°,∴∠NDG =α-60°,DN =1,∴tan ∠NDG =tan(α-60°)=DG m DN =,∴NG =m ,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =2,∴AB =4,BC =,∴BN =CN∴BG m ,∵∠ADC =60°,∠CDG =α,∴∠BDE =120°-α,∴302BEG BED α∠=∠=︒+,∴∠EBG =2α,∴180150BGE BEG EBG α∠=︒-∠-∠=︒-,∵DM 平分∠CDE ,∠CDE =α,∴∠CDM =∠EDM =2α,∵CF DE ,∴2CFD EDM α∠=∠=,∵∠DCF +∠CDE =180°,∴∠DCF =180°-α,∴∠FCG =150°-α,∴∠EGB =∠FCG ,∠EBG =∠CFD ,∴△BEG ∽△FHC ,∴BE BG FH FC =.【点睛】本题主要考查相似三角形的性质与判定,等腰三角形的性质与判定,含30°的直角三角形的边角关系,正方形的性质与判定,旋转的性质,利用三角函数求解,三角形内角和等知识点,证明△BEG ∽△FHC 是解题关键.。
2020年广东省初中学业水平考试数学一、选择题(本大题10小题,每小題3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.9的相反数是( )A. 9B. 9-C. 19D. 19- 【答案】B【解析】根据相反数的定义:“只有符号不同的两个数互为相反数”可知,9的相反数是-9.故选B.2.一组数据2,4,3,5,2的中位数是( )A. 5B. 35C. 3D. 25【答案】C【解析】【分析】把这组数据从小到大的顺序排列,取最中间位置的数就是中位数.【详解】把这组数据从小到大的顺序排列:2,2,3,4,5,处于最中间位置的数是3,∴这组数据的中位数是3,故选:C .【点睛】本题考查了求中位数,熟练掌握中位数的求法是解答的关键.3.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A. (3,2)-B. (2,3)-C. (2,3)-D. (3,2)- 【答案】D【解析】【分析】利用关于x 轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.【详解】点(3,2)关于x 轴对称的点的坐标为(3,-2),故选:D .【点睛】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键.4.若一个多边形的内角和是540°,则该多边形的边数为( )A. 4B. 5C. 6D. 7【答案】B【解析】【分析】根据内角和公式即可求解.【详解】设这个多边形的边数为n,∴(n-2)×180°=540°解得n=5故选B .【点睛】此题主要考查多边形的内角和,解题的关键是熟知内角和公式.5.在实数范围内有意义,则x的取值范围是( )A. 2x ≠B. 2x ≥C. 2x ≤D. 2x ≠-【答案】B【解析】【分析】根据二次根式里面被开方数240x -≥即可求解.【详解】解:由题意知:被开方数240x -≥,解得:2x ≥,故选:B .【点睛】本题考查了二次根式有意义的条件,必须保证被开方数大于等于0.6.已知ABC ∆的周长为16,点D ,E ,F 分别为ABC ∆三条边的中点,则DEF ∆的周长为()A. 8B.C. 16D. 4【答案】A【解析】【分析】由D ,E ,F 分别为ABC ∆三条边的中点,可知DE 、EF 、DF 为ABC ∆的中位线,即可得到DEF ∆的周长.【详解】解:如图,∵D ,E ,F 分别为ABC ∆三条边的中点, ∴12DF BC =,12DE AC =,12EF AB =, ∵16BC AC AB ++=, ∴()1116822DF DE EF BC AC AB ++=++=⨯=, 故选:A .【点睛】本题考查了三角形的中位线,熟练掌握三角形的中位线平行于第三边且是第三边的一半是解题的关键.7.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A. 22y x =+B. 2(1)1y x =-+ C. 2(2)2y x =-+D. 2(1)3y x =-- 【答案】C【解析】【分析】 抛物线在平移时开口方向不变,a 不变,根据图象平移的口诀“左加右减、上加下减”即可解答.【详解】把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为[]22(1)12(2)2y x x =--+=-+, 故选:C .【点睛】本题考查了二次函数图象与几何变换,解答的重点在于熟练掌握图象平移时函数表达式的变化特点.8.不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( ) A. 无解B. 1x ≤C. 1x ≥-D. 11x -≤≤【答案】D【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−3x≥−1,得:x≤1,解不等式x−1≥−2(x +2),得:x≥−1,则不等式组的解集为−1≤x≤1,故选:D .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.如图,在正方形ABCD 中,3AB =,点E ,F 分别在边AB ,CD 上,60EFD ∠=︒.若将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( ) A. 12 3 D. 2【答案】D【解析】【分析】由CD ∥AB 得到∠EFD=∠FEB=60°,由折叠得到∠FEB=∠FEB’=60°,进而得到∠AEB’=60°,然后在Rt △AEB’中由30°所对直角边等于斜边一半即可求解.【详解】解:∵四边形ABCD 是正方形,∴CD ∥AB ,∴∠EFD=∠FEB=60°,由折叠前后对应角相等可知:∠FEB=∠FEB’=60°,∴∠AEB’=180°-∠FEB-∠FEB’=60°,∴∠AB’E=30°,设AE=x ,则BE=B’E=2x ,∴AB=AE+BE=3x =3,∴x =1,∴BE=2x =2,故选:D .【点睛】本题借助正方形考查了折叠问题,30°角所对直角边等于斜边的一半等知识点,折叠问题的性质包括折叠前后对应边相等,对应角相等,折叠产生角平分线,由此即可解题.10.如图,抛物线2y ax bx c =++的对称轴是1x =.下列结论:①0abc >;②240b ac ->;③80a c +<;④520a b c ++>,正确的有( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【分析】 由抛物线的性质和对称轴是1x =,分别判断a 、b 、c 的符号,即可判断①;抛物线与x 轴有两个交点,可判断②;由12b x a =-=,得2b a =-,令2x =-,求函数值,即可判断③;令2x =时,则420y a b c =++>,令1x =-时,0y a b c =-+>,即可判断④;然后得到答案.【详解】解:根据题意,则0a <,0c >, ∵12b x a=-=, ∴20b a =->,∴0abc <,故①错误;由抛物线与x 轴有两个交点,则240b ac ->,故②正确;∵2b a =-,令2x =-时,420y a b c =-+<,∴80a c +<,故③正确;在2y ax bx c =++中,令2x =时,则420y a b c =++>,令1x =-时,0y a b c =-+>,由两式相加,得520a b c ++>,故④正确;∴正确的结论有:②③④,共3个;故选:B .【点睛】本题考查了二次函数的图像和性质,解题的关键是熟练掌握二次函数的性质,熟练判断各个式子的符号.二、填空题(本大题7小題,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:xy ―x =_____________.【答案】x (y -1)【解析】试题解析:xy ―x =x (y -1)12.若3m x y 与25nx y -是同类项,则m n +=___________. 【答案】3【解析】【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可求得m 和n 的值,根据合并同类项法则合并同类项即可.【详解】解:由同类项的定义可知,m=2,n=1,∴m+n=3故答案为3.13.|1|0b +=,则2020()a b +=_________.【答案】1【解析】【分析】根据绝对值的非负性和二次根式的非负性得出a ,b 的值,即可求出答案. 【详解】∵2|1|0a b -++=∴2a =,1b =-,∴2020()a b +=202011=,故答案为:1.【点睛】本题考查了绝对值的非负性,二次根式的非负性,整数指数幂,得出a ,b 的值是解题关键. 14.已知5x y =-,2xy =,计算334x y xy +-的值为_________.【答案】7【解析】【分析】将代数式化简,然后直接将5x y +=,2xy =代入即可.【详解】由题意得5x y +=,2xy =,∴3343()41587x y xy x y xy +-=+-=-=,故答案为:7.【点睛】本题考查了提取公因式法,化简求值,化简334x y xy +-是解题关键.15.如图,在菱形ABCD 中,30A ∠=︒,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD ,则EBD ∠的度数为_________.【答案】45°【解析】【分析】根据题意知虚线为线段AB 的垂直平分线,得AE=BE ,得EBA EAB ∠=∠;结合30A ∠=°,1275ABD ABC =∠=︒,可计算EBD ∠的度数. 【详解】18030150ABC ∠=-=︒︒︒1275ABD ABC =∠=︒ ∵AE EB =∴EAB EBA ∠=∠∴753045EBD ∠=-=︒︒︒故答案为:45°.【点睛】本题考查了菱形的性质,及垂直平分线的性质,熟知以上知识点是解题的关键.16.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .【答案】13【解析】【分析】连接OA ,OB ,证明△AOB 是等边三角形,继而求得AB 的长,然后利用弧长公式可以计算出BOC 的长度,再根据扇形围成圆锥底面圆的周长等于扇形的弧长即可作答.【详解】连接OA ,OB ,则∠BAO=12∠BAC=11202⨯︒=60°, 又∵OA=OB ,∴△AOB 是等边三角形,∴AB=OA=1,∵∠BAC=120°,∴OB C 的长为:120AB2 1803ππ=,设圆锥底面圆的半径为r223rππ=13r=故答案为13.【点睛】本题主要考查了弧长公式以及扇形弧长与底面圆周长相等的知识点,借助等量关系即可算出底面圆的半径.17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,90ABC∠=︒,点M,N分别在射线BA,BC上,MN长度始终保持不变,4MN=,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为_________.【答案】252【解析】【分析】根据当B、D、E三点共线,距离最小,求出BE和BD即可得出答案.【详解】如图当B、D、E三点共线,距离最小,∵4MN =,E 为MN 的中点,∴2BE =,224225BD +=252DE BD BE =-=,故答案为:252.【点睛】本题考查了直角三角形斜边的中线等于斜边的一半,勾股定理,两点间的距离线段最短,判断出距离最短的情况是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)18.先化简,再求值:22()()()2x y x y x y x +++--,其中2x =3y =【答案】2xy ;26【解析】【分析】根据完全平方公式、平方差公式、整式的加减运算法则进行运算即可,最后代入数据即可求解.【详解】解:原式2222222x xy y x y x =+++-- 2xy =,将2x ,3y =原式223=26=.故答案为:26【点睛】本题考查了完全平方公式、平方差公式的运算,实数的化简求值,熟练掌握公式及运算法则是解决此类题的关键.19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级.