高考物理复习专题九 带电粒子在叠加场和组合场中的运动单元练习题(含详细答案)
- 格式:doc
- 大小:337.50 KB
- 文档页数:20
高考物理带电粒子在复合场中的运动习题复习题及答案一、带电粒子在复合场中的运动压轴题1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUmB =,2(1,2,3,,1)n k =-(3)2222(1)t qum k -磁22(1)=k m t qU-电【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =(2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
一、带电粒子在复合场中的运动专项训练1.在xOy平面的第一象限有一匀强电磁,电场的方向平行于y轴向下,在x轴和第四象限的射线OC之间有一匀强电场,磁感应强度为B,方向垂直于纸面向里,有一质量为m,带有电荷量+q的质点由电场左侧平行于x轴射入电场,质点到达x轴上A点,速度方向与x 轴的夹角为φ,A点与原点O的距离为d,接着,质点进入磁场,并垂直与OC飞离磁场,不计重力影响,若OC与x轴的夹角为φ.求:⑴粒子在磁场中运动速度的大小;⑵匀强电场的场强大小.【来源】带电粒子在复合场中的运动计算题【答案】(1) (2)【解析】【分析】【详解】试题分析:(1)由几何关系得:R=dsinφ由洛仑兹力公式和牛顿第二定律得解得:(2)质点在电场中的运动为类平抛运动.设质点射入电场的速度为v0,在电场中的加速度为a,运动时间为t,则有:v 0=vcosφ vsinφ=at d=v 0t设电场强度的大小为E ,由牛顿第二定律得 qE=ma 解得:2.如图所示,以两虚线为边界,中间存在平行纸面且与边界垂直的水平电场,宽度为d ,两侧为相同的匀强磁场,方向垂直纸面向里.一质量为m 、带电量q +、重力不计的带电粒子,以初速度1v 垂直边界射入磁场做匀速圆周运动,后进入电场做匀加速运动,然后第二次进入磁场中运动,此后粒子在电场和磁场中交替运动.已知粒子第二次在磁场中运动的半径是第一次的二倍,第三次是第一次的三倍,以此类推.求:(1)粒子第一次经过电场的过程中电场力所做的功1W (2)粒子第n 次经过电场时电场强度的大小n E (3)粒子第n 次经过电场所用的时间n t(4)假设粒子在磁场中运动时,电场区域场强为零.请画出从粒子第一次射入磁场至第三次离开电场的过程中,电场强度随时间变化的关系图线(不要求写出推导过程,不要求标明坐标刻度值).【来源】河北省衡水中学滁州分校2018届高三上学期全真模拟物理试题【答案】(1)21132mv W =(2)21(21)2n n mv E qd +=(3)12(21)n d t n v =+ (4)如图;【解析】 (1)根据mv r qB =,因为212r r =,所以212v v =,所以221211122W mv mv =-, (2)=,,所以.(3),,所以.(4)3.如图所示,x轴正方向水平向右,y轴正方向竖直向上.在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场.在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒.发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g.(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向.(2)请指出这束带电微粒与x轴相交的区域,并说明理由.(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由.【来源】带电粒子在电场中运动压轴大题【答案】(1)mgEq=,方向沿y轴正方向;mvBqR=,方向垂直xOy平面向外(2)通过坐标原点后离开;理由见解析(3)范围是x>0;理由见解析【解析】【详解】(1)带电微粒平行于x 轴从C 点进入磁场,说明带电微粒所受重力和电场力的大小相等,方向相反.设电场强度大小为E ,由:mg qE =可得电场强度大小:mg qE =方向沿y 轴正方向;带电微粒进入磁场后受到重力、电场力和洛伦兹力的作用.由于电场力和重力相互抵消,它将做匀速圆周运动.如图(a )所示:考虑到带电微粒是从C 点水平进入磁场,过O 点后沿y 轴负方向离开磁场,可得圆周运动半径r R =;设磁感应强度大小为B ,由:2v qvB m R=可得磁感应强度大小:mv B qR=根据左手定则可知方向垂直xOy 平面向外;(2)从任一点P 水平进入磁场的带电微粒在磁场中做半径为R 的匀速圆周运动,如图(b )所示,设P 点与O '点的连线与y 轴的夹角为θ,其圆周运动的圆心Q 的坐标为(sin ,cos )R R θθ-,圆周运动轨迹方程为:222(sin )(cos )x R y R R θθ++-=而磁场边界是圆心坐标为(0,R )的圆周,其方程为:22()x y R R +-=解上述两式,可得带电微粒做圆周运动的轨迹与磁场边界的交点为0x y =⎧⎨=⎩或:sin {(1cos )x R y R θθ=-=+坐标为[sin ,(1cos )]R R θθ-+的点就是P 点,须舍去.由此可见,这束带电微粒都是通过坐标原点后离开磁场的;(3)带电微粒初速度大小变为2v ,则从任一点P 水平进入磁场的带电微粒在磁场中做匀速圆周运动的半径r '为:(2)2m v r R qB'== 带电微粒在磁场中经过一段半径为r '的圆弧运动后,将在y 轴的右方(x >0区域)离开磁场并做匀速直线运动,如图(c )所示.靠近M 点发射出来的带电微粒在穿出磁场后会射向x 轴正方向的无穷远处;靠近N 点发射出来的带电微粒会在靠近原点之处穿出磁场 所以,这束带电微粒与x 轴相交的区域范围是x >0.答:(1)电场强度mg qE = ,方向沿y 轴正方向和磁感应强度mvB qR=,方向垂直xOy 平面向外.(2)这束带电微粒都是通过坐标原点后离开磁场的;(3)若这束带电微粒初速度变为2v ,这束带电微粒与x 轴相交的区域范围是x >0。
专题能力训练9带电粒子在组合场、复合场中的运动(时间:45分钟满分:100分)一、选择题(本题共8小题,每小题7分,共56分。
在每小题给出的四个选项中,1~6题只有一个选项符合题目要求7~8题有多个选项符合题目要求,全部选对的得7分,选对但不全的得4分,有选错的得0分)1.如图为“滤速器”装置示意图。
a、b为水平放置的平行金属板,其电容为C,板间距离为d,平行板内存在垂直纸面向里的匀强磁场,磁感应强度为B。
a、b板带上电荷,可在平行板内产生匀强电场,且电场方向和磁场方向互相垂直。
一带电粒子以速度v0经小孔O进入正交电磁场可沿直线OO'运动,由O'射出,粒子所受重力不计,则a板所带电荷量情况是()A.带正电,其电荷量为B.带负电,其电荷量为C.带正电,其电荷量为CBdv0D.带负电,其电荷量为2.(2015·湖南师范大学附属中学月考)速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S0A=S0C,则下列说法正确的是()A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S0的带电粒子的速率等于D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶23.(2015·河北名校联盟质量监测)如图,一带电塑料小球质量为m,用丝线悬挂于O点,并在竖直平面内摆动,最大摆角为60°,水平磁场垂直于小球摆动的平面。
