移相器-相敏检波器-低通滤波器
- 格式:ppt
- 大小:2.42 MB
- 文档页数:12
实验四移相实验一、实验目的了解移相电路的原理和应用。
二、实验仪器移相器、信号源、示波器(自备)三、实验原理由运算放大器构成的移相器原理图如下图所示:图4-1 移相器原理图通过调节Rw,改变RC充放电时间常数,从而改变信号的相位。
四、实验步骤1.将“信号源”的U S100幅值调节为6V,频率调节电位器逆时针旋到底,将U S100与“移相器”输入端相连接。
2.打开“直流电源”开关,“移相器”的输入端与输出端分别接示波器的两个通道,调整示波器,观察两路波形。
3.调节“移相器”的相位调节电位器,观察两路波形的相位差。
4.实验结束后,关闭实验台电源,整理好实验设备。
五、实验报告根据实验现象,对照移相器原理图分析其工作原理。
(1)当两波形的相位差最大时:(2)当两波形的相位差最小时:六、注意事项实验过程中正弦信号通过移相器后波形局部有失真,这并非仪器故障。
实验五相敏检波实验一、实验目的了解相敏检波电路的原理和应用。
二、实验仪器移相器、相敏检波器、低通滤波器、信号源、示波器(自备)、电压温度频率表三、实验原理开关相敏检波器原理图如图5-1所示,示意图如图5-2所示:图5-1 检波器原理图图5-2 检波器示意图图5-1中Ui为输入信号端,AC为交流参考电压输入端,Uo为检波信号输出端,DC为直流参考电压输入端。
当AC、DC端输入控制电压信号时,通过差动电路的作用使、处于开或关的状态,从而把Ui端输入的正弦信号转换成全波整流信号。
输入端信号与AC参考输入端信号频率相同,相位不同时,检波输出的波形也不相同。
当两者相位相同时,输出为正半周的全波信号,反之,输出为负半周的全波信号。
四、实验步骤1.打开“直流电源”开关,将“信号源”U S1 00输出调节为1kHz,Vp-p=8V的正弦信号(用示波器检测),然后接到“相敏检波器”输入端Ui。
2.将直流稳压电源的波段开关打到“±4V”处,然后将“U+”“GND1”接“相敏检波器”的“DC”“GND”。
实验二移相器相敏检波器实验一、实验目的:了解移相器、相敏检波器的工作原理。
二、基本原理:1、移相器工作原理:图2—1为移相器电路原理图与调理电路中的移相器单元面板图。
图2—1 移相器原理图与面板图图中,IC1、R1、R2、R3、C1构成一阶移相器(超前),在R2=R1的条件下,其幅频特性和相频特性分别表示为:K F1(jω)=Vi/V1=-(1-jωR3C1)/(1+jωR3C1)K F1(ω)=1ΦF1(ω)=-л-2tg-1ωR3C1其中:ω=2лf,f为输入信号频率。
同理由IC2,R4,R5,Rw,C3构成另一个一阶移相器(滞后),在R5=R4条件下的特性为:K F2(jω)=Vo/V1=-(1-jωRwC3)/(1+jωRwC3)K F2(ω)=1ΦF2(ω)=-л-2tg-1ωRwC3由此可见,根据幅频特性公式,移相前后的信号幅值相等。
根据相频特性公式,相移角度的大小和信号频率f及电路中阻容元件的数值有关。
显然,当移相电位器Rw=0,上式中ΦF2=0,因此ΦF1决定了图7—1所示的二阶移相器的初始移相角:即ΦF=ΦF1=-л-2tg-12лfR3C1若调整移相电位器Rw,则相应的移相范围为:ΔΦF=ΦF1-ΦF2=-2tg-12лfR3C1+2tg-12лfΔRwC3已知R3=10KΩ,C1=6800p,△Rw=10kΩ,C3=0.022μF,如果输入信号频率f一旦确定,即可计算出图2—1所示二阶移相器的初始移相角和移相范围。
2、相敏检波器工作原理:图2—2为相敏检波器(开关式)原理图与调理电路中的相敏检波器面板图。
图中,AC 为交流参考电压输入端,DC为直流参考电压输入端,Vi端为检波信号输入端,Vo端为检波输出端。
图2—2 相敏检波器原理图与面板图原理图中各元器件的作用:C1交流耦合电容并隔离直流;A1反相过零比较器,将参考电压正弦波转换成矩形波(开关波+14V ~ -14V);D1二极管箝位得到合适的开关波形V7≤0V(0 ~ -14V),为电子开关Q1提供合适的工作点;Q1是结型场效应管,工作在开或关的状态;A2工作在反相器或跟随器状态;R6限流电阻起保护集成块作用。