随机抽取了120名学生的有效问卷,数据整理如下:等级 非常了解 比较了解 基本了解 不太了解 人数(人)24 72 18 x(1)求x 的值;(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”垃圾分类知识的学生共有多少人?【答案】(1)6 (2)1440人【解析】【分析】(1)根据四个等级的人数之和为120求出x 的值;(2)用总人数乘以样本中“非常了解”和“比较了解”垃圾分类知识的学生占被调查人数的比例即可求出结果.【详解】(1)解:由题意得:247218120x +++=解得6x =(2)解:247218001440120+⨯=(人) 答:估算“非常了解”和“比较了解”垃圾分类知识的学生有1440人.【点睛】本题主要考查了用样本估计总体,属于基础题目,审清题意,找到对应数据是解题的关键. 20.如图,在ABC ∆中,点D ,E 分别是AB 、AC 边上的点,BD CE =,ABE ACD ∠=∠,BE 与CD 相交于点F ,求证:ABC ∆是等腰三角形.【答案】见解析【解析】【分析】先证明BDF CEF ∆∆≌,得到BF CF =,FBC FCB ∠=∠,进而得到A ABC CB =∠∠,故可求解.【详解】证明:在BDF ∆和CEF ∆中()DFB EFC FBD FCEBD CE ⎧∠=∠⎪∠=∠⎨⎪=⎩对顶角相等 ∴()BDF CEF AAS ∆∆≌∴BF CF =∴FBC FCB ∠=∠又∵ABE ACD ∠=∠∴FBC ABE FCB ACD ∠+∠=∠+∠即A ABC CB =∠∠∴ABC ∆是等腰三角形.【点睛】此题主要考查等腰三角形的判定,解题的关键是熟知全等三角形的判定与性质.四、解答题(二)(本大题3小题,每小题8分,共24分)21.已知关于x ,y的方程组4ax x y ⎧+=-⎪⎨+=⎪⎩215x y x by -=⎧⎨+=⎩的解相同. (1)求a ,b 的值;(2)若一个三角形的一条边的长为x 的方程20x ax b ++=的解.试判断该三角形的形状,并说明理由.【答案】(1)-12 (2)等腰直角三角形,理由见解析【解析】【分析】(1)关于x ,y的方程组4ax x y ⎧+=-⎪⎨+=⎪⎩215x y x by -=⎧⎨+=⎩的解相同.实际就是方程组 42x y x y +=⎧⎨-=⎩的解,可求出方程组的解,进而确定a 、b 的值; (2)将a 、b 的值代入关于x 的方程x 2+ax +b =0,求出方程的解,再根据方程的两个解与判断三角形的形状.【详解】解:由题意列方程组:42x y x y +=⎧⎨-=⎩解得31x y =⎧⎨=⎩将3x =,1y =分别代入23103ax y +=-和15x by += 解得43a =-,12b =∴43a =-,12b =(2)243120x x -+=解得434848232x ±-== 这个三角形是等腰直角三角形理由如下:∵222(23)(23)(26)+=∴该三角形是等腰直角三角形.【点睛】本题考查一次方程组、一元二次方程的解法以及等腰直角三角形的判定,掌握一元二次方程的解法和勾股定理是得出正确答案的关键.22.如图1,在四边形ABCD 中,//AD BC ,90DAB ∠=︒,AB 是O 的直径,CO 平分BCD ∠.(1)求证:直线CD 与O 相切;(2)如图2,记(1)中的切点为E ,P 为优弧AE 上一点,1AD =,2BC =.求tan APE ∠的值.【答案】(1)证明见解析;(2)22.【解析】【分析】(1)如图(见解析),先根据平行线的性质得出OB CB ⊥,再根据角平分线的性质可得OE OB =,然后根据圆的切线的判定即可得证;(2)如图(见解析),先根据圆周角定理可得APE ABE ∠=∠,90AEB =︒∠,再根据圆的切线的判定、切线长定理可得2,1CE BC DE AD ====,然后根据相似三角形的判定与性质可得12AE DE EF CE ==,设AE a =,从而可得2EF a =,又根据相似三角形的判定与性质可得BE AE EF BE =,从而可得2BE a =,最后根据正切三角函数的定义即可得.【详解】(1)如图,过点O 作OE CD ⊥于点E∵//AD BC ,90DAB ∠=︒∴90OBC ∠=︒,即OB CB ⊥又∵CO 平分BCD ∠,OE CD ⊥∴OE OB =即OE 是O 的半径∴直线CD 与O 相切; (2)如图,连接BE ,延长AE 交BC 延长线于点F由圆周角定理得:APE ABE ∠=∠,90AEB =︒∠AB 是O 的直径,AB AD ⊥,AB BC ⊥∴AD 、BC 都是O 的切线由切线长定理得:2,1CE BC DE AD ====∵//AD BC∴DAE CFE ∠=∠在ADE 和FCE △中,AED FEC DAE CFE∠=∠⎧⎨∠=∠⎩∴ADE FCE ~ ∴12AE DE EF CE == 设(0)AE a a =>,则2EF a =90BAE ABE FBE ABE ∠+∠=∠+∠=︒BAE FBE ∴∠=∠在ABE △和BFE △中,90BAE FBE AEB BEF ∠=∠⎧⎨∠=∠=︒⎩ABE BFE ∴~BE AE EF BE ∴=,即2BE a a BE= 解得2BE a =在Rt ABE △中,2tan 2AE ABE BE a∠=== 则2tan tan 2APE ABE ∠=∠=.【点睛】本题考查了圆的切线的判定与性质、圆周角定理、切线长定理、相似三角形的判定与性质、正切三角函数等知识点,较难的是题(2),通过作辅助线,构造相似三角形是解题关键.23.某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元,用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.【答案】(1)5平方米;3平方米 (2)10520元【解析】【分析】(1)设A 类摊位占地面积x 平方米,则B 类占地面积()2x -平方米,根据同等面积建立A 类和B 类的倍数关系列式即可;(2)设建A 类摊位a 个,则B 类(90)a -个,设费用为z ,由(1)得A 类和B 类摊位的建设费用,列出总费用的表达式,根据一次函数的性质进行讨论即可.【详解】解:(1)设每个A 类摊位占地面积x 平方米,则B 类占地面积()2x -平方米 由题意得6060325x x =⨯- 解得5x =,∴23x -=,经检验5x =为分式方程的解∴每个A 类摊位占地面积5平方米,B 类占地面积3平方米(2)设建A 类摊位a 个,则B 类(90)a -个,费用为z∵3(90)a a ≤-∴022.5a <≤405303(90)z a a =⨯+⨯-1108100a =+,∵110>0,∴z 随着a 的增大而增大,又∵a 为整数,∴当22a =时z 有最大值,此时10520z =∴建造90个摊位的最大费用为10520元【点睛】本题考查了一次函数的实际应用问题,熟练的掌握各个量之间的关系进行列式计算,是解题的关键.五、解答题(三)(本大题2小题,每小题10分,共20分)24.如图,点B 是反比例函数8y x =(0x >)图象上一点,过点B 分别向坐标轴作垂线,垂足为A ,C ,反比例函数k y x=(0x >)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .(1)填空:k =_________;(2)求BDF ∆的面积;(3)求证:四边形BDFG 为平行四边形.【答案】(1)2 (2)3 (3)见解析【解析】【分析】(1)根据题意设点B 的坐标为(x ,8x ),得出点M 的坐标为(2x ,4x ),代入反比例函数k y x =(0x >),即可得出k ;(2)连接OD ,根据反比例函数系数k 的性质可得||12AOD k S ∆==,842AOB S ∆==,可得413BOD S ∆=-=,根据//OF AB ,可得点F 到AB 的距离等于点O 到AB 距离,由此可得出答案;(3)设(),B B B x y ,(),D D D x y ,可得8B B x y ⋅=,2D D x y ⋅=,根据B D y y =,可得4B D x x =,同理4B E y y =,可得31BE EC =,34BD AB =,证明EBD ECF ∆∆∽,可得13CF CE BD BE ==,根据43OC AB BD BD ==,得出41OC CF =,根据O ,G 关于C 对称,可得OC CG =,4CG CF =,3FG CF =,可得BD FG =,再根据//BD FG ,即可证明BDFG 是平行四边形. 【详解】解:(1)∵点B 在8y x =上, ∴设点B 的坐标为(x ,8x), ∴OB 中点M 的坐标为(2x ,4x), ∵点M 在反比例函数k y x=(0x >), ∴k=2x ·4x=2, 故答案为:2;(2)连接OD ,则||12AOD k S ∆==, ,∵842AOB S ∆==, ∴413BOD S ∆=-=,∵//OF AB ,∴点F 到AB 的距离等于点O 到AB 距离,∴3BDF BDO S S ∆∆==;(3)设(),B B B x y ,(),D D D x y ,8B B x y ⋅=,2D D x y ⋅=,又∵B D y y =,∴4B D x x =,同理4B E y y =,∴31BE EC =,34BD AB =, ∵//AB BC ,∴EBD ECF ∆∆∽, ∴13CF CE BD BE ==, ∵43OC AB BD BD ==, ∴41OC CF =, ∴O ,G 关于C 对称,∴OC CG =,∴4CG CF =,∴43FG CG CF OF CF CF =-=-=,又∵3BD CF =,∴BD FG =,又∵//BD FG ,∴BDFG 是平行四边形.【点睛】本题考查了反比例函数系数的性质,相似三角形的判定和性质,平行四边形的判定,平行线的性质,灵活运用知识点是解题关键.25.如图,抛物线233y x bx c +=++与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右两侧,33BO AO ==,过点B 的直线与y 轴正半轴和抛物线的交点分别为C ,D ,3BC CD =.(1)求b ,c 的值; (2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上,当ABD ∆与BPQ ∆相似时,请直接写出所有满足条件的点Q 的坐标.【答案】(1)313--;3322-- (2)333=-y x (3)231⎛⎫- ⎪ ⎪⎝⎭,(13,0)-,431,0⎫-⎪⎪⎝⎭,(523,0)-【解析】【分析】(1)根据33BD AO ==,得出(10)A -,,(30)B ,,将A ,B 代入233y x bx c +=++得出关于b ,c 的二元一次方程组求解即可; (2)根据二次函数是2(33)33316322y x x ⎛⎫+=-+-- ⎪ ⎪⎝⎭,3BC CD =,(3,0)B ,得出D 的横坐标为,代入抛物线解析式求出(1)D ,设BD 得解析式为:y kx b =+,将B ,D 代入求解即可; (3)由题意得tan ∠tan ∠ADB=1,由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n<0,Q (x ,0)且x<3,分①当△PBQ ∽△ABD 时,②当△PQB ∽△ABD 时,③当△PQB ∽△DAB 时,④当△PQB ∽△ABD 时四种情况讨论即可.【详解】解:(1)∵33BD AO ==,∴(10)A -,,(30)B ,, ∴将A ,B代入2y x bx c =++得030b c b c -+=++=,解得132b c ⎧=--⎪⎪⎨⎪=⎪⎩,∴13b =--,322c =--; (2)∵二次函数是2312y x x ⎛=-- ⎝⎭,BC =,(3,0)B , ∴D的横坐标为代入抛物线解析式得3312y ⎛=++ ⎝⎭312=-1=∴(1)D ,设BD 得解析式为:y kx b =+将B ,D代入得103b k b =+=+⎪⎩,解得3k b ⎧=-⎪⎨⎪=⎩,∴直线BD的解析式为=y ; (3)由题意得tan ∠tan ∠ADB=1, 由题意得抛物线的对称轴为直线x=1,设对称轴与x 轴交点为M ,P (1,n )且n<0,Q (x ,0)且x<3, ①当△PBQ ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=3, 解得tan ∠PQB=tan ∠ADB 即11n x-=-, 解得此时Q 的坐标为(,0); ②当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ADB 即2n -=1, 解得n=-2,tan ∠QPB=tan ∠ABD 即1n x --, 解得x=1-此时Q 的坐标为(1-0);③当△PQB ∽△DAB 时,tan ∠PBQ=tan ∠ABD 即2n -解得tan ∠PQM=tan ∠DAE即1n x -=-,解得x=3-1,此时Q 的坐标为(3-1,0); ④当△PQB ∽△ABD 时,tan ∠PBQ=tan ∠ABD 即2n -=1, 解得n=-2,tan ∠PQM=tan ∠DAE 即1n x -=-,解得x=5-Q 的坐标为(5-0);综上:Q 的坐标可能为13⎛⎫- ⎪ ⎪⎝⎭,(1-,1,03⎛⎫- ⎪ ⎪⎝⎭,(5-. 【点睛】本题考查了二次函数,一次函数,相似三角形的判定和性质,锐角三角函数,掌握知识点灵活运用是解题关键.。