当小球自左方摆到最低点时,悬线上的张力恰为零,则小球自右方最大摆角处摆到最低点时悬线上的张力为()A.0B.2mgC.4mgD.6mg4.如图所示,在第二象限内有水平向右的匀强电场,电场强度为E,在第一、四象限内分别存在如图所示的匀强磁场,磁感应强度大小相等。
有一个带电粒子以初速度v0从x轴上的P点垂直进入匀强电场,恰好与y轴成45°角射出电场,再经过一段时间又恰好垂直于x轴进入下面的磁场。
一、带电粒子在复合场中的运动专项训练1.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【来源】带电粒子在磁场中的运动 【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cos m gB q R θ=⑦此时,带电小球做匀速圆周运动的速率为min sin 2qB R v m θ=⑧由⑦⑧式得sin cos gRv θθ=⑨2.如图所示,在无限长的竖直边界NS 和MT 间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM 平面向外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h ,质量为m ,带电荷量为+q 的粒子从P 点垂直于NS 边界射入该区域,在两边界之间做圆周运动,重力加速度为g .(1)求电场强度的大小和方向;(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值;(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的所有可能值.【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析) 【答案】(1)mg qE =,方向竖直向上 (2)min (962)qBhv -=(3)0.68qBh v m =;0.545qBh v m =;0.52qBhv m= 【解析】 【分析】(1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,电场力与重力合力为零; (2)作出粒子的运动轨迹,由牛顿第二定律与数学知识求出粒子的速度; (3)作出粒子运动轨迹,应用几何知识求出粒子的速度. 【详解】(1)粒子在磁场中做匀速圆周运动, 电场力与重力合力为零,即mg =qE , 解得:mg qE =,电场力方向竖直向上,电场方向竖直向上;(2)粒子运动轨迹如图所示:设粒子不从NS边飞出的入射速度最小值为v min,对应的粒子在上、下区域的轨道半径分别为r1、r2,圆心的连线与NS的夹角为φ,粒子在磁场中做匀速圆周运动,由牛顿第二定律得:2vqvB mr=,解得,粒子轨道半径:vrqBπ=,min1vrqBπ=,2112r r=,由几何知识得:(r1+r2)sinφ=r2,r1+r1cosφ=h,解得:min 962)qBhvm=(﹣;(3)粒子运动轨迹如图所示,设粒子入射速度为v ,粒子在上、下区域的轨道半径分别为r 1、r 2, 粒子第一次通过KL 时距离K 点为x , 由题意可知:3nx =1.8h (n =1、2、3…)3(922h x -≥,x = 解得:120.361)2hr n =+(,n <3.5, 即:n =1时, 0.68qBhv m=, n =2时,0.545qBhv m =, n =3时,0.52qBhv m=; 答:(1)电场强度的大小为mg qE =,电场方向竖直向上;(2)要使粒子不从NS 边界飞出,粒子入射速度的最小值为min 9qBhv m=. (3)若粒子经过Q 点从MT 边界飞出,粒子入射速度的所有可能值为:0.68qBhv m=、或0.545qBh v m =、或0.52qBhv m=. 【点睛】本题考查了粒子在磁场中的运动,分析清楚粒子运动过程、作出粒子运动轨迹是正确解题的前提与关键,应用平衡条件、牛顿第二定律即可正确解题,解题时注意数学知识的应用.3.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
高中物理【带电粒子在叠加场中的运动】典型题1.(多选)如图所示,为研究某种射线装置的示意图.射线源发出的射线以一定的初速度沿直线射到荧光屏上的中央O 点,出现一个亮点.在板间加上垂直纸面向里的磁感应强度为B 的匀强磁场后,射线在板间做半径为r 的圆周运动,然后打在荧光屏的P 点.若在板间再加上一个竖直向下电场强度为E 的匀强电场,亮点又恰好回到O 点,由此可知该射线粒子射线源( )A .带正电B .初速度为v =B EC .荷质比为q m =B 2r ED .荷质比为q m =E B 2r解析:选AD .粒子在向里的磁场中向上偏转,根据左手定则可知,粒子带正电,选项A 正确;粒子在磁场中:Bq v =m v 2r ;粒子在电磁正交场中:qE =q vB ,v =E B,选项B 错误;联立解得q m =E B 2r,选项C 错误,D 正确. 2.如图所示,一带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨道半径为R ,已知该电场的电场强度为E ,方向竖直向下;该磁场的磁感应强度为B ,方向垂直纸面向里,不计空气阻力,设重力加速度为g ,则( )A .液滴带正电B .液滴比荷q m =E gC .液滴沿顺时针方向运动D .液滴运动速度大小v =Rg BE解析:选C .液滴在重力场、匀强电场、匀强磁场的复合场中做匀速圆周运动,可知,qE =mg ,得q m =g E,故B 错误;电场力竖直向上,液滴带负电,A 错误;由左手定则可判断液滴沿顺时针转动,C 正确;对液滴qE =mg ,q v B =m v 2R 得v =RBg E,故D 错误. 3.如图所示,空间的某个复合场区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场.质子由静止开始经一加速电场加速后,垂直于复合场的边界进入并沿直线穿过场区,质子(不计重力)穿过复合场区所用时间为t ,从复合场区穿出时的动能为E k ,则( )A .若撤去磁场B ,质子穿过场区时间大于tB .若撤去电场E ,质子穿过场区时间等于tC .若撤去磁场B ,质子穿出场区时动能大于E kD .若撤去电场E ,质子穿出场区时动能大于E k解析:选C .质子在电场中是直线加速,进入复合场,电场力与洛伦兹力等大反向,质子做匀速直线运动.若撤去磁场,只剩下电场,质子做类平抛运动,水平分运动是匀速直线运动,速度不变,故质子穿过场区时间不变,等于t ,A 错误;若撤去电场,只剩下磁场,质子做匀速圆周运动,速率不变,水平分运动的速度减小,故质子穿过场区时间增加,大于t ,B 错误;若撤去磁场,只剩下电场,质子做类平抛运动,电场力做正功,故末动能大于E k ,C 正确,若撤去电场,只剩下磁场,质子做匀速圆周运动,速率不变,末动能不变,仍为E k ,D 错误.4.(多选)如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则( )A .小球可能带正电B .小球做匀速圆周运动的半径为r =1B2UE gC .小球做匀速圆周运动的周期为T =2πE BgD .若电压U 增大,则小球做匀速圆周运动的周期增加解析:选BC .