移相器与相敏检波器实验
移相器和相敏检波器是实验室中常用的电子元器件,它们在电路设计和信号处理中广泛应用。
本文将介绍如何使用移相器和相敏检波器进行实验。
一、移相器实验
1. 实验目的
了解移相器的工作原理和应用范围,掌握基本的移相器电路实验方法。
2. 实验器材
移相器、示波器、信号发生器、电阻、电容、万用表等。
3. 实验原理
移相器是一种电路器件,可以将输入信号的相位移动一定角度,常用的移相器有RC移相器、LC移相器和T移相器等。
其中,RC移相器和LC移相器是最为常用的两种移相器。
RC移相器:RC移相器是由电阻和电容组成的,当输入信号经过电容、电阻后,会出现信号延迟的现象,从而实现相位移动。
4. 实验步骤
(1)连接RC移相器电路,将信号发生器的正极接入RC移相器的输入端,示波器的探头接在移相器的输出端。
调节信号发生器的频率和幅度,观察示波器上的波形变化。
(3)在RC移相器和LC移相器的电路中分别添加电阻和电容,观察输出波形的变化。
(4)改变移相器的输入信号的频率和幅度,观察输出波形的变化。
5. 实验结果
实验中观察到,当输入信号经过移相器后,输出信号的相位与原信号相比发生了一定程度的移动。
同时,添加电阻和电容可以改变移相器的相位移动量,调节输入信号的频率和幅度也会对输出信号的波形造成影响。
相敏检波器是一种用于调制和解调的电路器件,可以将高频信号转换为低频信号,广泛应用于通信、广播、雷达等领域。
相敏检波器的核心是相位检测器,它可以将输入信号与本地振荡信号进行相位比较,从而实现信号检测和解调。
实验四移相实验一、实验目的了解移相电路的原理和应用。
二、实验仪器移相器、信号源、示波器(自备)三、实验原理由运算放大器构成的移相器原理图如下图所示:图4-1 移相器原理图通过调节Rw,改变RC充放电时间常数,从而改变信号的相位。
四、实验步骤1.将“信号源”的U S100幅值调节为6V,频率调节电位器逆时针旋到底,将U S100与“移相器”输入端相连接。
2.打开“直流电源”开关,“移相器”的输入端与输出端分别接示波器的两个通道,调整示波器,观察两路波形。
3.调节“移相器”的相位调节电位器,观察两路波形的相位差。
4.实验结束后,关闭实验台电源,整理好实验设备。
五、实验报告根据实验现象,对照移相器原理图分析其工作原理。
(1)当两波形的相位差最大时:(2)当两波形的相位差最小时:六、注意事项实验过程中正弦信号通过移相器后波形局部有失真,这并非仪器故障。
实验五相敏检波实验一、实验目的了解相敏检波电路的原理和应用。
二、实验仪器移相器、相敏检波器、低通滤波器、信号源、示波器(自备)、电压温度频率表三、实验原理开关相敏检波器原理图如图5-1所示,示意图如图5-2所示:图5-1 检波器原理图图5-2 检波器示意图图5-1中Ui为输入信号端,AC为交流参考电压输入端,Uo为检波信号输出端,DC为直流参考电压输入端。
当AC、DC端输入控制电压信号时,通过差动电路的作用使、处于开或关的状态,从而把Ui端输入的正弦信号转换成全波整流信号。
输入端信号与AC参考输入端信号频率相同,相位不同时,检波输出的波形也不相同。
当两者相位相同时,输出为正半周的全波信号,反之,输出为负半周的全波信号。
四、实验步骤1.打开“直流电源”开关,将“信号源”U S1 00输出调节为1kHz,Vp-p=8V的正弦信号(用示波器检测),然后接到“相敏检波器”输入端Ui。
2.将直流稳压电源的波段开关打到“±4V”处,然后将“U+”“GND1”接“相敏检波器”的“DC”“GND”。
一、移相器与相敏检波器实验【实验目的】1. 理解移相器和相敏检波器的工作原理。
2. 学习传感器实验仪和交流毫伏表的使用。
3. 学习用双踪示波器测量相移的方法。
【实验原理】1. 移相器的工作原理移相器是由电阻、电抗元件、非线性元件和有源器件等构成的一种电路,当正弦信号经过移相器时其相位会发生改变。
理想的移相器在调整电路参数时,可使通过信号的相位在0?~360?之间连续变化,而不改变信号的幅度,即信号可不失真地通过,只是相位发生了变化,图1为移相器的工作原理,其中相角?为经过移相器所获得的。