2020广东省中考数学模拟试卷(一)说明:1. 全卷共4页,满分为120分,考试用时为90分钟.2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5. 考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-16的相反数是()A.6B.-6C.16D.-162.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55 000米.数字55 000用科学记数法表示为()A.5.5×104B.55×104C.5.5×105D.0.55×1063.已知∠α=60°32',则∠α的余角是()A.29°28'B.29°68'C.119°28'D.119°68'4.一元二次方程x2+px-2=0的一个根为x=2,则p的值为()A.1B.2C.-1D.-25.某校女子排球队12名队员的年龄分布如下表所示:年龄(岁) 13 14 15 16人数(人) 1 2 5 4则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,146.下列图形既是中心对称图形又是轴对称图形的是()A B C D图象的一个交点坐标为(-1,2),则另一个交点的坐7.若正比例函数y=-2x与反比例函数y=kx标为()A.(2,-1)B.(1,-2)C.(-2,-1)D.(-2,1)8.下列运算中,正确的是()A.2x·3x2=5x3B.x4+x2=x6C.(x2y)3=x6y3D.(x+1)2=x2+19.如图,AB是☉O的弦,OC⊥AB交☉O于点C,点D是☉O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°10.如图1,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P,Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图2所示,有以下结论:①BC=10; ②cos ∠ABE=35; ③当0≤t ≤10时,y=25t 2;④当t=12时,△BPQ 是等腰三角形; ⑤当14≤t ≤20时,y=110-5t. 其中正确的有( )A.2个B.3个C.4个D.5个二、填空题(本大题共7小题,每小题4分,共28分) 11. 因式分解:ab-7a= .12. 若一个多边形的内角和等于它的外角和,则这个多边形的边数为 .13. 一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷得点数大于4的概率是 .14. 若a-b=2,则代数式5+2a-2b 的值是 .15. 如图,数轴上A ,B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 .16. 观察以下一列数:3,54,79,916,1125,…,则第20个数是 .17. 将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下一个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去……若在第n 次操作后,剩下的长方形恰为正方形,则操作终止,当n=3时,a 的值为 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18. 计算: (3-π)0-2cos 30°+|1-√3|+(12)-1.19 .先化简,再求值: x 2-1x 2-2x+1·1x+1-1x , 其中x=2.20. 小甘到文具超市去买文具.请你根据图中的对话信息,求中性笔和笔记本的单价分别是多少元?四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(1)如图1,已知EK垂直平分线段BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?22. 某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人) 频率优秀15 0.3良好及格不及格 5(1) 被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2) 被测试男生的总人数是多少?成绩等级为“不及格”的男生人数占被测试男生总人数的百分比是多少?(3) 若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.23. 如图,抛物线y=12x 2-32x-2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x 轴对称.(1) 求点A ,B ,C 的坐标; (2) 求直线BD 的解析式;(3) 在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标; 若不存在,请说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24. 如图,点O 是线段AH 上一点,AH=3,以点O 为圆心,OA 的长为半径作☉O ,过点H 作AH 的垂线交☉O 于C ,N 两点,点B 在线段CN 的延长线上,连接AB 交☉O 于点M ,以AB ,BC 为边作▱ABCD.(1) 求证:AD 是☉O 的切线;(2) 若OH=13AH ,求四边形AHCD 与☉O 重叠部分的面积; (3) 若NH=13AH ,BN=54,连接MN ,求OH 和MN 的长.25. 如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值是多少?②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图3,延长CG交AD于点H,若AG=6,GH=2 √2,求BC的长.参考答案1.C2.A3.A4.C5.C6.C7.B8.C9.D 10.B 11.a (b-7) 12.4 13.13 14.9 15.-1 16.41400 17.65或3218.解:原式=1-2×√32+√3-1+2=2. 19.解:原式=(x+1)(x-1)(x-1)2·1x+1-1x=1x-1-1x =x x(x-1)-x-1x(x-1)=1x(x-1), 当x=2时,原式=12×1=12. 20.解:设中性笔和笔记本的单价分别是x 元、y 元, 根据题意,得{12y +20x =11212x +20y =144,解得{x =2y =6. 答:中性笔和笔记本的单价分别是2元、6元. 21.(1)证明:∵EK 垂直平分线段BC ,∴FC=FB ,CD=BD ,∴∠CFD=∠BFD , ∵∠BFD=∠AFE ,∴∠AFE=∠CFD.(2)①解:如图,作点P 关于GN 的对称点P',连接P'M 交GN 于Q ,连接PQ ,点Q 即为所求.②解:结论:Q 是GN 的中点.理由如下:设PP'交GN 于K.∵∠G=60°,∠GMN=90°,∴∠N=30°, ∵PK ⊥KN ,∴PK=KP'=12PN , ∴PP'=PN=PM ,∴∠P'=∠PMP',∵∠NPK=∠P'+∠PMP'=60°,∴∠PMP'=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN ,QM=QG ,∴QG=QN ,∴Q 是GN 的中点.22.解:(1)15 20(2)被测试男生的总人数为15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为550×100%=10%.(3)由(1)(2)可知,优秀占30%,及格占20%,不及格占10%,则良好占40%, 故该校八年级男生成绩等级为“良好”的学生人数为180×40%=72(人). 23.解:(1)解方程12x 2-32x-2=0,得x 1=-1,x 2=4, ∴A 点坐标为(-1,0),B 点坐标为(4,0).当x=0时,y=-2,∴C 点坐标为(0,-2).(2)∵点D 与点C 关于x 轴对称,∴D 点坐标为(0,2).设直线BD 的解析式为y=kx+b ,则{0=4k +b 2=b ,解得{k =-12b =2, ∴直线BD 的解析式为y=-12x+2. (3)如图,作PE ∥y 轴交BD 于E ,设P (m,12m 2-32m-2),则E (m,-12m +2),∴PE=-12m+2-(12m 2-32m-2)=-12m 2+m+4, ∴S △PBD =12·PE ·(x B -x D )=12×(-12m 2+m +4)×4 =-m 2+2m+8=-(m-1)2+9,∵-1<0,∴当m=1时,△PBD 的面积最大,面积的最大值为9, 此时,P 的坐标为(1,-3).24.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵∠AHC=90°,∴∠HAD=90°,即OA ⊥AD ,又∵OA 是☉O 的半径,∴AD 是☉O 的切线.(2)解:如图,连接OC ,∵OH=12OA ,AH=3,∴OH=1,OA=2, ∵在Rt △OHC 中,∠OHC=90°,OH=12OC , ∴∠OCH=30°,∴∠AOC=∠OHC+∠OCH=120°, ∴S 扇形OAC =120×π×22360=4π3, ∵CH=√22-12=√3,∴S △OHC =12×1×√3=√32, ∴四边形AHCD 与☉O 重叠部分的面积=S 扇形OAC +S △OHC =4π3+√32. (3)解:∵AH ⊥NC ,NH=13AH ,AH=3, ∴CH=NH=1.设☉O 的半径OA=OC=r ,OH=3-r ,在Rt △OHC 中,OH 2+HC 2=OC 2,∴(3-r )2+12=r 2,∴r=53,∴OH=43, 在Rt △ABH 中,AH=3,BH=54+1=94,∴AB=154, 在Rt △ACH 中,AH=3,CH=1,得AC=√10, ∵∠BMN+∠AMN=180°,∠NCA+∠AMN=180°, ∴∠BMN=∠NCA.在△BMN 和△BCA 中,∠B=∠B ,∠BMN=∠BCA ,∴△BMN ∽△BCA ,∴MN AC =BN AB ,即MN 10=54154, ∴MN=√103,∴OH=43,MN=√103. 25.(1)①证明:∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC ,GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形.②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴GE ∥AB ,CG CE =√2,∴AG BE =CG CE=√2. (2)解:如图,连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG =cos 45°=√22,CB CA =cos 45°=√22, ∴CG CE =CA CB=√2, ∴△ACG ∽△BCE ,∴AG BE =CA CB=√2, ∴线段AG 与BE 之间的数量关系为AG=√2BE.(3)解:∵∠CEF=45°,点B ,E ,F 三点共线, ∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=45°=∠CAH , ∵∠CHA=∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH =AH CH, 设BC=CD=AD=a ,则AC=√2a ,由AG AC =GH AH ,得√2a =2√2AH ,∴AH=23a ,∴DH=AD -AH=13a ,∴CH=√CD 2+DH 2=√103a , 由AG AC =AH CH ,得√2a =23a √103a , 解得a=3 √5,即BC=3 √5.。