小球在复合场中做匀速圆周运动,则小球受到的电场力和重力满足mg=Eq ,方向相反,则小球带负电,A 错误;因为小球做圆周运动的向心力由洛伦兹力提供,由牛顿第二定律和动能定理可得Bq v =m v 2r ,Uq =12m v 2,联立两式可得小球做匀速圆周运动的半径r =1B 2UE g ,由T =2πr v 可以得出T =2πE Bg,与电压U 无关,所以B 、C 正确,D 错误.5.如图,空间区域Ⅰ、Ⅱ有匀强电场和匀强磁场,MN 、PQ 为理想边界,Ⅰ区域高度为d ,Ⅱ区域的范围足够大.匀强电场方向竖直向上;Ⅰ、Ⅱ区域的磁感应强度大小均为B ,方向分别垂直纸面向里和向外.一个质量为m 、带电荷量为q 的带电小球从磁场上方的O 点由静止开始下落,进入场区后,恰能做匀速圆周运动.已知重力加速度为g .(1)试判断小球的电性并求出电场强度E 的大小;(2)若带电小球能进入区域Ⅱ,则h 应满足什么条件?(3)若带电小球运动一定时间后恰能回到O 点,求它释放时距MN 的高度h .解析:(1)带电小球进入复合场后,恰能做匀速圆周运动,即所受合力为洛伦兹力,则重力与电场力大小相等,方向相反,重力竖直向下,电场力竖直向上,即小球带正电.则有qE =mg ,解得E =mg q. (2)假设下落高度为h 0时,带电小球在Ⅰ区域做圆周运动的圆弧与PQ 相切时,运动轨迹如图甲所示,由几何知识可知,小球的轨道半径R =d ,带电小球在进入磁场前做自由落体运动,由动能定理得mgh 0=12m v 2,带电小球在磁场中做匀速圆周运动,由牛顿第二定律得q v B =m v 2R , 解得h 0=q 2B 2d 22m 2g, 则当h >h 0时,即h >q 2B 2d 22m 2g时带电小球能进入区域Ⅱ. (3)如图乙所示,因为带电小球在Ⅰ、Ⅱ两个区域运动过程中q 、v 、B 、m 的大小不变,故三段圆周运动的半径相同,以三个圆心为顶点的三角形为等边三角形,边长为2R ,内角为60°,由几何关系知R =d sin 60°, 联立解得h =2q 2B 2d 23m 2g. 答案:(1)正电 mg q (2)h >q 2B 2d 22m 2g (3)2q 2B 2d 23m 2g6.(多选)如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H ,与其前、后表面相连的电压表测出的霍尔电压U H 满足:U H =k I H B d,式中k 为霍尔系数,d 为霍尔元件前、后两侧面间的距离.电阻R 远大于R L ,霍尔元件的电阻可以忽略,则( )A .霍尔元件前表面的电势低于后表面B .若电源的正、负极对调,电压表将反偏C .I H 与I 成正比D .电压表的示数与R L 消耗的电功率成正比解析:选CD .由于导电物质为电子,在霍尔元件中,电子是向上做定向移动的,根据左手定则可判断电子受到的洛伦兹力方向向后表面,故霍尔元件的后表面相当于电源的负极,霍尔元件前表面的电势应高于后表面,选项A 错误;若电源的正、负极对调,则I H 与B 都反向,由左手定则可判断电子受力的方向不变,选项B 错误;由于电阻R 和R L 都是固定的,且R和R L并联,故I H=R LR+R LI,选项C正确;由于B与I成正比,I H与I成正比,则U H=k I H Bd∝I2,R L又是定值电阻,选项D正确.7.(多选)如图所示,表面粗糙的绝缘斜面固定于地面上,并处于方向垂直纸面向里的磁场和竖直向下的匀强电场中,磁感应强度大小为B,电场强度大小为E,一质量为m、电荷量为Q的带负电小滑块从斜面顶端由静止下滑,在滑块下滑过程中,下列判断正确的是()A.滑块受到的摩擦力不变B.若斜面足够长,滑块最终可能在斜面上匀速下滑C.若B足够大,滑块最终可能静止于斜面上D.滑块到达地面时的动能与B有关解析:选BD.滑块向下运动的过程中受到重力、电场力、支持力,根据左手定则,滑块还受到垂直斜面向下的洛伦兹力,沿斜面向上的摩擦力,滑块向下运动的过程中,速度增大,洛伦兹力增大,支持力增大,滑动摩擦力增大,当B很大时,则摩擦力有可能也很大,当滑块受到的摩擦力和电场力沿斜面向上的分力的合力与重力沿斜面向下的分力相等时,滑块做匀速直线运动,之后洛伦兹力与摩擦力不再增大,所以滑块不可能静止在斜面上,故A、C错误,B正确;B不同,洛伦兹力大小也不同,所以滑动摩擦力大小不同,摩擦力做的功不同,根据动能定理可知,滑块到达地面的动能不同,故D正确.8.如图所示,质量M为5.0 kg的小车以2.0 m/s的速度在光滑的水平面上向左运动,小车上AD部分是表面粗糙的水平轨道,DC部分是14光滑圆弧轨道,整个轨道都是由绝缘材料制成的,小车所在空间内有竖直向上的匀强电场和垂直于纸面向里的匀强磁场,电场强度E大小为50 N/C,磁感应强度B大小为2.0 T.现有一质量m为2.0 kg、带负电且电荷量为0.10 C的滑块以10 m/s的水平速度向右冲上小车,当它运动到D点时速度为5 m/s.滑块可视为质点,g取10 m/s2,计算结果保留两位有效数字.(1)求滑块从A 到D 的过程中,小车与滑块组成的系统损失的机械能;(2)如果滑块刚过D 点时对轨道的压力为76 N ,求圆弧轨道的半径r ;(3)当滑块通过D 点时,立即撤去磁场,要使滑块冲出圆弧轨道,求此圆弧轨道的最大半径.解析:(1)设滑块运动到D 点时的速度大小为v 1,小车在此时的速度大小为v 2,物块从A 运动到D 的过程中,系统动量守恒,以向右为正方向,有m v 0-M v =m v 1+M v 2,解得v 2=0.设小车与滑块组成的系统损失的机械能为ΔE ,则有ΔE =12m v 20+12M v 2-12m v 21, 解得ΔE =85 J.(2)设滑块刚过D 点时受到轨道的支持力为F N ,则由牛顿第三定律可得F N =76 N ,由牛顿第二定律可得F N -(mg +qE +q v 1B )=m v 21r, 解得r =1 m.(3)设滑块沿圆弧轨道上升到最大高度时,滑块与小车具有共同的速度v ′,由动量守恒定律可得m v 1=(m +M )v ′,解得v ′=107m/s. 设圆弧轨道的最大半径为R m ,由能量守恒定律有12m v 21=12(m +M )v ′2+(mg +qE )R m , 解得R m =0.71 m.答案:(1)85 J (2)1 m (3)0.71 m9.如图所示,平面直角坐标系的第二象限内存在水平向左的匀强电场和垂直纸面向里的匀强磁场,一质量为m 、带电荷量为+q 的小球从A 点以速度v 0沿直线AO 运动,AO 与x 轴负方向成37°角.在y 轴与MN 之间的区域Ⅰ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN 上的C 点,MN 与PQ 之间区域Ⅱ内存在宽度为d 的竖直向上匀强电场和垂直纸面向里的匀强磁场,小球在区域Ⅱ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C 点的速度大小为2v 0,重力加速度为g ,sin 37°=0.6,cos 37°=0.8,求:(1)第二象限内电场强度E 1的大小和磁感应强度B 1的大小;(2)区域Ⅰ内最小电场强度E 2的大小和方向;(3)区域Ⅱ内电场强度E 3的大小和磁感应强度B 2的大小.解析: (1)带电小球在第二象限内受重力、电场力和洛伦兹力作用做直线运动,三力满足如图甲所示关系且小球只能做匀速直线运动.由图知tan 37°=qE 1mg ,得E 1=3mg 4qcos 37°=mg B 1q v 0,得B 1=5mg 4q v 0. (2)区域Ⅰ中小球做直线运动,电场强度最小,受力如图乙所示(电场力方向与速度方向垂直),小球做匀加速直线运动,由图知cos 37°=qE 2mg ,得E 2=4mg 5q, 方向与x 轴正方向成53°角斜向上.(3)小球在区域Ⅱ内做匀速圆周运动,所以mg =qE 3,得E 3=mg q,因小球恰好不从右边界穿出,小球运动轨迹如图丙所示, 由几何关系得r =58d ,由洛伦兹力提供向心力知B 2q ·2v 0=m (2v 0)2r ,联立得B 2=16m v 05qd .答案:(1)3mg 4q 5mg 4q v 0 (2)4mg 5q 方向与x 轴正方向成53°角斜向上 (3)mg q 16m v 05qd。