2. 相敏检波器的工作原理相敏检波器是一种根据信号的相位来提取有用信号的处理电路,在外部同频控制信号作用下,用控制信号来截取输入信号,相敏检波器输出的直流分量为反映输入信号与控制信号相位差的直流电压,经低通滤波器lpf滤除高频分量后得到直流输出信号e;相敏检波器的组成框图见图2。
t?10?t??2 设控制信号表达式为: u??t?0?t?t2? ?t??),输入信号与控制信号在时域中的关系见图3。
设输入信号为:u?usin( 用控制信号截取输入信号后得到:u0?u?u,对u0积分并在一个周期内取平均得:1t/2ue?usin(?t??)dt??t0?t??t/20?t??)d(?t??)???sin(u/2[cos(?t??)]t0?tuuu[cos(???)?cos?]??[cos?cos??sin?sin??cos?]?cos?2?2?? ①由式①可以看出,相敏检波器经低通滤波器输出一个反映输入信号相位差的直流电压,当??0时,即输入信号与控制信号同相时e?交时,e?0。
利用相敏检波器可以消除信号中干扰噪声的影响。
设输入信号中包含有噪声信号un和有用信号us,即:u?us?un,则:u0?u?uc?ucus?ucun,对u0积分并在一个周期内1t1t取平均得:e??ucussin(?t??s)dt??ucunsin(?t??n)dt t0t0 ?1u?,当??90?,即输入信号与控制信号正?[uscos(?s??c)?uncos(?n??c)] 通过移相器调节控制信号uc的相位,使噪声信号与控制信号相差90°相角,此时:则:e??n??c?90?,us?cos(?s??c),即相敏检波器的输出仅含有有用信号us分量,噪声信号被剔除。
实验名称:移相器和相敏检波器实验作者:头铁的小甘实验目的:了解运算放大器构成的移相器和相敏检波器实验实验仪器:音频振荡器、移相器、相敏检波器、直流稳压电源、低通滤波器、V/F表、示波器实验原理:移相器电路结构如下图所示传递函数Ko(jw)=VoV1=−1−jwR2C21+jwR2C2∗1−jwR W C11+jwR W C1振幅Ko(w)=1幅度ɸo(jw)=ɸ1+ɸ2=−π−2tg−1wR w C1−2tg−1wR2C2因此,当输入信号经过移相器,输出信号振幅并没有发生该改变,但是相位发生移动,移动的相位与ω、R2、C1、R w、C2有关,这要保持其他参数不变,单独改变R w就可以对输入信号进行移相位操作。
相敏检波器电路结构图如下图所示它主要包括运算放大器和门控电路组成。
而且门控电路有直流和交流两个输入端4和2,当再2端输入一个正弦波,当参考输入为正半周是,运算比较器ΙΙ将会输出低电平,因此场效应管栅极为低电平,场效应管导通,运算放大器Ι输出电压Vo=Vi当参考输入为负半周时,场效应管截止,运算放大输出I输出电压Vo=-Vi在交流应变电桥中,当传感器的应变极性相反时,输出的交流电压相位改变180°,如果相敏检波器参考输入没有发生改变,那么输出的全波整流信号也会反相,通过输出波形极性就可以判断应变的极性。
实验内容:1移相器实验:将音频信号发生器的0°或者180°输出接到移相器的输入端将示波器的CH1接到移相器的输入端,CH2接到输出端,调节移相器的Rw电阻,观察波形相位和幅值的变化改变音频信号的频率,分别在f=1、3、5、7、9KHz时移相范围。
2.相敏检波器实验将音频振荡器输出信号0°或180°输入到相敏检波器的输入端1,将稳压电源接入到参考输入端4,示波器的两个通道分别接到相敏检波器的输入端1,和输出端3,观察输入和输出的幅值和相位关系,改变参考电压的极性,观察波形的变化在前面的基础上,将音频信号也送入移相器的输入端,把直流参考输入改为交流参考输入,移相器的输出端接到交流参考输入端2,同时相敏检波器的输出端连接低通滤波器的输入端,低通滤波器的输出端连接到V/F表,观察输出电压,示波器的一个通道接到相敏检波器的输入端1,另一个通道接到相敏检波器的输出端3,并通过改变移相器的Rw电阻,使得输出端3的波形为全波整流波形,此时V/F表显示最大低通输出电压,然后测出1,5,6,3的波形并记录将相敏检波器的输入信号反相,重复前面操作,画出各端口的波形保持音频信号输出频率不变,同样在调相敏检波器的输出端为全波整流,此时用示波器和电压表测出低通输出和输入端1的VPP值的关系,VPP通过音频信号调节为0.5、1、2、4、8、16、20V时的直流电压,然后将相敏检波器的输入信号反相,重复上述操作。