2020年广东广州中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)1.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达人次.将用科学记数法表示应为( ).A. B. C. D.2.某校饭堂随机抽取了名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是( ).人数套餐种类一二三四A.套餐一B.套餐二C.套餐三D.套餐四3.下列运算正确的是( ).A.B.C.D.4.中,点,分别是的边,的中点,连接,若,则( ).A.B.C.D.5.如图所示的圆锥,下列说法正确的是( ).正面A.该圆锥的主视图是轴对称图形B.该圆锥的主视图是中心对称图形C.该圆锥的主视图既是轴对称图形,又是中心对称图形D.该圆锥的主视图既不是轴对称图形,也不是中心对称图形6.一次函数的图象过点,,,则( ).A.B.C.D.7.如图,中,,,,以点为圆心,为半径作⊙,当时,⊙与的位置关系是( ).A.相离B.相切C.相交D.无法确定8.往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( ).A.B.C.D.9.直线不经过第二象限,则关于的方程实数解的个数是( ).A.个B.个C.个D.个或个10.如图,矩形的对角线,交于点,,,过点作,交于点,过点作,垂足为,则的值为( ).A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.已知,那么的补角等于 度.12.计算: .13.方程的解是 .14.如图,点的坐标为,点在轴上,把沿轴向右平移到,若四边形的面积为,则点的坐标为 .15.如图,正方形中,绕点逆时针旋转到,,分别交对角线于点,,若,则的值为 .16.对某条线段的长度进行了次测量,得到个结果(单位:),,,若用作为这条线段长度的近似值,当时, 最小.对另一条线段的长度进行了次测量,得到个结果(单位:),,,,若用作为这条线段长度的近似值,当时,最小.三、解答题(本大题共9小题,共102分)17.解不等式组:.18.如图,,,.求的度数.19.已知反比例函数的图象分别位于第二、第四象限,化简.(1)(2)20.为了更好地解决养老问题,某服务中心引入优质社会资源为甲、乙两个社区共名老人提供居家养老服务,收集得到这名老人的年龄(单位“岁”)如下:甲社区乙社区根据以上信息解答下列问题:求甲社区老人年龄的中位数和众数.现从两个社区年龄在岁以下的名老人中随机抽取名了解居家养老服务情况,求这名老人恰好来自同一个社区的概率.(1)(2)21.如图,平面直角坐标系中,平行四边形的边在轴上,对角线,交于点,函数的图象经过点和点.求的值和点的坐标.求平行四边形的周长.22.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资万元改装辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是万元,预计明年每辆无人驾驶出租车的改装费用可下降.(1)(2)求明年每辆无人驾驶出租车的预计改装费用是多少万元.求明年改装的无人驾驶出租车是多少辆.(1)12(2)23.如图,中,.作点关于的对称点.(要求:尺规作图,不写做法,保留作图痕迹)在()所作的图中,连接,,连接,交于点.求证:四边形是菱形.取的中点,连接,若,,求点到的距离.(1)(2)(3)24.如图,⊙为等边的外接圆,半径为,点在劣弧上运动(不与点,重合),连接,,.求证:是的平分线.四边形的面积是线段的长的函数吗?如果是,求出函数解析式;如果不是,请说明理由.若点,分别在线段,上运动(不含端点),经过探究发现,点运动到每一个确定的位置,的周长有最小值,随着点的运动,的值会发生变化,求所有值中的最大值.(1)(2)(3)25.平面直角坐标系中,抛物线:过点,,,顶点不在第一象限,线段上有一点,设的面积为,的面积为,.用含的式子表示.求点的坐标.【答案】解析:.解析:喜欢套餐一的学生人数最多.故选.解析:∵点,分别是的边,的中点,∴是的中位线,∴,∴.故选.若直线与抛物线的另一个交点的横坐标为,求在时的取值范围(用含的式子表示).C1.A2.D3.B4.解析:圆锥的主视图是等腰三角形,等腰三角形是轴对称图形,不是中心对称图形.故选.解析:∵,∴随的增大而减小,∵,∴.故选.解析:∵,,,∴,∴,∵且.∴是⊙的切线.故选.解析:∵圆直径为,∴半径为.过点作,则,A 5.B 6.B 7.C 8.∴,∴最大水深是.故选.解析:∵直线不经过第二象限,∴.当时,方程为一元一次方程,有一个实数解.当时,方程为一元二次方程,,有两个不相等的实数解.解析:由矩形性质可得,∵等腰三角形底边上任意一点到两腰的距离之和等于腰上的高,则等于点到的距离,∵,,∴,∴点到的距离.故选.解析:,则的补角为,故答案为:.D 9.C 10.11.解析:.解析:两边同时乘以,得,代入分母检验,可得是分式方程的解.解析:∵平行四边形的面积为,高为,∴,∴,∵,∴.解析:∵,,∴,∴.解析:解第一个不等式得:;解第二个不等式得:,由同大取大,可得不等式组的解集为:.解析:在和中,12.13.14.15. ; 16..17..18.(1)(2),∴≌(),∴,∵,,∴.解析:∵反比例函数图象位于第二、四象限,∴,∴,原式.解析:中位数为按顺序排好后最中间一个数为;出现的次数最多,即为众数.岁以下的名老人分别为甲社区、,乙社区、.分别标记为、、、,树形图如下:由树形图可得,共有种等可能事件,其中有种情况满足要求,分别为,,,,则这名老人恰好来自同一个社区的概率是:..19.(1)中位数,众数.(2).20.(1)(2)(1)(2)(1)解析:把代入,可得即,反比例函数解析式为,∵为平行四边形对角线交点,在轴上,∴点纵坐标为,为中点,∴点纵坐标为,当时,,则点坐标为.∵已知、,为中点,∴点为,∴,,∴平行四边形的周长为.解析:(万元),答:明年每辆无人驾驶出租车的预计改装费用是万元.设明年改装的无人驾驶出租车是辆,由题可得,解得,答:明年改装的无人驾驶出租车是辆.解析:如图所示,点为所求.(1);.(2).21.(1)万元.(2)辆.22.(1)画图见解析.12(2)证明见解析..23.12(2)(1)∵点、点关于对称,∴垂直平分,∴,,∵,∴,∴,∴四边形是菱形.由①可知,在菱形中,、互相垂直平分,∵为中点,为中点,∴,,∴,,在中,,∴,∴,过点作于,则,即,,∴点到距离为.解析:∵是等边三角形,∴,菱形菱形(1)证明见解析.(2).(3).24.(2)(3)∵、是所对圆周角,∴,同理,,∴,∴是的平分线.四边形的面积是线段的长的函数,理由如下:延长到点使得,连接,∵,,∴是等边三角形,∴,,∵,,∴,∵在和中,,∴≌,∴,∵,是等边三角形,∴,,当、、三点共线时,最长,∴,∴,∴.分别作点关于、的对称点、.连接交、于点、,四边形(1)(2)此时的周长有最小值,由对称的性质可知,,,,,∵,∴,在等腰三角形中,即,∵⊙的半径为,∴当为直径时,取最大值,此时有最大值.解析:把点代入,可得,即.由可得抛物线对称轴为直线,设直线与对称轴直线交于点,根据题意,画出对应的函数图象,①当点在点的左边时,如图:(1).(2)或.(3).25.(3),,∵即,∴,,∵、关于对称轴对称,∴,∴,点坐标为.②当点在点的右边时,如图:与①同理,可得,此时点坐标为,综上所述:点坐标为或.∵直线与抛物线的另一个交点的横坐标为,∴,,此时点坐标为,∵,∴,顶点坐标为,设直线的解析式为,过点,有,解得,∴直线的解析式为,∵直线与抛物线交于、两点,∴联立解析式,得,由韦达定理,可得,化简得,∴抛物线解析式为,、∵,对称轴为直线且,∴当时,;当时,,∴的取值范围为.。
2020年广东东莞中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)1.下列实数中,最小的是( ).A. B. C. D.2.美国约翰斯·霍普金斯大学实时统计数据显示,截至北京时间月日时,全球新冠肺炎确诊病例超例.其中科学记数法可以表示为( ).A. B. C. D.3.若分式有意义,则的取值范围是( ).A. B. C. D.4.下列立体图形中,侧面展开图是扇形的是( ).A.B.C.D.5.下列四个不等式的解集在数轴上表示如图的是( ).A.B.C.D.6.如图,是矩形的对角线,且,那么的度数是( ).A.B.C.D.7.一组数据,,,,的众数和中位数分别是( ).A.,B.,C.,D.,8.计算的结果是( ).A.B.C.D.9.如图,已知,平分,且,则( ).A.B.C.D.10.如图,一次函数和与反比例函数的交点分别为点、和,下列结论中,正确的个数是( ).①点与点关于原点对称;②;③点的坐标是;④是直角三角形.A.B.C.D.二、填空题(本大题共7小题,每小题4分,共28分)11.的相反数是 .12.若正边形的一个外角等于,则 .13.若等边的边长为,则该三角形的高为 .14.如图,四边形是的内接四边形,若,则的度数是 .15.一个不透明的袋子里装有除颜色不同其他都相同的红球、黄球和蓝球,其中红球有个,黄球有个,从中任意摸出球是红球的概率为,则蓝球的个数是 .16.已知方程组,则 .17.如图,等腰,,以为直角边作,再以为直角边作,以此规律作等腰,则的面积是 .三、解答题(本大题共8小题)18.计算:.19.先化简,再求值:,其中.20.如图,在中,,,.(1)(2)用尺规作图作的垂直平分线,交于点,交于点(保留作图痕迹,不要求写作法、证明).在()的条件下,求的长度.人数项目(1)(2)(3)21.因受疫情影响,东莞市年体育中考方案有较大变化,由原来的必考加选考,调整为“七选二”,其中男生可以从(篮球分钟对墙双手传接球)、(投掷实心球)、(足球米绕杆)、(立定跳远)、(米跑步)、(排球分钟对墙传球)、(分钟踢毽球)等七个项目中选考两项.据统计,某校初三男生都在“”“”“”“”四个项目中选择了两项作为自己的体育中考项目.根据学生选择情况,进行了数据整理,并绘制成如下统计图,请结合图中信息,解答下列问题:扇形统计图中所对应的圆心角的度数是 .请补全条形统计图.为了学生能考出好成绩,该校安排每位体育老师负责指导、、、项目中的两项.若张老师随机选两项作为自己的指导项目,请用列表法或画树状图的方法求所选的项目恰好是和的概率.(1)(2)22.某地有甲、乙两家口罩厂,已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的倍,并且乙厂单独完成万只口罩的生产比甲厂单独完成多用天.求甲、乙厂每天分别可以生产多少万只口罩?该地委托甲、乙两厂尽快完成万只口罩的生产任务,问两厂同时生产至少需要多少天才能完成生产任务?(1)(2)23.如图,,⊙与相交于、,与相切于点,已知.求证:≌.若,,求⊙的半径.(1)(2)(3)24.如图,中,,点为斜边的中点,将线段平移至交于点,连接、、.求证:.求证:四边形为菱形.连接,交于点,若,,求的长.(1)(2)(3)25.已知抛物线的图象与轴相交于点和点,与轴交于点,图象的对称轴为直线,连接,有一动点在线段上运动,过点作轴的垂线,交抛物线于点,交轴于点,设点的横坐标为.求的长度.连接、,当的面积最大时,求点的坐标.当为何值时,与相似.【答案】解析:,,∵,∴,∴,∴,∴最小的为,故选.解析:因为,故用科学记数法表示为,故选.解析:若使分式有意义,则,解得,故选.备用图C 1.B 2.D 3.解析:这四个图形中,侧面展开图是扇形的只有圆锥.故选.解析:数轴上表示的解集为,选项:,解得,故正确;选项:,解得,故错误;选项:,解得,故错误;选项:,解得,故错误.故选.解析:∵四边形是矩形,∴,又∵,∴,∴.故选.解析:数据中出现的次数最多,故众数是.将个数据按大小顺序排列为:、、、、,则中位数是第个数,故中位数是.故选.C4.A5.C6.B7.D8.解析:.故选.解析:∵,∴.∵平分,∴,∴.∵,∴.∵,∴,,.故选.解析:因为,在及上,所以由,解得或,由图象可得,,故①正确,③正确,又因为,在以及上,所以由,解得或,所以可得,A9.D10.又因为,,故,②正确,设直线解析式为,将,代入:,解得,故,又∵,故,即,④正确,综上,①②③④均正确,故选.11.解析:相反数指数值相同、符号相反的两个数,故的相反数为.故答案为:.12.解析:,故这个正边形的边数.故答案为:.13.解析:如图,为等边三角形,为边上的高,由三线合一可知:,又因为.故.所以可得三角形的高为.