带电粒子在叠加场和组合场中的运动一、单选题1.如图所示为某种质谱仪的工作原理示意图。
此质谱仪由以下几部分构成:粒子源N;P,Q间的加速电场;静电分析器,即中心线半径为R的四分之一圆形通道,通道内有均匀辐射电场,方向沿径向指向圆心O,且与圆心O 等距的各点电场强度大小相等;磁感应强度为B的有界匀强磁场,方向垂直纸面向外;yO为胶片。
由粒子源发出的不同带电粒子,经加速电场加速后进入静电分析器,某些粒子能沿中心线通过静电分析器并经小孔S垂直磁场边界进入磁场,最终打到胶片上的某点。
粒子从粒子源发出时的初速度不计,不计粒子所受重力。
下列说法中正确的是()A.从小孔S进入磁场的粒子速度大小一定相等B.从小孔S进入磁场的粒子动能一定相等C.打到胶片上同一点的粒子速度大小一定相等D.打到胶片上位置距离O点越远的粒子,比荷越大2.如图所示,洛伦兹力演示仪由励磁线圈,玻璃泡,电子枪等部分组成。
励磁线圈是一对彼此平行的共轴的圆形线圈,它能够在两线圈之间产生匀强磁场。
玻璃泡内充有稀薄的气体,电子枪在加速电压下发射电子,电子束通过泡内气体时能够显示出电子运动的径迹。
若电子枪垂直磁场方向发射电子,给励磁线圈通电后,能看到电子束的径迹呈圆形。
若只增大电子枪的加速电压或励磁线圈中的电流,下列说法正确的是()A.增大电子枪的加速电压,电子束的轨道半径不变B.增大电子枪的加速电压,电子束的轨道半径变小C.增大励磁线圈中的电流,电子束的轨道半径不变D.增大励磁线圈中的电流,电子束的轨道半径变小3.如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射人水平放置,电势差为U2的两导体板间的匀强电场中,带电粒子沿平行于两板丽方向认两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子入磁场和射出磁场的y,N两点间的距离d随着U1和U2的,变化情况为(不计重力,不考虑边缘效应)( )A.d随U1变化,d与U2无关B.d与U1无关,d随U2变化C.d随U1变化,d随U2变化D.d与U1无关,d与U2无关4.如图所示,平行金属板A,B水平正对放置,分别带等量异号电荷.一带电微粒水平射入板间,在重力和电场力共同作用下运动,轨迹如图中虚线所示,那么()A.若微粒带正电荷,则A板一定带正电荷B.微粒从M点运动到N点电势能一定增加C.微粒从M点运动到N点动能一定增加D.微粒从M点运动到N点机械能一定增加5.中国科学家发现了量子反常霍尔效应,杨振宁称这一发现是诺贝尔奖级的成果.如图5所示,厚度为h,宽度为d的金属导体,当磁场方向与电流方向垂直时,在导体上下表面会产生电势差,这种现象称为霍尔效应.下列说法正确的是()A.上表面的电势高于下表面的电势B.仅增大h时,上下表面的电势差增大C.仅增大d时,上下表面的电势差减小D.仅增大电流I时,上下表面的电势差减小6.在第一象限(含坐标轴)内有垂直xo y平面周期性变化的均匀磁场,规定垂直xo y平面向里的磁场方向为正.磁场变化规律如图,磁感应强度的大小为B0,变化周期为T0.某一正粒子质量为m,电量为q在t=0时从0点沿x 轴正向射入磁场中。
一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。
(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h表示)。
(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。
高考物理《带电粒子在叠加场中的运动》真题练习含答案1.(多选)如图所示,空间存在着垂直向里的匀强磁场B 和竖直向上的匀强电场E ,两个质量不同电量均为q 的带电小球a 和b 从同一位置先后以相同的速度v 从场区左边水平进入磁场,其中a 小球刚好做匀速圆周运动,b 小球刚好沿直线向右运动.不计两小球之间库仑力的影响,重力加速度为g ,则( )A .a 小球一定带正电,b 小球可能带负电B .a 小球的质量等于qEgC .b 小球的质量等于qE -q v BgD .a 小球圆周运动的半径为EVBg答案:BD解析:a 小球刚好做匀速圆周运动,重力和电场力平衡,洛伦兹力提供向心力,所以Eq =m a g ,电场力方向竖直向上,则a 小球一定带正电,b 小球刚好沿直线向右运动,如果b 小球带负电,电场力洛伦兹力均向下,重力也向下,不能平衡,无法做直线运动,所以b 小球带正电,q v B +Eq =m b g ,A 错误;根据A 选项分析可知,a 小球的质量等于m a =qEg ,B 正确;根据A 选项分析可知,b 小球的质量等于m b =qE +q v Bg,C 错误;a 小球圆周运动的半径为Bq v =m a v 2r ,解得r =m a v Bq =E vBq,D 正确.2.(多选)如图所示,在竖直平面内的虚线下方分布着互相垂直的匀强电场和匀强磁场,电场的电场强度大小为10 N/C ,方向水平向左;磁场的磁感应强度大小为2 T ,方向垂直纸面向里.现将一质量为0.2 kg 、电荷量为+0.5 C 的小球,从该区域上方的某点A 以某一初速度水平抛出,小球进入虚线下方后恰好做直线运动.已知重力加速度为g =10 m/s 2.下列说法正确的是( )A.小球平抛的初速度大小为5 m/sB.小球平抛的初速度大小为2 m/sC.A点距该区域上边界的高度为1.25 mD.A点距该区域上边界的高度为2.5 m答案:BC解析:小球受竖直向下的重力与水平向左的电场力作用,小球进入电磁场区域做直线运动,小球受力如图所示小球做直线运动,则由平衡条件得q v B cos θ=mg,小球的速度v cos θ=v0,代入数据解得v0=2 m/s,A错误,B正确;小球从A点抛出到进入复合场过程,由动能定理得mgh=12m v2-12m v2,根据在复合场中的受力情况可知(mg)2+(qE)2=(q v B)2,解得h=E22gB2,代入数据解得h=1.25 m,C正确,D错误.3.如图所示,一带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨迹半径为R.已知电场的电场强度大小为E,方向竖直向下;磁场的磁感应强度大小为B,方向垂直于纸面向里.不计空气阻力,重力加速度为g,则下列说法中正确的是() A.液滴带正电B.液滴的比荷qm=g EC.液滴的速度大小v=gRBED.液滴沿逆时针方向运动答案:B解析:带电液滴刚好做匀速圆周运动,应满足mg=qE,电场力向上,与场强方向相反,液滴带负电,可得比荷为qm=gE,A错误,B正确;由左手定则可判断,只有液滴沿顺时针方向运动,受到的洛伦兹力才指向圆心,D错误;由向心力公式可得q v B=m v2R,联立可得液滴的速度大小为v=gBRE,C错误.4.