压阻式压力传感器的压力测量实验学校:汕头大学专业:电子信息工程年级:10级姓名:胡丹一、实验目的了解扩散硅压阻式压力传感器测量压力的原理和方法。
二、基本原理扩散硅压阻式压力传感器的工作机理是半导体应变片的压阻效应。
在弹性元件受到压力时,其上的半导体会暂时改变晶体结构的对称性,导电机理和电阻率也随之改变,引起电阻的变化,经电桥转换成电压输出。
输出的电压的变化反映了所受的压力的变化。
三、实验设备与元器件主机箱、压阻式压力传感器、压力传感器实验模板、引压胶管。
四、数据处理压阻式压力传感器测压力实验数据1. 计算单臂测量系统的灵敏度S :的平均值为:灵敏度2.计算非线性误差:这里以理论拟合直线,即以输出0%为起点,满量程输出(此处为350mV)的100%作终点的直线()为基准直线。
从上图中的偏差曲线可以看出,当P=4KPa时有最大偏差。
而,所以,。
五、思考题查阅传感器相关理论知识,说明压阻式压力传感器大致有几种类型,在应用上各有什么特点。
答:压阻式压力传感器主要有以下三种类型:1.扩散硅扩散硅传感器灵敏度和精度最高,适合测量1kpa到40Mpa的压力范围。
2.陶瓷压阻陶瓷压阻式压力传感器过载能力低一些,抗冲击压力较差,但灵敏度较高,适合测量50Kpa以上的高量程范围,而且耐腐蚀,温度范围也很宽.3.应变片过载能力强和抗冲击压力强,适合测量高量程范围的压力变化,尤其在1Mpa 以上时,线性很好,精度也很高,并适合测量与应变材料兼容的各类介质.移相器、相敏检波器实验一、实验目的深入了解移相器、相敏检波器的工作原理。
二、实验设备与元器件主机箱中的(步进可调)直流稳压电源、直流稳压电源、音频振荡器;移相器/相敏检波器/低通滤波器实验模板;双踪示波器。
三、数据处理(一)移相器实验1.f=2KHz,T=486.60(us),,波形如下图所示(波峰的高度更低的是):,,波形如下图所示(波峰的高度更低的是):2.f=9KHz,T=110.00(us),,波形如下图所示(波峰的高度更低的是):,波形如下图所示(波峰的高度更低的是):(二)相敏检波器实验1.DC参考电压=+2V:相敏检波器的输入、输出波形如下图所示:输入与输出波形重合。
1 2 3 4 2 4 1 4 实验二十相敏检波器实验一、实验目的 说明由施密特开关电路及运放组成的相敏检波电路的原理。
二、实验原理相敏检波电路如图所示: 图为输入信号端 ,为交流参考电压输入端,为输出端。
为直流参考电压输入端。
当、端 输入控制电压信号时,通过差动放大器的作用使 D 和 J 处于开关状态, 从而把端输入的正弦信号转换成半波整流信号。
三、实验所需部件相敏检波器、移相器、音频振荡器、直流稳压电源、低通滤波器、电压表、示波器四、1.实验步骤将音频振荡器频率幅度旋钮居中,输出信号信号(0°或 180°均可),接相敏检波器输入端。
2.3.将直流稳压电压 2V 档输出电压(正负均可)接相敏检 波器端。
示波器两通道分别接相敏输入、输出端,观察输入、输出波形的相位关系和幅集学科优势- 5 -求改革创新4 25 6值关系。
4.改 变端参考电压的极性,观察输入、输出波形的相位和幅值关系。
由此可以得出结论:当参考电压为正时,输入与输出同相,当参考电压为负时,输入与输出反相。
5.将音频振荡器 0°端输出信号送入移相器输入端,移相器的输出端与相敏检波器的参考输入端连接,相敏检波器的信号输入端接音频 0°输出。
6.用示波器两通道观察附加观察插口 、的波形。
可以看出,相敏检波器中整形电路的作用是将输入的正弦波转换成方波,使相敏检波器中的电子开关能正常工作。
7.20V 。
8. 9.将相敏检波器的输出端与低通滤波器的输入端连接,低通输出端接数字电压表示波器两通道分别接相敏检波器输入输出端。
适当调节音频振荡器幅值旋钮和移相器“移相”旋钮,观察示波器中波形变化和电压表电压值变化,然后将相敏检波器的输入端改接至音频振荡器 180°输出端口, 观察示波器和电压表的变化。
由此可以看出,当相敏检波器的输入信号和开关信号反相时,输出为正极性的全波整流信号,电压表只是正极性方向最大值,反之,则输出负极性的全波整流波形, 电压表指示负极性的最大值。