解析:∵四边形是⊙的内接四边形,∴,∴.故答案为:.解析:设袋子里蓝球的个数为,则袋中共有球个,已知任意摸出一个红球的概率为,即有;解得.经检验,是方程的解,且符合题意,故蓝球的个数是个.解析:,由①②得:,.故答案为:.解析:∵,,∴,14.个15.16.①②17.(1)∴,∴,∴,∴,∴,∴.故答案为:.解析:原式.解析:,当时,.解析:如图,为的垂直平分线..18.,.19.(1)画图见解析.(2).20.(2)(1)(2)(3)∵为的垂直平分线,∴,,∵在中,,,∴,∵,,∴,∴,即,∴.解析:扇形统计图中所对应的圆心角.故答案为:.总人数,组的人数人.补全条形统计图:人数项目(1)(2)画图见解析.(3),画图见解析.21.(1)(2)(1)开始∴机会均等的结果有、、、、、、、、、、、,共种情况,其中所选的项目恰好是和的情况有种;∴(所选的项目恰好是和).解析:设乙厂每天能生产口罩万只,则甲厂每天能生产口罩万只,依题意,得:,解得:,经检验,是原方程的解,且符合题意,此时,,答:甲、乙厂每天分别可以生产万和万只口罩.设应安排两个工厂工作天才能完成任务,依题意,得:,解得:,答:至少应安排两个工厂工作天才能完成任务.解析:过点作,交于点,(1)万只,万只.(2)天.22.(1)证明见解析.(2).23.(2)(1)∴,.∵,,∴,∴,即.又∵,,∴≌.连,设半径,∵⊙与相切于点,∴.又∵,,∴四边形为矩形,∴,,.在中,,即,∴,即⊙的半径为.解析:∵为平移所得,∴,,∴四边形为平行四边形,∴,(1)证明见解析.(2)证明见解析.(3).24.(2)(3)(1)在中,点为斜边的中点,∴,∴.∵四边形为平行四边形,∴,即,又∵,∴四边形为平行四边形,又∵,∴四边形为菱形.在菱形中,点为的中点,又,∴,∵,∴,,∴在中,,即,∴,在平行四边形中,点为的中点,∴.解析:∵对称轴,∴,∴.当时,,解得,,即,,∴.(1).(2).(3)或.25.(2)(3)经过点和的直线关系式为,∴点的坐标为.在抛物线上的点的坐标为,∴,∴,当时,的最大值是,∴点的坐标为,即.连.情况一:如图,当时,,当时,,解得,,∴点的横坐标为,即点的横坐标为,∴.情况二:∵点和,∴,即.如图,当时,,,即为等腰直角三角形,过点作,即点为等腰的中线,∴,,∴,即,解得,(舍去).综述所述,当或时,与相似.。
绝密★启用前重点高中提前招生模拟考试数学试卷(1)第Ⅰ卷(选择题)一.选择题(共10小题,每题4分)1.下列等式中,不一定成立的是()A.=2B.C.a=﹣D.2.中国人民银行授权中国外汇交易中心公布,2014年1月14日银行间外汇市场人民币汇率中间价为:1美元对人民币6.0930元,某上市公司持有美元资产为980万美元,用科学记数法表示其美元资产折合成人民币为()元(保留两位有效数字)A.5.97×107 B.6.0×107C.5.97×108 D.6.0×1083.如图,一条信息可通过网络线由上(A点)往下(沿箭头方向)向各站点传送,例如信息要到b2点可由经a1的站点送达,也可由经a2的站点送达,共有两条传送途径,则信息由A 点传达到d3的不同途径中,经过站点b3的概率为()A.B.C.D.4.已知x+y=,|x|+|y|=5,则x﹣y的值为()A.B.C.D.5.二次函数y=ax2+bx+c的图象如图所示(a、b、c为常数),则函数y=(4ac﹣b2)x+abc和y=在同一平面直角坐标系中的图象,可能是()A.B.C.D.6.关于x的一元二次方程mx2+x+1=0有两个不相等的同号实数根,则m的取值范围是()A.m且m≠0 B.﹣C.﹣且m≠0 D.07.由于货源紧缺,小王、小李两名商贩连续两次以不同的价格在同一公司购进了A型香米,两次的购买单价分别为a、b(a<b,单位:元/千克),小王的采购方式为:每次购进c 千克大米;小李的采购方式为:每次购进d元的大米(d>c),若只考虑采购单价,下列结论正确的是()A.小王合算 B.小李合算C.一样合算 D.无法确定谁更合算8.函数y=|x2+2x﹣3|图象的草图如图所示,则关于x的方程|x2+2x﹣3|=a(a为常数)的根的情况,描述错误的是()A.方程可能没有实数根B.方程可能有三个互不相等的实数根C.若方程只有两个实数根,则a的取值范围为:a=0D.若方程有四个实数根,记为x1、x2、x3、x4,则x1+x2+x3+x4=﹣49.如图,DE是△ABC的中位线,F为DE上一点,且EF=2DF,BF的延长线交AC于点H,CF的延长线交AB于点G,则S四边形AGFH:S△BFC=()A.1:10 B.1:5 C.3:10 D.2:510.如图,AB是⊙O的直径,AC是⊙O的弦,点D是的中点,弦DE⊥AB,垂足为点F,DE交AC于点G,EH为⊙O的切线,交AC的延长线于H,AF=3,FB=,则tan∠DEH=()A.B.C.D.第Ⅱ卷(非选择题)二.填空题(共10小题,每题4分)11.计算:(π﹣3.14)0﹣2﹣2×+(tan60°﹣2)2013(4sin30°+)2014+=.12.已知实数x,y满足方程(x2﹣4x+6)(9y2+6y+6)=10,则y x=.13.如图,正方体(图1)的展开图如图2所示,在图1中M、N分别是FG、GH的中点,CM、CN、MN是三条线段;请在图2中画出CM、CN、MN这三条线段.14.如图,在正方形ABCD中,E、F分别为AB、BC的中点,连结CE交DB、DF于G、H,则EG:GH:HC=.15.已知直线l1:y=x﹣a﹣3和直线l2:y=﹣2x+5a相交于点A(m,n),其中a为常数,且m>n>0,化简|1﹣a|﹣=.16.在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,4),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为.17.若y关于x的函数y=(a﹣2)x2﹣2(2a﹣1)x+a(a为常数)的图象与坐标轴只有两个不同交点,则a可取的值为.18.如图,已知圆O的面积为3π,AB为圆O的直径,∠AOC=80°,∠BOD=20°,点P为直径AB上任意一点,则PC+PD的最小值是.19.已知两个反比例函数y=,y=,第一象限内的点P1、P2、P3、…、P2015在反比例函数y=的图象上,它们的横坐标分别为x1、x2、x3、…、x2015,纵坐标分别是1、3、5、…,共2015个连续奇数,过P1、P2、P3、…、P2015分别作y轴的平行线,与y=的图象交点依次为Q1(x'1,y'1)、Q2(x'2,y'2)、…、Q2015(x'2015,y'2015),则P2015Q2015的长度是.20.将连续正整数按以下规律排列,则位于第7行第7列的数x是.三.解答题(共6小题,共70分)21.若关于x的不等式组只有4个整数解,求a的取值范围.22.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.23.如图,OA和OB是⊙O的半径,并且OA⊥OB.P是OA上任意一点,BP的延长线交⊙O于点Q,点R在OA的延长线上,且RP=RQ.(1)求证:RQ是⊙O的切线;(2)当RA≤OA时,试确定∠B的取值范围;(3)求证:OB2=PB•PQ+OP2.24.如图1,在平面直角坐标系中,边长为1的正方形OABC的顶点B在y轴的正半轴上,O为坐标原点.现将正方形OABC绕点O按顺时针方向旋转,旋转角为θ(0o≤θ≤45o).(1)当点A落到y轴正半轴上时,求边BC在旋转过程中所扫过的面积;(2)若线段AB与y轴的交点为M(如图2),线段BC与直线y=x的交点为N.当θ=22.5°时,求此时△BMN内切圆的半径;(3)设△MNB的周长为l,试判断在正方形OABC旋转的过程中l值是否发生变化,并说明理由.25.(1)已知n=﹣那么1+2+3+…+n=﹣+﹣+﹣+…+﹣,即1+2+3+…+n=﹣=.模仿上述求和过程,设n2=﹣,确定a与b的值,并计算12+22+32+…+n2的结果.(2)图1中,抛物线y=x2,直线x=1与x轴围成底边长为1的曲边三角形,其面积为S,现利用若干矩形面积和来逼近该值.①将底边3等分,构建3个矩形(见图2),求其面积为S3;②将底边n等分,构建n个矩形(如图3),求其面积和S n并化简;③考虑当n充分大时S n的逼近状况,并给出S的准确值.(3)计算图4中抛物线y=2x2与直线y=2x+4所围成的阴影部分面积.26.如图所示,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,点P不与点0、点A重合.连接CP,过点P作PD 交AB于点D.(1)求点B的坐标;(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;(3)当点P运动什么位置时,使得∠CPD=∠OAB,且,求这时点P的坐标.重点高中提前招生模拟考试数学试卷(1)参考答案与试题解析一.选择题(共10小题)1.下列等式中,不一定成立的是()A.=2B.C.a=﹣D.【考点】65:分式的基本性质;73:二次根式的性质与化简.【分析】根据二次根式的性质对各选项进行逐一分析即可.【解答】解:A、左边==2=右边,故本选项正确;B、当c=0时,无意义,故本选项错误;C、左边=a=a=﹣=右边,故本选项正确;D、左边===右边,故本选项正确.故选:B.【点评】本题考查的是二次根式的性质与化简,熟知二次根式具有非负性是解答此题的关键.2.中国人民银行授权中国外汇交易中心公布,2014年1月14日银行间外汇市场人民币汇率中间价为:1美元对人民币6.0930元,某上市公司持有美元资产为980万美元,用科学记数法表示其美元资产折合成人民币为()元(保留两位有效数字)A.5.97×107 B.6.0×107C.5.97×108 D.6.0×108【考点】1L:科学记数法与有效数字.【分析】根据汇率可求980万美元折合成人民币的钱数,再保留两位有效数字即可求解.【解答】解:980万美元=980000美元,980000×6.0930≈6.0×107元.故选:B.【点评】此题考查了科学记数法与有效数字,对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.3.如图,一条信息可通过网络线由上(A点)往下(沿箭头方向)向各站点传送,例如信息要到b2点可由经a1的站点送达,也可由经a2的站点送达,共有两条传送途径,则信息由A点传达到d3的不同途径中,经过站点b3的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】根据题意画出树状图,进而利用概率公式,求出答案.【解答】解:画树状图得:所以共有6种情况,则经过站点b3的概率为:.故选:A.【点评】本题考查树状图法求概率,关键是得到到达目的地应走的路口,列齐所有的可能情况.4.已知x+y=,|x|+|y|=5,则x﹣y的值为()A.B.C.D.【考点】28:实数的性质.【分析】根据绝对值的性质,可得答案.【解答】解:当x>0,y>0时,x+y=5与x+y=2矛盾,当x<0,y<0时,x+y=﹣5与x+y=2矛盾,当x>0,y<0时,x﹣y=5,当x<0,y>0时,x﹣y=﹣5,故选:D.【点评】本题考查了实数的性质,利用绝对值得性质是解题关键,要分类讨论,以防遗漏.5.二次函数y=ax2+bx+c的图象如图所示(a、b、c为常数),则函数y=(4ac﹣b2)x+abc和y=在同一平面直角坐标系中的图象,可能是()A.B.C.D.【考点】F3:一次函数的图象;G2:反比例函数的图象;H2:二次函数的图象.【分析】由抛物线开口方向得到a>0,由抛物线与y轴交于x轴下方得c<0,由抛物线的对称轴得b<0,所以abc>0;根据抛物线与x轴有2个交点可得4ac﹣b2<0,得出一次函数的图象经过第一、二、四象限;利用对称轴的位置和不等式性质即可得到2a+b>0,得出反比例函数的图象位于第一、三象限;即可得出结论.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线与y轴交于(0,c),∴c<0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∴abc>0;∵抛物线与x轴有2个交点,∴b2﹣4ac>0,∴4ac﹣b2<0;∴函数y=(4ac﹣b2)x+abc经过第一、二、四象限;∵0<﹣<1,而a>0,∴﹣b<2a,即2a+b>0,∴函数y=的图象位于第一、三象限;故选:C.【点评】本题考查了二次函数与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c 决定抛物线与y轴交点,抛物线与y轴交于(0,c).