(多选)空间内存在电场强度大小E=100 V/m、方向水平向左的匀强电场和磁感应强度大小B1=100 T、方向垂直纸面向里的匀强磁场(图中均未画出).一质量m=0.1 kg、带电荷量q=+0.01 C的小球从O点由静止释放,小球在竖直面内的运动轨迹如图中实线所示,轨迹上的A点离OB最远且与OB的距离为l,重力加速度g取10 m/s2.下列说法正确的是()A.在运动过程中,小球的机械能守恒B.小球经过A点时的速度最大C.小球经过B点时的速度为0D.l=25m答案:BCD解析:由于电场力做功,故小球的机械能不守恒,A项错误;重力和电场力的合力大小为(qE)2+(mg)2=2N,方向与竖直方向的夹角为45°斜向左下方,小球由O点到A点,重力和电场力的合力做的功最多,在A点时的动能最大,速度最大,B项正确;小球做周期性运动,在B点时的速度为0,C项正确;对小球由O点到A点的过程,由动能定理得2mgl=12m v2,沿OB方向建立x轴,垂直OB方向建立y轴,在x方向上由动量定理得q v y B1Δt=mΔv,累积求和,则有qB1l=m v,解得l=25m,D项正确.5.(多选)如图所示,平面直角坐标系的第二象限内(称为区域Ⅰ)存在水平向左的匀强电场和垂直纸面向里的匀强磁场B1,一质量为m、带电荷量为+q的小球从A点以速度v0沿直线AO运动,AO与x轴负方向成37°角.在y轴与MN之间的区域Ⅱ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN上的C点,MN与PQ之间区域Ⅲ内存在宽度为d的竖直向上匀强电场和垂直纸面向里的匀强磁场B2,小球在区域Ⅲ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C点的速度大小为2v0,重力加速度为g,sin 37°=0.6,cos 37°=0.8,则下列结论正确的是()A .区域Ⅲ内匀强电场的场强大小E 3=mgqB .区域Ⅲ内匀强磁场的磁感应强度大小B 2=m v 0qdC.小球从A 到O 的过程中做匀速直线运动,从O 到C 的过程中做匀加速直线运动 D .区域Ⅱ内匀强电场的最小场强大小为E 2=4mg5q ,方向与x 轴正方向成53°角向上答案:ACD解析:小球在区域Ⅲ内做匀速圆周运动,有mg =qE 3,解得E 3=mgq ,A 项正确;因为小球恰好不从右边界穿出,小球运动轨迹如图所示,由几何关系得d =r +r sin 37°=85 r ,由洛伦兹力提供向心力得B 2q ×2v 0=m (2v 0)2r,解得B 2=16m v 05qd ,B 项错误;带电小球在第二象限内受重力、电场力和洛伦兹力做直线运动,三力满足如图所示关系所以小球从A 到O 的过程只能做匀速直线运动.区域Ⅱ中从O 到C 的过程,小球做直线运动电场强度最小,受力如图所示(电场力方向与速度方向垂直)所以小球做匀加速直线运动,由图知cos 37°=qE 2mg ,解得E 2=4mg5q ,方向与x 轴正方向成53°角向上,C 、D 两项正确.6.如图所示,一质量为m 、电荷量为q 的带正电小球(视为质点)套在长度为L 、倾角为θ的固定绝缘光滑直杆OP 上,P 端下方存在正交的匀强电场和匀强磁场,电场方向沿PO 方向,磁场方向垂直纸面水平向里.现将小球从O 端由静止释放,小球滑离直杆后沿直线运动,到达Q 点时立即撤去磁场,最终小球垂直打到水平地面上,重力加速度大小为g ,不计空气阻力.求:(1)电场的电场强度大小E 以及磁场的磁感应强度大小B ; (2)Q 点距离地面的高度h .答案:(1)mg sin θq ,mg cos θq 2gL sin θ(2)(sin θ+1sin θ)L 解析:(1)小球滑离直杆后进入叠加场,在叠加场内的受力情况如图所示,小球做匀速直线运动,根据几何关系有sin θ=Eqmg ,cos θ=q v B mg小球在直杆上时有L =v 22g sin θ解得E =mg sin θq ,B =mg cos θq 2gL sin θ(2)根据题意可知,当磁场撤去后,小球受重力和电场力作用,且合力的方向与速度方向垂直,小球做类平抛运动,水平方向有Eq cos θ=ma xv x =v cos θ-a x t竖直方向有mg -Eq sin θ=ma y h =v sin θ·t +12a y t 2当小球落到地面时,v x =0, 即v x =v cos θ-a x t =0 解得t =m vEqh =(sin θ+1sin θ)L7.[2024·湖北省鄂东南教育教学改革联盟联考]如图所示,在竖直平面内的直角坐标系xOy 中,y 轴竖直,第一象限内有竖直向上的匀强电场E 1、垂直于xOy 平面向里的匀强磁场B 1=4 T ;第二象限内有平行于xOy 平面且方向可以调节的匀强电场E 2;第三、四象限内有垂直于纸面向外的匀强磁场B 2=1063 T .x 、y 轴上有A 、B 两点,OA =(2+3 ) m ,OB=1 m .现有一质量m =4×10-3 kg ,电荷量q =10-3 C 的带正电小球,从A 点以速度v 0垂直x 轴进入第一象限,做匀速圆周运动且从B 点离开第一象限.小球进入第二象限后沿直线运动到C 点,然后由C 点进入第三象限.已知重力加速度为g =10 m/s 2,不计空气阻力.求:(1)第一象限内电场的电场强度E 1与小球初速度v 0的大小;(2)第二象限内电场强度E 2的最小值和E 2取最小值时小球运动到C 点的速度v C ; (3)在第(2)问的情况下,小球在离开第三象限前的最大速度v m . 答案:(1)40 N/C 2 m/s (2)20 N/C 26 m/s (3)46 m/s ,方向水平向左解析:(1)小球由A 点进入第一象限后,所受电场力与重力平衡 E 1q =mg 解得E 1=40 N/C 由几何关系得r +r 2-OB 2 =OA解得r =2 m小球做匀速圆周运动,洛伦兹力提供向心力,则有q v 0B 1=m v 20r解得v 0=2 m/s(2)由几何关系得:BC 与竖直方向夹角为θ=30°小球由B 到C 做直线运动,则电场力与重力的合力与v B 均沿BC 方向,当电场力与BC 垂直时,电场力有最小值qE 2min =mg sin θ解得E 2min =20 N/C 对小球有mg cos θ=ma 根据几何关系x BC =OB cos θ =233 m 根据速度位移关系式v 2C -v 20 =2ax BC代入数据得a =53 m/s 2 v C =26 m/s(3)小球进入第三象限后,在重力、洛伦兹力作用下做变加速曲线运动,把初速度v C 分解为v 1和v 2,其中v 1满足Bq v 1=mg解得v 1=mgB 2q =26 m/s方向水平向左 则v 2=26 m/s方向与x 轴正方向夹角为60°小球的实际运动可以分解为运动一:速度为v1=26m/s,水平向左,合力为B2q v1-mg=0的匀速直线运动.运动二:速度为v2=26m/s,顺时针旋转,合力为F洛=B2q v2的匀速圆周运动.当v1和v2的方向相同时合运动的速度最大,最大速度v m=v1+v2=46m/s 方向水平向左.。
2025届高考物理复习:经典好题专项(带电粒子在叠加场中的运动)练习1. (多选)如图所示,空间存在水平向右的匀强电场和垂直于纸面向里的匀强磁场,一质量为m 、带电荷量大小为q 的小球,以初速度v 0沿与电场方向成45°夹角射入场区,能沿直线运动。
经过时间t ,小球到达C 点(图中没标出),电场方向突然变为竖直向上,电场强度大小不变。