当△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.关于x的一元二次方程mx2+x+1=0有两个不相等的同号实数根,则m的取值范围是()A.m且m≠0 B.﹣C.﹣且m≠0 D.0【考点】AA:根的判别式.【分析】根据方程有两个不相等的同号实数根结合根的判别式即可得出关于m的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程mx2+x+1=0有两个不相等的同号实数根,∴,解得:0<m<.故选:D.【点评】本题考查了根的判别式,根据根的判别式结合根与系数的关系找出关于m的一元一次不等式组是解题的关键.7.由于货源紧缺,小王、小李两名商贩连续两次以不同的价格在同一公司购进了A型香米,两次的购买单价分别为a、b(a<b,单位:元/千克),小王的采购方式为:每次购进c千克大米;小李的采购方式为:每次购进d 元的大米(d>c),若只考虑采购单价,下列结论正确的是()A.小王合算 B.小李合算C.一样合算 D.无法确定谁更合算【考点】6C:分式的混合运算.【专题】11:计算题;513:分式.【分析】分别表示出小王与小李两次购买香米的平均价格,利用作差法比较即可.【解答】解:根据题意得:小王两次购买香米的平均价格为=元/千克,小李两次购买香米的平均价格为=元/千克,∴﹣==,∵(a﹣b)2>0,2(a+b)>0,∴﹣>0,即>,则小李的购买方式合算.故选:B.【点评】此题考查了分式的混合运算,以及作差法比较大小,熟练掌握运算法则是解本题的关键.8.函数y=|x2+2x﹣3|图象的草图如图所示,则关于x的方程|x2+2x﹣3|=a (a为常数)的根的情况,描述错误的是()A.方程可能没有实数根B.方程可能有三个互不相等的实数根C.若方程只有两个实数根,则a的取值范围为:a=0D.若方程有四个实数根,记为x1、x2、x3、x4,则x1+x2+x3+x4=﹣4【考点】HA:抛物线与x轴的交点.【分析】关于x的方程|x2+2x﹣3|=a可视为函数y=|x2+2x﹣3|与函数y=a 的交点问题,且函数y=|x2+2x﹣3|的顶点坐标为(﹣1,4),再根据a的取值范围即可得出结论.【解答】解:如图所示,关于x的方程|x2+2x﹣3|=a可视为函数y=|x2+2x ﹣3|与函数y=a的交点问题,且函数y=|x2+2x﹣3|的顶点坐标为(﹣1,4),由函数图象可知,当a<0时,y=|x2+2x﹣3|与函数y=a没有交点,故原方程没有实数根,故A正确;当a=4时,函数y=|x2+2x﹣3|与函数y=a有三个交点,故方程有三个不相等的实数根,故B正确;当a=0或a>4时,函数y=|x2+2x﹣3|与函数y=a有两个交点,故方程有两个互不相等的实数根,故C错误;当0<a<4时,函数y=|x2+2x﹣3|与函数y=a有四个交点,故方程有四个互不相等的实数根,根据函数的对称性可知,x1+x2+x3+x4=﹣2﹣2=﹣4,故D正确.故选:C.【点评】此题考查的是二次函数与一次函数的交点问题,根据函数交点的个数可判断相应方程解的情况,特别注意函数图形的正确性,把方程看作是两个函数图象的交点是解答此题的关键.9.如图,DE 是△ABC 的中位线,F 为DE 上一点,且EF=2DF ,BF 的延长线交AC 于点H ,CF 的延长线交AB 于点G ,则S 四边形AGFH :S △BFC =( )A .1:10B .1:5C .3:10D .2:5【考点】KX :三角形中位线定理;S9:相似三角形的判定与性质. 【专题】11:计算题.【分析】设DF=x ,EF=2x ,S △GDF =S ,则DE=3x ,由三角形中位线性质得BC=2DE=6x ,先证明△GDF ∽△GBC ,利用相似三角形的性质得S △GBC =36S ,则利用三角形面积公式得到S △BGF =6S ,S △BFC =30S ,接着利用====得到==,则S △CFH =S △BCF =15S ,所以S △BCH =45S ,然后利用同样方法计算出S △BAH =S △BCH =15S ,于是得到S 四边形AGFH =9S ,然后计算S 四边形AGFH :S △BFC 的值.【解答】解:设DF=x ,EF=2x ,S △GDF =S , 则DE=3x ,∵DE 是△ABC 的中位线, ∴BC=2DE=6x , ∵DE ∥BC , ∴△GDF ∽△GBC ,==,∴=()2,即=()2=,∴S △GBC =36S , ∵==,∴S △BGF =6S , ∴S △BFC =30S , ∵EF ∥BC , ∴====,∴==,∴S △CFH =S △BCF =15S , ∴S △BCH =45S , 而AE=CE , ∴AH :HC=1:3, ∴S △BAH =S △BCH =15S ,∴S 四边形AGFH =S △BAH ﹣S △BGF =15S ﹣6S=9S , ∴S 四边形AGFH :S △BFC =9S :30S=3:10. 故选:C .【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.在应用相似三角形的性质时,主要利用相似三角形的性质进行几何计算.也考查了三角形面积公式.10.如图,AB是⊙O的直径,AC是⊙O的弦,点D是的中点,弦DE ⊥AB,垂足为点F,DE交AC于点G,EH为⊙O的切线,交AC的延长线于H,AF=3,FB=,则tan∠DEH=()A.B.C.D.【考点】M2:垂径定理;M4:圆心角、弧、弦的关系;MC:切线的性质;T7:解直角三角形.【分析】连接OE,如图2,根据切线的性质得OE⊥EH,则∠OEF+∠DEH=90°,而∠OEF+∠FOE=90°,根据等角的余角相等得∠FOE=∠DEH,求出OF、EF,在Rt△OEF中,根据tan∠DEH=tan∠EOF=计算即可.【解答】解:连接OE,如图2,∵EH为⊙O的切线,∴OE⊥EH,∴∠OEF+∠DEH=90°,而∠OEF+∠FOE=90°,∴∠FOE=∠DEH,∵AF=3,FB=,∴AB=AF+BF=,∴OB=AB=,∴OF=OB﹣FB=,在Rt△OEF中,OE=,OF=,∴EF===2.∴tan∠DEH=tan∠EOF===.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了垂径定理和解直角三角形.二.填空题(共10小题)11.计算:(π﹣3.14)0﹣2﹣2×+(tan60°﹣2)2013(4sin30°+)2014+=1.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】根据实数的混合运算法则和运算顺序计算即可.【解答】解:原式=1﹣×(﹣4)+(﹣2)2013×(4×+)2014+=1+1+(﹣2)2013×(+2)2013(+2)+1+=2﹣2﹣+1+=1,故答案为:1【点评】本题主要考查实数的混合运算、立方根的运算、绝对值的化简及特殊锐角的三角函数值、实数的大小比较等,正确掌握基本的运算法则是解题的关键.12.已知实数x,y满足方程(x2﹣4x+6)(9y2+6y+6)=10,则y x=.【考点】AF:高次方程.【专题】17:推理填空题.【分析】根据(x2﹣4x+6)(9y2+6y+6)=10,可得:[(x﹣2)2+2][(3y+1)2+5]=10,据此求出x、y的值各是多少;然后应用代入法,求出y x的值是多少即可.【解答】解:∵(x2﹣4x+6)(9y2+6y+6)=10,∴[(x﹣2)2+2][(3y+1)2+5]=10,∴x﹣2=0,3y+1=0,解得x=2,y=﹣,∴y x==.故答案为:.【点评】此题主要考查了高次方程的解法和应用,要熟练掌握,解答此题的关键是灵活应用完全平方公式.13.如图,正方体(图1)的展开图如图2所示,在图1中M、N分别是FG、GH的中点,CM、CN、MN是三条线段;请在图2中画出CM、CN、MN这三条线段.【考点】I6:几何体的展开图.【分析】先分别找到M、N、C在正方体的展开图中的对应点,再在展开图中连接即可.【解答】解:作图如下:故答案为:.【点评】本题考查了正方体的展开图,熟练掌握正方体平面展开图的特征是解决此类问题的关键.注意找准M、N、C在正方体的展开图中的对应点.14.如图,在正方形ABCD中,E、F分别为AB、BC的中点,连结CE交DB、DF于G、H,则EG:GH:HC=5:4:6.【考点】LE:正方形的性质;S9:相似三角形的判定与性质.【分析】过点G作GP∥BC交DF于P,设GH=2a,则由平行线的性质得出,进而即可得出结论.【解答】解:过点G作GP∥BC交DF于P,如图所示:则,设GH=2a,则HC=3a,∴EG=a,∴EG:GH:HC=5:4:6.故答案为:5:4:6.【点评】本题主要考查了平行线分线段成比例的性质以及正方形的一些性质问题,要求学生能够利用其性质求解一些简单的计算问题.15.已知直线l1:y=x﹣a﹣3和直线l2:y=﹣2x+5a相交于点A(m,n),其中a为常数,且m>n>0,化简|1﹣a|﹣=1.【考点】73:二次根式的性质与化简;FF:两条直线相交或平行问题.【分析】由直线l1:y=x﹣a﹣3和直线l2:y=﹣2x+5a相交于点A(m,n),即可得出关于m、n的二元一次方程,解方程即可得出m、n的值,再结合m>n>0,即可得出a的取值范围,进而即可得出代数式|1﹣a|﹣的值.【解答】解:根据题意得:,解得:,∵m>n>0,∴,∴a>2,∴|1﹣a|﹣=a﹣1﹣(a﹣2)=1.故答案为:1.【点评】本题考查了两条直线相交或平行问题以及二次根式的性质与化简,根据m、n之间的关系找出a的取值范围是解题的关键.16.在平面直角坐标系内有两点A、B,其坐标为A(﹣1,﹣1),B(2,4),点M为x轴上的一个动点,若要使MB﹣MA的值最大,则点M的坐标为(﹣2,0).【考点】D5:坐标与图形性质;PA:轴对称﹣最短路线问题.【分析】利用轴对称图形的性质可作点A关于x轴的对称点A′,连接A′B,交x轴于点M,点M即为所求.【解答】解:作点A(﹣1,﹣1)关于x轴的对称点A′(﹣1,1),作直线A′B交x轴于点M,由对称性知:MA′=MA,∴MB﹣MA=MB﹣MA′=A′B,若N是x轴上异于M的点,则NA′=NA,这时NB﹣NA=NB﹣NA′<A′B=MB﹣MA′,所以,点M就是使MB﹣MA的值最大的点,MB﹣MA的最大值是A′B,设直线A′B的解析式为:y=kx+b,把A′(﹣1,1),B(2,4)代入得:,解得:,∴直线A′B的解析式为y=x+2,∵点M为直线A′B与x轴的交点,当y=0时,x+2=0,x=﹣2,∴点M的坐标为(﹣2,0).故答案为:(﹣2,0).【点评】本题是求最值问题,考查了在直线上求作一点,使到直线两侧点的距离差最大,涉及待定系数法求一次函数的解析式及在三角形中任意两边之差小于第三边的应用,正确作出一个点的对称点是解题的关键.17.若y关于x的函数y=(a﹣2)x2﹣2(2a﹣1)x+a(a为常数)的图象与坐标轴只有两个不同交点,则a可取的值为2或0.【考点】HA:抛物线与x轴的交点.【分析】分二次函数或一次函数两种情形讨论即可.【解答】解:①如果是二次函数则无解.②如果是一次函数则a﹣2=0,∴a=2,a=0时,函数为y=﹣2x2+x与坐标轴只有两个交点,综上所述a=2或0时,y关于x的函数y=(a﹣2)x2﹣2(2a﹣1)x+a(a为常数)的图象与坐标轴只有两个不同交点.故答案为2或0.【点评】本题考查一次函数、二次函数与坐标轴的交点,记住△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点,是解题的关键是,属于中考常考题型.18.如图,已知圆O的面积为3π,AB为圆O的直径,∠AOC=80°,∠BOD=20°,点P为直径AB上任意一点,则PC+PD的最小值是3.【考点】M5:圆周角定理;PA:轴对称﹣最短路线问题.【分析】先设圆O的半径为r,由圆O的面积为3π求出r的值,再作点C 关于AB的对称点C′,连接OC′,DC′,则DC′的长即为PC+PD的最小值,由轴对称的性质得出∠AOC′的度数,故可得出∠BOC′的度数,再由锐角三角函数的定义即可得出DC′的长.【解答】解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πr2,即r=.作点C关于AB的对称点C′,连接OC′,DC′,则DC′的长即为PC+PD的最小值,∵∠AOC=80°,∴∠AOC=∠AOC′=80°,∴∠BOC′=100°,∵∠BOD=20°,∴∠DOC′=∠BOC′+∠BOD=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.