已知重力加速度为g ,则( )A .小球一定带负电B .时间t 内小球做匀速直线运动C .匀强磁场的磁感应强度为2mgq v 0D .电场方向突然变为竖直向上,则小球做匀加速直线运动2. (2023ꞏ湖北省恩施教育联盟模拟)如图所示,某空间同时存在着互相正交的匀强电场和匀强磁场,电场的方向竖直向下。
一带电体a 带负电,电荷量为q 1,恰能静止于此空间的c 点,另一带电体b 也带负电,电荷量为q 2,正在过c 点的竖直平面内作半径为r 的匀速圆周运动,结果a 、b 在c 处碰撞并粘合在一起,关于a 、b 粘合一起后的运动性质下列说法正确的是( )A .向左做匀速直线运动B .顺时针继续做匀速圆周运动,半径为r ′=q 2q 1+q 2r C .顺时针继续做匀速圆周运动,半径为r ′=q 1q 1+q 2r D .因为有重力和静电力这样的恒力存在,故以上说法都不对3. (多选)(2023ꞏ内蒙古包头市模拟)空间内存在电场强度大小E =100 V/m 、方向水平向左的匀强电场和磁感应强度大小B 1=100 T 、方向垂直纸面向里的匀强磁场(图中均未画出)。
一质量m =0.1 kg 、带电荷量q =+0.01 C 的小球从O 点由静止释放,小球在竖直面内的运动轨迹如图中实线所示,轨迹上的A 点离OB 最远且与OB 的距离为l ,重力加速度g 取10 m/s 2。
下列说法正确的是( )A .在运动过程中,小球的机械能守恒B .小球经过A 点时的速度最大C .小球经过B 点时的速度为0D .l = 2 m4. (多选)(2023ꞏ河北邢台市模拟)如图所示,空间有一无限大正交的电磁场区域,电场强度为E 、方向竖直向下,磁感应强度为B 、方向垂直于纸面向外,电磁场中有一内壁光滑竖直放置的绝缘长筒,其底部有一带电量为-q (q >0)、质量为qEg 的小球,g 为重力加速度,小球直径略小于长筒内径。
课时作业32带电粒子在叠加场中的运动时间:45分钟1.某空间存在匀强磁场和匀强电场.一个带电粒子(不计重力)以一定初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动.下列因素与完成上述两类运动无关的是(C) A.磁场和电场的方向B.磁场和电场的强弱C.粒子的电性和电量D.粒子入射时的速度解析:由于带电粒子做匀速直线运动,对带电粒子进行受力分析知,电场力与磁场力平衡,qE=q v B,即v=EB,由此式可知,粒子入射时的速度、磁场和电场的强弱及方向有确定的关系,故A、B、D 错误,C正确.2.如图所示是实验室里用来测量磁场力的一种仪器——电流天平.某同学在实验室里用电流天平测算通电螺线管中的磁感应强度,若他测得CD段导线长度为4×10-2 m,天平(等臂)平衡时钩码重力为4×10-5 N,通过导线的电流I=0.5 A.由此,测得通电螺线管中的磁感应强度B为(A)A.2.0×10-3 T,方向水平向右B.5.0×10-3 T,方向水平向右C.2.0×10-3 T,方向水平向左D.5.0×10-3 T,方向水平向左解析:天平(等臂)平衡时,CD段导线所受的安培力大小与钩码重力大小相等,即F=mg,由F=BIL得B=FIL=mgIL=2.0×10-3 T;根据安培定则可以知道磁感应强度的方向水平向右,所以A正确,B、C、D错误.3.速度相同的一束粒子(不计重力)由左端射入质谱仪后的运动轨迹如图所示,则下列相关说法中正确的是( C )A .该束粒子带负电B .速度选择器的P 1极板带负电C .能通过狭缝S 0的粒子的速度等于E B 1D .粒子打在胶片上的位置越靠近狭缝S 0,则粒子的比荷越小解析:根据该束粒子进入匀强磁场B 2时向下偏转,由左手定则判断出该束粒子带正电,选项A 错误;粒子在速度选择器中做匀速直线运动,受到电场力和洛伦兹力作用,由左手定则知洛伦兹力方向竖直向上,则电场力方向竖直向下,因粒子带正电,故电场强度方向向下,速度选择器的P 1极板带正电,选项B 错误;粒子能通过狭缝,电场力与洛伦兹力平衡,有q v B 1=qE ,得v =E B 1,选项C 正确;粒子进入匀强磁场B 2中受到洛伦兹力做匀速圆周运动,根据洛伦兹力提供向心力,由牛顿第二定律有q v B 2=m v 2r ,得r =m v B 2q,可见v 、B 2一定时,半径r 越小,则q m 越大,选项D 错误.4.(多选)磁流体发电是一项新兴技术.如图所示,平行金属板之间有一个很强的磁场,将一束含有大量正、负带电粒子的等离子体,沿图中所示方向喷入磁场.图中虚线框部分相当于发电机,把两个极板与用电器相连,则( BD )A .用电器中的电流方向从B 到AB .用电器中的电流方向从A 到BC .若只减小磁感应强度,发电机的电动势增大D .若只增大喷入粒子的速度,发电机的电动势增大解析:首先对等离子体进行动态分析:开始时由左手定则判断正离子所受洛伦兹力方向向上,负离子所受洛伦兹力方向向下,则正离子向上板聚集,负离子向下板聚集,两板间产生了电势差,即金属板变为一电源,且上板为正极,下板为负极,所以通过用电器的电流方向从A 到B ,故B 正确,A 错误;此后的正离子除受到向上的洛伦兹力F 洛外,还受到向下的电场力F ,最终二力达到平衡,即最终等离子体将匀速通过磁场区域,由q v B =q E d ,解得E =Bd v ,所以电动势E 与喷入粒子的速度大小v 及磁感应强度大小B 成正比,故D 正确,C 错误.5.(多选)在一个很小的矩形半导体薄片上,制作四个电极E 、F 、M 、N ,做成了一个霍尔元件.在E 、F 间通入恒定电流I ,同时外加与薄片垂直的磁场B ,M 、N 间的电压为U H .已知半导体薄片中的载流子为正电荷,电流与磁场的方向如图所示,下列说法正确的有( AB )A.N端电势高于M端电势B.磁感应强度越大,MN间电势差越大C.将磁场方向变为与薄片的上、下表面平行,U H不变D.将磁场和电流分别反向,N端电势低于M端电势解析:根据左手定则可知载流子所受洛伦兹力的方向指向N端,载流子向N端偏转,则N端电势高,故A正确;设M、N间的距离为d,薄板的厚度为h,则U=Ed,Eq=q v B,则I=neS v=nedh v,代入解得U=BIneh,故B正确;将磁场方向变为与薄板的上、下表面平行,载流子不偏转,所以U H发生变化,C错误;将磁场和电流分别反向,N端的电势仍然高于M端电势,D错误.6.如图所示,两虚线之间的空间内存在着正交的匀强电场和匀强磁场,电场强度为E、方向与水平线成60°角,磁场的方向垂直纸面向里.一个带正电小球从电磁复合场上方高度为h处自由落下,并沿直线通过电磁复合场,重力加速度为g.求:(1)带电小球刚进入复合场时的速度;(2)磁场的磁感应强度及带电小球的比荷.解析:(1)小球自由下落h的过程中机械能守恒,有mgh=12m v2,解得v=2gh.(2)小球在复合场中运动时受力情况如图所示,水平方向:有F洛=F电cos60°,即q v B=Eq cos60°,得B=E22gh;竖直方向,有Eq sin60°=mg,解得qm=23g3E.答案:(1)2gh(2)E22gh 23g 3E7.(2019·湖南郴州一模)如图所示,甲是不带电的绝缘物块,乙是带正电的物块,甲、乙叠放在一起,置于粗糙的绝缘水平地面上,地面上方有水平方向的匀强磁场.现加一个水平向左的匀强电场,发现甲、乙无相对滑动并一同水平向左加速运动,在加速运动阶段(B)A.甲、乙两物块间的摩擦力不变B.甲、乙两物块做加速度减小的加速运动C.乙物块与地面之间的摩擦力不断减小D.