【点评】本题考查的是圆周角定理及轴对称﹣最短路线问题,根据题意作出点C关于直线AB的对称点是解答此题的关键.19.已知两个反比例函数y=,y=,第一象限内的点P1、P2、P3、…、P2015在反比例函数y=的图象上,它们的横坐标分别为x1、x2、x3、…、x2015,纵坐标分别是1、3、5、…,共2015个连续奇数,过P1、P2、P3、…、P2015分别作y轴的平行线,与y=的图象交点依次为Q1(x'1,y'1)、Q2(x'2,y'2)、…、Q2015(x'2015,y'2015),则P2015Q2015的长度是.【考点】G6:反比例函数图象上点的坐标特征.【分析】根据点P2015的纵坐标利用反比例函数图象上点的坐标特征即可得出点P2015的坐标,由P2015Q2015∥y轴结合反比例函数图象上点的坐标特征即可得出点Q2015的坐标,由此即可得出线段P2015Q2015的长度.【解答】解:∵点P2015的纵坐标为2×2015﹣1=4029,点P2015的在反比例函数y=的图象上,∴点P2015的坐标为(,4029),∵P2015Q2015∥y轴,∴点Q2015的坐标为(,),∴P2015Q2015=4029﹣=.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征,根据点P2015的纵坐标利用反比例函数图象上点的坐标特征求出点P2015、Q2015的坐标是解题的关键.20.将连续正整数按以下规律排列,则位于第7行第7列的数x是85.【考点】37:规律型:数字的变化类.【分析】先根据第一行的第一列的数,以及第二行的第二列的数,第三行的第三列的数,第四行第四列的数,进而得出变化规律,由此得出第七行第七列的,从而求出答案.【解答】方法一:解:第一行第一列的数是 1;第二行第二列的数是 5=1+4;第三行第三列的数是 13=1+4+8;第四行第四列的数是 25=1+4+8+12;…第n行第n列的数是 1+4+8+12+…+4(n﹣1)=1+4[1+2+3+…+(n﹣1)]=1+2n(n﹣1);∴第七行第七列的数是 1+2×7×(7﹣1)=85;故答案为:85.方法二:n=1,s=1;n=2,s=5;n=3,s=13,设s=an2+bn+c,∴,∴,∴s=2n2﹣2n+1,把n=7代入,s=85.方法三:,,,,,,∴a7=25+=85.【点评】此题考查了数字的变化类,这是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三.解答题(共20小题)21.若关于x的不等式组只有4个整数解,求a的取值范围.【考点】CC:一元一次不等式组的整数解.【分析】首先利用不等式的基本性质解不等式组,再从不等式的解集中找出适合条件的整数解,在确定字母的取值范围即可.【解答】解:由①得:x<21,由②得:x>2﹣3a,∵不等式组只有4个整数解,∴不等式组的解集为:2﹣3a<x<21,即不等式组只有4个整数解为20、19、18、17,且满足16≤2﹣3a<17,∴﹣5<a≤﹣.【点评】本题考查不等式组的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.22.跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价﹣进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.【考点】B7:分式方程的应用;CE:一元一次不等式组的应用.【专题】12:应用题;22:方案型.【分析】(1)关键语是“用80元购进甲种零件的数量与用100元购进乙种零件的数量相同”可根据此列出方程.(2)本题中“根据进两种零件的总数量不超过95个”可得出关于数量的不等式方程,根据“使销售两种零件的总利润(利润=售价﹣进价)超过371元”看俄得出关于利润的不等式方程,组成方程组后得出未知数的取值范围,然后根据取值的不同情况,列出不同的方案.【解答】解:(1)设每个乙种零件进价为x元,则每个甲种零件进价为(x ﹣2)元.由题意得:.解得:x=10.检验:当x=10时,x(x﹣2)≠0∴x=10是原分式方程的解.每个甲种零件进价为:x﹣2=10﹣2=8答:每个甲种零件的进价为8元,每个乙种零件的进价为10元.(2)设购进乙种零件y个,则购进甲种零件(3y﹣5)个.由题意得:解得:23<y≤25∵y为整数∴y=24或25.∴共有2种方案.方案一:购进甲种零件67个,乙种零件24个;方案二:购进甲种零件70个,乙种零件25个.【点评】本题考查了分式方程的应用、一元一次不等式组的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.本题要注意(2)中未知数的不同取值可视为不同的方案.23.如图,OA和OB是⊙O的半径,并且OA⊥OB.P是OA上任意一点,BP的延长线交⊙O于点Q,点R在OA的延长线上,且RP=RQ.(1)求证:RQ是⊙O的切线;(2)当RA≤OA时,试确定∠B的取值范围;(3)求证:OB2=PB•PQ+OP2.【考点】MR:圆的综合题.【分析】(1)连接OQ.欲证明RQ是⊙O的切线,只要证明∠OQR=90°.(2)求出两个特殊位置的∠B的值即可解决问题.(3)如图2中,延长AO交⊙于M.由PA•PM=PB•PQ(相交弦定理,也可以连接BM、AQ证明△PBM∽△PAQ得到),推出(OB﹣OP)(OB+OP)=PB•PQ,可得OB2﹣OP2=PB•PQ.【解答】(1)证明:连接OQ.∵OA⊥OB,∴∠2+∠B=90°,∵OB=OQ,∴∠B=∠4,∵RP=RQ,∴∠1=∠3=∠2,∴∠3+∠4=90°,∴OQ⊥RQ,∴RQ是⊙O的切线.(2)解:如图1中,①当点R与A重合时,易知∠B=45°.②当AR=OA时,在Rt△ORQ中,∵∠OQR=90°,OR=2OQ,∴∠R=30°,∵RQ=RP,∴∠RPQ=∠RQP=75°,∴∠OPB=75°,∴∠B=90°﹣∠OPB=15°,综上所述,15°≤∠B<45°.(3)如图2中,延长AO交⊙于M.∵PA•PM=PB•PQ(相交弦定理,也可以连接BM、AQ证明△PBM∽△PAQ得到),∴(OB﹣OP)(OB+OP)=PB•PQ,∴OB2﹣OP2=PB•PQ.即OB2=PB•PQ+OP2.【点评】本题考查圆综合题、切线的判定和性质、等腰三角形的性质、相交弦定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.24.如图1,在平面直角坐标系中,边长为1的正方形OABC的顶点B在y 轴的正半轴上,O为坐标原点.现将正方形OABC绕点O按顺时针方向旋转,旋转角为θ(0o≤θ≤45o).(1)当点A落到y轴正半轴上时,求边BC在旋转过程中所扫过的面积;(2)若线段AB与y轴的交点为M(如图2),线段BC与直线y=x的交点为N.当θ=22.5°时,求此时△BMN内切圆的半径;(3)设△MNB的周长为l,试判断在正方形OABC旋转的过程中l值是否发生变化,并说明理由.。
2020年中考(数学)全真模拟试卷(广东)(一)(考试时间:90分钟;总分:120分)班级:___________姓名:___________座号:___________分数:___________ 一、单选题(每小题3分,共30分)1.- 14的绝对值是()A.-4 B.14C.4 D.0.4【答案】B【解析】直接用绝对值的意义求解.【详解】−14的绝对值是14.故选B.【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.2.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为( )A.62.2110⨯B.52.2110⨯C.322110⨯D.60.22110⨯【答案】B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】221000的小数点向左移动5位得到2.21,所以221000用科学记数法表示为2.21×105,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【解析】根据中心对称图形的定义旋转后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A 此图形旋转后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误; B,此图形旋转后不能与原图形重合,此图形不是中心对称图形,也不是轴对称图形,故此选项不正确; C,此图形旋转后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D,此图形旋转后能与原图形重合,此图形是中心对称图形,是轴对称图形,故此选项正确.故选:D.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键. 4.如图所示一个L 形的机器零件,这个零件从上面看到的图形是( )A .B .C .D .【答案】B【解析】根据俯视图的概念即可得出答案【详解】解:根据俯视图的定义可得出这个零件从上面看到的图形是:故选:B .【点睛】本题考查了简单组合体的三视图,关键是培养学生的思考能力和对几何体三种视图的空间想象能力.5.如果一组数据6,7,x ,9,5的平均数是2x ,那么这组数据的中位数为()A .5B .6C .7D .9【答案】B【解析】直接利用平均数的求法进而得出x 的值,再利用中位数的定义求出答案.【详解】∵一组数据6,7,x ,9,5的平均数是2x ,∴679525x x ++++=⨯,则从大到小排列为:3,5,6,7,9,故这组数据的中位数为:6.故选B.【点睛】此题主要考查了中位数以及平均数,正确得出x的值是解题关键.6( )A.4-B.4 C.4±D.2【答案】B【解析】根据算术平方根的定义进行求解即可.,故选B.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.7.一个正多边形,它的每一个外角都等于40°,则该正多边形是()A.正六边形B.正七边形C.正八边形D.正九边形【答案】D【解析】根据多边形的外角和是360°,正多边形的每一个外角都等于40°,直接用360÷40即得.【详解】解:360÷40=9.故答案为:D.【点睛】此题考查多边形外角和定理,解题关键在于掌握运算法则8.若⊙O的半径为R,点O到直线l的距离为d,且d与R是方程x²-4x+m=0的两根,且直线l与⊙O 相切,则m的值为()A.1 B.2 C.3 D.4【答案】D【解析】先根据直线与圆的位置关系得出方程有两个相等的根,再根据△=0即可求出m的值.【详解】∵d、R是方程x2-4x+m=0的两个根,且直线L与⊙O相切,∴d=R,∴方程有两个相等的实根,∴△=16-4m=0,故选D.【点睛】本题考查的是直线与圆的位置关系及一元二次方程根的判别式,熟知以上知识是解答此题的关键.9.不等式组次33015xx x->⎧⎨-≥-⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】A【解析】先分别解出两个不等式的解集,然后根据“同大取大,同小取小,大小小大中间找,大大小小无处找”的规律找出不等式组的解集,再利用数轴画出解集即可.【详解】解:33015xx x-⎧⎨-≥-⎩>①②解①得x>1,解②得x≥3,∴不等式组的解集x≥3.故答案为:A.【点睛】此题考查不等式组的解集,解题关键在于分别将不等式求出解,再用数轴表示出来10.如图,在平面直角坐标系中,平行四边形ABCD的坐标分别为A(﹣1,0)、B(0,2)、C(4,2)、D (3,0),点P是AD边上的一个动点,若点A关于BP的对称点为A',则A'C的最小值为()A B. 4C1D.1【答案】B【解析】由轴对称的性质可知BA=BA′,在△BA′C中由三角形三边关系可知A′C≥BC−BA′,则可求得答案.【详解】解:连接BA′,如图:∵平行四边形ABCD的坐标分别为A(﹣1,0)、B(0,2)、C(4,2)、D(3,0),∴AB=BC=4,∵若点A关于BP的对称点为A',∴BA′=BA在△BA′C中,由三角形三边关系可知:A′C≥BC﹣BA′,∴A′C≥4A′C的最小值为4故选B.【点睛】本题主要考查平行四边形及轴对称的性质,利用三角形的三边关系得到A′C≥BC−BA′是解题的关键.二、填空题(每小题4分,共28分)11.分解因式:3x2-12=________.【答案】3(x+2)(x-2)【解析】根据因式分解的定义(把一个多项式化为几个整式的积的形式),首先提取公因式3,然后运用平方差公式分解即可.【详解】解:3x2-12=3(x2-4)=3(x+2)(x-2).【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则12,则m+n的值为________ .【答案】-1【解析】根据算术平方根的非负性,绝对值的非负性,可得m-2=0,n+3=0,解出m、n的值即可.【详解】解:由题意可得,m-2=0,n+3=0,解得m=2,n=-3,∴m+n=-1.故答案为-1.【点睛】此题考查算术平方根的非负性,绝对值的非负性,掌握运算法则是解题关键13.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.【答案】3 4【解析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=3 4 .故其概率为:34.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.14.如图,m∥n,AB⊥m,∠1=43 ,则∠2=_______【答案】133°【解析】试题解析:过B作直线BD∥n,则BD∥m∥n,∵AB⊥m,∠1=43˚,∴∠ABD=90°,∠DBC=∠1=43°∴∠2=∠ADB+∠1=90°+43°=133°.故填133.15.如图,在△ABC中,AB=AD=DC,∠BAD=28°,则∠C=______.【答案】38°【解析】首先发现此图中有两个等腰三角形,根据等腰三角形的两个底角相等找到角之间的关系.结合三角形的内角和定理进行计算.【详解】∵AB=AD=DC ,∠BAD=28°∴∠B=∠ADB=(180°-28°)÷2=76°.∴∠C=∠CAD=76°÷2=38°.故答案为38°.【点睛】此题主要考查等腰三角形的性质及三角形内角和定理;求得∠ADC=76°是正确解答本题的关键. 16.若()11,A x y ,()22,B x y 都在函数2019y x =的图象上,且120x x <<,则1y __________2y .(填“>”或“<”)【答案】<【解析】首先根据反比例函数的解析式判定其位于一、三象限,然后根据自变量的取值范围,即可比较函数值的大小.【详解】由0k >,得反比例函数位于一、三象限,∵120x x <<∴12y y <故答案为:<.【点睛】此题主要考查反比例函数的性质,熟练掌握,即可解题.17.如图,在平面直角坐标系中,111222333,,,n n n ABC A B C A B C A B C A B C ∆∆∆∆∆L 都是等腰直角三角形,点123,,,n B B B B B L 都在x 轴上,点1B 与原点重合,点123,,,A C C C L n C 都在直线14:33l y x =+上,点C 在y 轴上,1122//////////n n AB A B A B A B y L 轴,1122n ////////C //n AC AC A C A x L 轴,若点A 的横坐标为﹣1,则点n C 的纵坐标是_____.【答案】1232n n -- 【解析】由题意(11)A -,,可得(01)C ,,设1(,)C m m ,则1433m m =+,解得2m =,求出1C 的坐标,再设2(,2)C n n =-,则14233n n -=+,解得5n =,故求出2C 的坐标,同理可求出3C 、4C 的坐标,根据规律即可得到n C 的纵坐标. 【详解】解:由题意(11)A -,,可得(01)C ,, 设1(,)C m m ,则1433m m =+,解得2m =, ∴1(2,2)C ,设2(,2)C n n =-,则14233n n -=+,解得5n =, ∴2(5,3)C ,设3(,5)C a a -,则14533a a -=+,解得192a =, ∴3199(,)22C ,同法可得46527(,)44C ,…,n C 的纵坐标为1232n n --, 故答案为1232n n --. 【点睛】此题主要考查一次函数图像的应用,解题的关键是根据题意求出1C 、2C 、3C ,再发现规律即可求解.三、解答题一(每小题6分,共18分)18.计算:()()202001|13π--+-. 【答案】1【解析】根据零指数幂、二次根式化简、绝对值、-1的幂等实数的运算法则分别进行计算求得结果即可.【详解】解:原式111=-+1=.【点睛】本题考查了零指数幂、二次根式化简、绝对值、-1的幂等实数的运算,注意零指数幂的底数不能为零,绝对值是非负数,-1的奇数次幂是-1,-1的偶数次幂是+1.19.化简求值:22111m m m m --⎛⎫-÷ ⎪⎝⎭,其中1m =.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将m 的值代入计算即可求出值. 【详解】原式()()2111m m m m m m --=⨯+-()()111m m m m m -=⨯+-11m =+当1m =时,113m ===+. 【点睛】本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.20.如图,在△ABC 中,∠C =90°,∠B =40°.(1)请你用尺规作图,作AD 平分∠BAC ,交BC 于点D (要求:保留作图痕迹);(2)∠ADC 的度数.【答案】(1)答案见解析;(2)65°.【解析】(1)分析题意,根据角平分线的作法作出∠BAC 的平分线AD 即可.(2)根据题意求出∠DAC 的值,随之即可解答.【详解】(1)如图,AD 为所作;(2)∵∠C=90°,∠B=40°,∴∠BAC=90°﹣40°=50°.∵AD平分∠BAC,∴∠BAD=∠BAC=25°,∴∠ADC=∠B+∠BAD=40°+25°=65°.【点睛】此题主要考查了角平分线的作法和直角三角形的性质,本题就属于尺规作图中的四种基本作图之一:作角平分线,旨在通过画图,培养学生的作图能力及动手能力,明确尺规作图的意义,体会数学作图语言和图形的和谐统一.四、解答题二(每小题8分,共24分)21.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【答案】(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×60200=108°,(3)1600×60+56200=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为80000元,今年A型智能手表的售价每只比去年降了600元,若售出的数量与去年相同,销售总额将比去年减少25%.(1)请问今年A型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如上表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?【答案】(1)今年A型智能手表每只售价1800元;(2)进货方案为新进A型手表25只,新进B型手表75只,这批智能手表获利最多,并求出最大利润是72500元.【解析】试题分析: 1)设今年A 型智能手表每只售价x 元,则去年售价每只为(x+600)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A 型a 只,则B 型(100﹣a )只,获利y 元,由条件表示出W 与a 之间的关系式,由a 的取值范围就可以求出W 的最大值.试题解析:(1)今年A 型智能手表每只售价x 元,去年售价每只为(x+600)元, 根据题意得,xx %)251(8000060080000-=+, 解得:x=1800,经检验,x=1800是原方程的根,答:今年A 型智能手表每只售价1800元; (2)设新进A 型手表a 只,全部售完利润是W 元,则新进B 型手表(100﹣a )只, 根据题意得,W=(1800﹣1300)a+92300﹣1500)(100﹣a )=﹣300a+80000,∵100﹣a≤3a ,∴a≥5,∵﹣300<0,W 随a 的增大而减小,∴当a=25时,W 增大=﹣300×25+80000=72500元,此时,进货方案为新进A 型手表25只,新进B 型手表75只,答:进货方案为新进A 型手表25只,新进B 型手表75只,这批智能手表获利最多,并求出最大利润是72500元.23.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,以AD 、OD 为邻边作平行四边形ADOE ,连接BE(1)求证:四边形AOBE 是菱形(2)若180EAO DCO ∠+∠=︒,2DC =,求四边形ADOE 的面积【答案】(1)见解析;(2)S四边形ADOE =【解析】(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=根据面积公式SΔADC,即可求解.【详解】(1)证明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四边形ADOE,∴OD∥AE,AE=OD.∴AE=OB.∴四边形AOBE为平行四边形.∵OA=OB,∴四边形AOBE为菱形.(2)解:∵菱形AOBE,∴∠EAB=∠BAO.∵矩形ABCD,∴AB∥CD.∴∠BAC=∠ACD,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴∠DCA=60°.∵DC=2,∴AD=∴SΔADC=12⨯⨯=2∴S=四边形ADOE【点睛】考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.五、解答题三(每小题10分,共20分)24.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=,求tan∠ABD的值.【答案】(1)90°;(2)证明见解析;(3)2.【解析】(1)根据圆周角定理即可得∠CDE的度数;(2)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△ADC,利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD 的值即可.【详解】解:(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴DC DEAD DC=,∴DC2=AD•DE∵,∴设DE=x,则,则AC2﹣AD2=AD•DE,期()2﹣AD2=AD•x,整理得:AD2+AD•x﹣20x2=0,解得:AD=4x或﹣4.5x(负数舍去),则2x=,故tan∠ABD=tan∠ACD=422AD xDC x==.25.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、C两点,点A在点C的右边,与y轴交于点B,点B的坐标为(0,﹣3),且OB=OC,点D为该二次函数图象的顶点.(1)求这个二次函数的解析式及顶点D的坐标;(2)如图,若点P为该二次函数的对称轴上的一点,连接PC、PO,使得∠CPO=90°,请求出所有符合题意的点P的坐标;(3)在对称轴上是否存在一点P,使得∠OPC为钝角,若存在,请直接写出点P的纵坐标为y p的取值范围,若没有,请说明理由.【答案】(1)二次函数的解析式为y=x2+2x﹣3,D(﹣1,﹣4);(2)P(﹣1)或(﹣1);(3)<yP且y P≠0时,∠OPC是钝角.【解析】(1)先求出点C坐标,最后用待定系数法即可得出结论;(2)先利用同角的余角相等,判断出∠COP=∠CPQ,进而求出PQ,即可得出结论;(3)借助(2)的结论和图形,即可得出结论.【详解】解:(1)∵B(0,﹣3),∴OB=3.∵OB=OC,∴OC=3,∴C(0,﹣3),∴9303b cc-+=⎧⎨=-⎩,∴23bc=⎧⎨=-⎩,∴二次函数的解析式为y=x2+2x﹣3=﹣(x﹣1)2﹣4,∴D(﹣1,﹣4);(2)如图,过点P作PQ⊥x轴于点Q,设P(﹣1,p).∵∠COP+∠OPQ=90°,∠CPQ+∠OPQ=90°,∴∠COP=∠CPQ,∴tan∠COP=tan∠CPQ.在Rt△QOP中,tan∠COP=PQ OQ .在Rt△CPQ中,tan∠CPQ=CQPQ,∴PQ CQOQ PQ=,∴PQ2=CQ×OQ=2(此处可以用射影定理,也可以判断出△CPQ∽△POQ).∵PQ>0,∴PQ,∴p或p=,∴P(﹣1)或(﹣1;(3)存在这样的点P,理由:如图,由(2)知,y P=∠OPC=90°.∵yP=0时,∠OPC是平角,∴<y P且y P≠0时,∠OPC是钝角.【点睛】本题是二次函数综合题,主要考查了待定系数法,锐角三角函数,同角的余角相等,求出PQ是解答本题的关键.。