甲、乙两物块可能做匀加速直线运动解析:以甲、乙整体为研究对象,分析受力如图甲所示,随着速度的增大,F洛增大,F N增大,则乙物块与地面之间的摩擦力f不断增大,故C错误;由于f增大,F电一定,根据牛顿第二定律得,加速度a减小,甲、乙两物块做加速度不断减小的加速运动,最后一起匀速运动,故B正确,D错误;对甲进行受力分析,如图乙所示,有F电-f′=m甲a,a减小,则f′增大,即甲、乙两物块间的摩擦力变大,故A错误.8.如图所示,两极板间存在互相垂直的匀强电场和匀强磁场,不计重力的氘核、氚核和氦核初速度为零,经相同的电压加速后,从两极板中间垂直射入电磁场区域,且氘核沿直线射出.不考虑粒子间的相互作用,则射出时(D)A .偏向正极板的是氚核B .偏向正极板的是氦核C .射入电磁场区域时,氚核的动能最大D .射入电磁场区域时,氦核的动量最大解析:氘核在复合场中沿直线通过,故有qE =q v B ,所以v =E B ;在加速电场中qU =12m v 2,v =2qU m ,氚核的比荷比氘核的小,进入磁场的速度比氘核小,洛伦兹力小于电场力,氚核向负极板偏转,选项A 错误;氦核的比荷等于氘核的,氦核进入复合场的速度与氘核一样,所以不发生偏转,选项B 错误;射入复合场区域时,带电粒子的动能等于qU ,氦核的电荷量最大,所以动能最大,选项C 错误;带电粒子的动量p =m v =2mqU ,氦核的电荷量和质量的乘积最大,动量最大,选项D 正确.9.(2019·福建泉州检测)如图所示,两块相同的金属板MN 、PQ 平行倾斜放置,与水平面的夹角为45°,两金属板间的电势差为U ,PQ 板电势高于MN 板,且MN 、PQ 之间分布有方向与纸面垂直的匀强磁场.一质量为m 、带电荷量为q 的小球从PQ 板的P 端以速度v 0竖直向上射入,恰好沿直线从MN 板的N 端射出,重力加速度为g .求:(1)磁感应强度的大小和方向;(2)小球在金属板之间的运动时间.解析:(1)小球在金属板之间做匀速直线运动,受重力G、电场力F电和洛伦兹力f,F电的方向与金属板垂直,由左手定则可知f的方向沿水平方向,三力合力为零,结合平衡条件可知小球带正电,金属板MN、PQ之间的磁场方向垂直纸面向外,且有q v0B=mg tan45°①得B=mg q v0②(2)解法1:设两金属板之间的距离为d,则板间电场强度E=U d③又qE=2mg④h=2d⑤小球在金属板之间的运动时间t=hv0⑥解得t=qU mg v0⑦解法2:由于f=q v0B不做功,W G=-mgh,W电=qU,由动能定理得qU-mgh=0h=v0t得t=qUmg v0答案:(1)mgq v0垂直纸面向外(2)qUmg v010.(2019·河南濮阳二模)如图所示,在xOy坐标系的第二象限内有水平向右的匀强电场,第四象限内有竖直向上的匀强电场,两个电场的电场强度大小相等,第四象限内还有垂直于纸面的匀强磁场,让一个质量为m、电荷量为q的粒子在第二象限内的P(-L,L)点由静止释放,结果粒子沿直线运动到坐标原点并进入第四象限,粒子在第四象限内运动后从x轴上的Q(L,0)点进入第一象限,重力加速度为g.求:(1)粒子从P点运动到坐标原点的时间;(2)匀强磁场的磁感应强度的大小和方向.解析:(1)粒子在第二象限内做直线运动,因此电场力和重力的合力方向沿PO方向,则粒子带正电.mg=qE1=qE2,2mg=ma;2L=12at2,解得t=2Lg(2)设粒子从O 点进入第四象限的速度大小为v ,由动能定理可得mgL +qEL =12m v 2,求得v =2gL ,方向与x 轴正方向成45°,由于粒子在第四象限内受到电场力与重力等大反向,因此粒子在洛伦兹力作用下做匀速圆周运动,由于粒子做匀速圆周运动后从x 轴上的Q (L,0)点进入第一象限,根据左手定则可以判断,磁场方向垂直于纸面向里.粒子做圆周运动的轨迹如图,由几何关系可知粒子做匀速圆周运动的轨迹半径为R =22L 由牛顿第二定律可得Bq v =m v 2R ,解得B =2m 2gL qL答案:(1)2L g (2)2m 2gL qL ,方向垂直纸面向里。
高考物理复习专题九带电粒子在叠加场和组合场中的运动一、单选题1.在第一象限(含坐标轴)内有垂直xo y平面周期性变化的均匀磁场,规定垂直xo y平面向里的磁场方向为正.磁场变化规律如图,磁感应强度的大小为B0,变化周期为T0.某一正粒子质量为m,电量为q在t=0时从0点沿x轴正向射入磁场中。
若要求粒子在t=T0时距x轴最远,则B0的值为()A.B.C.D.2.如图所示,平行金属板A,B水平正对放置,分别带等量异号电荷.一带电微粒水平射入板间,在重力和电场力共同作用下运动,轨迹如图中虚线所示,那么()A.若微粒带正电荷,则A板一定带正电荷B.微粒从M点运动到N点电势能一定增加C.微粒从M点运动到N点动能一定增加D.微粒从M点运动到N点机械能一定增加3.如图所示为某种质谱仪的工作原理示意图。
此质谱仪由以下几部分构成:粒子源N;P,Q间的加速电场;静电分析器,即中心线半径为R的四分之一圆形通道,通道内有均匀辐射电场,方向沿径向指向圆心O,且与圆心O等距的各点电场强度大小相等;磁感应强度为B的有界匀强磁场,方向垂直纸面向外;yO为胶片。
由粒子源发出的不同带电粒子,经加速电场加速后进入静电分析器,某些粒子能沿中心线通过静电分析器并经小孔S垂直磁场边界进入磁场,最终打到胶片上的某点。
粒子从粒子源发出时的初速度不计,不计粒子所受重力。
下列说法中正确的是()A.从小孔S进入磁场的粒子速度大小一定相等B.从小孔S进入磁场的粒子动能一定相等C.打到胶片上同一点的粒子速度大小一定相等D.打到胶片上位置距离O点越远的粒子,比荷越大4.如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射人水平放置,电势差为U2的两导体板间的匀强电场中,带电粒子沿平行于两板丽方向认两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子入磁场和射出磁场的y,N两点间的距离d随着U1和U2的,变化情况为(不计重力,不考虑边缘效应)( )A.d随U1变化,d与U2无关B.d与U1无关,d随U2变化C.d随U1变化,d随U2变化D.d与U1无关,d与U2无关5.如图所示,xOy坐标平面在竖直面内,x轴沿水平方向,y轴正方向竖直向上,在图示空间内有垂直于xOy平面的水平匀强磁场.一带电小球从O点由静止释放,运动轨迹如图中曲线.关于带电小球的运动,下列说法中正确的是()A.OAB轨迹为半圆B.小球运动至最低点A时速度最大,且沿水平方向C.小球在整个运动过程中机械能增加D.小球在A点时受到的洛伦兹力与重力大小相等6.中国科学家发现了量子反常霍尔效应,杨振宁称这一发现是诺贝尔奖级的成果.如图5所示,厚度为h,宽度为d的金属导体,当磁场方向与电流方向垂直时,在导体上下表面会产生电势差,这种现象称为霍尔效应.下列说法正确的是()A.上表面的电势高于下表面的电势B.仅增大h时,上下表面的电势差增大C.仅增大d时,上下表面的电势差减小D.仅增大电流I时,上下表面的电势差减小7.如图所示,洛伦兹力演示仪由励磁线圈,玻璃泡,电子枪等部分组成。
励磁线圈是一对彼此平行的共轴的圆形线圈,它能够在两线圈之间产生匀强磁场。
玻璃泡内充有稀薄的气体,电子枪在加速电压下发射电子,电子束通过泡内气体时能够显示出电子运动的径迹。
若电子枪垂直磁场方向发射电子,给励磁线圈通电后,能看到电子束的径迹呈圆形。
若只增大电子枪的加速电压或励磁线圈中的电流,下列说法正确的是()A.增大电子枪的加速电压,电子束的轨道半径不变B.增大电子枪的加速电压,电子束的轨道半径变小C.增大励磁线圈中的电流,电子束的轨道半径不变D.增大励磁线圈中的电流,电子束的轨道半径变小二、多选题8.回旋加速器的核心部分如图所示,两个D形盒分别与交变电源的两极相连。
下列说法正确的是()A.D形盒之间电场力使粒子加速B.D形盒内的洛伦兹力使粒子加速C.增大交变电压的峰值,最终获得的速率v增大D.增大磁感应强度,最终获得的速率v增大9.如图所示,绝缘的中空轨道竖直固定,圆弧段COD光滑,对应的圆心角为120o,C,D两端等高,O为最低点,圆弧的圆心为O′,半径为R;直线段AC,HD粗糙且足够长,与圆弧段分别在C,D端相切。
整个装置处于方向垂直于轨道所在的平面向里,磁感应强度大小为B的匀强磁场中,在竖直虚线MC左侧和竖直虚线ND右侧还分别存在着电场强度大小相等,方向水平向右和水平向左的匀强电场。
现有一质量为m,电荷量恒为q直径略小于轨道内径,可视为质点的带正点小球,从轨道内距C点足够远的P点由静止释放。
若小球所受的电场力等于其重力的倍,小球与直线段AC,HD间的动摩擦因数均为,重力加速度为g,则( )A.小球在第一次沿轨道AC下滑的过程中,最大加速度B.小球在第一次沿轨道AC下滑的过程中,最大速度C.小球进入D H轨道后,上升的最高点与A点等高D.小球经过O点时,对轨道的弹力可能为2m g10.如图所示,加速电场电压为U1,偏转电场电压为U2,B为右侧足够大的有左边界匀强磁场,一束由,,组成的粒子流在O1处静止开始经U1加速,再经U2偏转后进入右侧匀强磁场,且均能从左边界离开磁场。
不计粒子间相互作用,则下列说法正确的是()A.三种粒子在电场中会分为两束B.三种粒子在磁场中会分为两束C.三种粒子进磁场位置和出磁场位置间的距离比为1::D.三种粒子进磁场位置和出磁场位置间的距离都与U2无关11.如图所示,带电平行板中匀强磁场方向水平垂直纸面向里,某带电小球从光滑绝缘轨道上的a 点自由滑下,经过轨道端点P进入板间后恰能沿水平方向做直线运动.现使小球从较低的b点开始下滑,经P点进入板间,在板间的运动过程中()A.其电势能将会增大B.其机械能将会增大C.小球所受的洛伦兹力的大小将会增大D.小球受到的电场力将会增大12.电磁泵在目前的生产,科技中得到了广泛应用。
如图所示,泵体是一个长方体,ab边长为L1,两侧端面是边长为L2的正方形;流经泵体内的液体密度为ρ,在泵头通入导电剂后液体的电导率为σ(电阻率的倒数),泵体所在处有方向垂直向外的磁场B,把泵体的上下两表面接在电压为U(内阻不计)的电源上,则()A.泵体上表面应接电源正极B.通过泵体的电流I=UL1/σC.增大磁感应强度可获得更大的抽液高度D.增大液体的电阻率可获得更大的抽液高度三、计算题13.如图,在直角坐标xoy平面内有足够长的OP,OQ两挡板,O与平面直角坐标系xoy的坐标原点重合,竖直挡板OQ位于y轴上,倾斜挡板OP与OQ成θ=60°角。
平行正对的金属板A,B间距d=0.5 m,板长m,A板置于x轴上,B板的右侧边缘恰好位于OP上的一个小孔K处。
现有一质子从AB左端紧贴A板处沿x轴正方向以m/s的速度射入,能恰好通过小孔K。
质子从小孔K射向位于OP,OQ两挡板间,存在磁感应强度B=0.2T,方向垂直纸面向里,边界为矩形的磁场区域。
已知该粒子在运动过程中始终不碰及两挡板,且在飞出磁场区后能垂直打在OQ 面上,质子比荷C/k g,重力不计,不考虑极板外的电场。
求:(1)A,B两板间电场强度大小E;(2)质子到达K点速度v的大小和方向;(3)所加矩形磁场的最小面积。
14.如图所示,在一宽度D=16c m的区域内,同时存在相互垂直的匀强磁场B和匀强电场E,电场的方向竖直向上,磁场的方向垂直向外。
一束带电粒子以速度同时垂直电场和磁场的方向射入时,恰不改变运动方向。
若粒子射入时只有电场,可测得粒子穿过电场时沿竖直方向向上偏移6.4c m;若粒子射入时只有磁场,则粒子束离开磁场时偏离原方向的距离是多少?不计粒子的重力。
15.如图在x o y平面内有平行于x轴的两个足够大的荧光屏M,N,它们的位置分别满足y=l和y=0,两屏之间为真空区域。
在坐标原点O有一放射源不断沿y轴正方向向真空区域内发射带电粒子,已知带电粒子有两种。
为探索两种粒子的具体情况,我们可以在真空区域内控制一个匀强电场和一个匀强磁场,电场的场强为E,方向与x轴平行,磁场的磁感应强度为B,方向垂直于x o y 平面。
试验结果如下:如果让电场和磁场同时存在,我们发现粒子束完全没有偏转,仅在M屏上有一个亮点,其位置在S(0 ,l);如果只让磁场存在,我们发现仅在N屏上出现了两个亮点,位置分别为P( -2l, 0 ),Q(,0 ),由此我们可以将两种粒子分别叫做P粒子和Q粒子。
已知粒子间的相互作用和粒子重力可以忽略不计,试求(坐标结果只能用l表达):(1)如果只让磁场存在,但将磁场的磁感应强度减为B1=,请计算荧光屏上出现的所有亮点的位置坐标;(2)如果只让电场存在,请计算荧光屏上出现的所有亮点的位置坐标;(3)如果只让磁场存在,当将磁场的磁感应强度变为B2= kB时,两种粒子在磁场中运动的时间相等,求k的数值。
16.如图所示,在xOy平面内存在均匀,大小随时间周期性变化的磁场和电场,变化规律分别如图乙,丙所示(规定垂直纸面向里为磁感应强度的正方向,沿y轴正方向电场强度为正)。
在t=0时刻由原点O发射初速度大小为v o,方向沿y轴正方向的带负电粒子。
已知v0,t0,B0,粒子的比荷为,不计粒子的重力。
求:(1)t=t0时,求粒子的位置坐标;(2)若t=5t0时粒子回到原点,求0~5t o时间内粒子距x轴的最大距离;(3)若粒子能够回到原点,求满足条件的所有E。
,值。
17.如图所示的平面直角坐标系xOy,在第一象限内有平行于y轴的匀强电场,方向沿y轴负方向;在第四象限的正方形abcd区域内有匀强磁场,方向垂直于xOy平面向外,正方形边长为L,且ab边与y轴平行。
一质量为m,电荷量为q的粒子,从y轴上的P(0,h)点,以大小为v0的速度沿x轴正方向射入电场,通过电场后从x轴上的a(2h,0)点进入第四象限,又经过磁场从y轴上的某点进入第三象限,且速度与y轴负方向成45°角,不计粒子所受的重力。
求:(1)判断粒子带电的电性,并求电场强度E的大小;(2)粒子到达a点时速度的大小和方向;(3)abcd区域内磁场的磁感应强度B的最小值。
答案解析1.【答案】D【解析】正粒子进入磁场时,磁场垂直平面向里,运动轨迹的圆心在y轴上,由于只有第一象限才有磁场,所以粒子圆周运动不能进入第二象限,否则会离开磁场做匀速圆周运动,而且在前和后都不能进入第二象限,那么根据对称性,末速度方向仍为水平向右,粒子要想在t=T0时距x轴最远,后的运动轨迹与y轴相切,如下图所示。
根据下图几何关系可知,时间内圆周运动转过的圆心角为,设圆周运动周期为,则有,即,根据带电粒子在匀强磁场中做圆周运动的周期,可得,对照选项D对。
2.【答案】C【解析】分析微粒的运动轨迹可知,微粒的合力方向一定竖直向下,由于微粒的重力不可忽略,故微粒所受的电场力可能向下,也可能向上,故A错误.微粒从M点运动到N点,电场力可能做正功,也可能做负功,故微粒的电势能可能减小,也可能增大,故B错误.微粒从M点运动到N 点过程中,合力做正功,故微粒的动能一定增加,C正确.微粒从M点运动到N点的过程中,除重力之外的电场力可能做正功,也可能做负功,故机械能不一定增加,D错误.3.【答案】C【解析】对粒子加速过程有:,粒子经过圆形通道后从S射出后,速度不变,与v相同,可见比荷不同,速度就不同,A错误;粒子的动能取决于电量,电量不同动能不同,B错误;打到胶片上的位置取决于半径,可见打到胶片相同位置的粒子只与比荷有关,由前面分析之,比荷相同,速度相同,C正确;由r的表达式知,打到胶片上位置距离O点越远的粒子,比荷越小,D错误。