图形的平移与旋转
- 格式:ppt
- 大小:169.50 KB
- 文档页数:15
- 1 -第三章 图形的平移与旋转1.图形的平移一、基本知识点1、平移:在平面内,将一个图形沿某一个方向移动一定的距离,这样的图形运动叫平移。
2、对应点、对应边、对应角。
3、平移改变了图形的位置,但不改变图形的形状和大小。
4、平移的性质:(1)平移后的图形与原图形对应点所连的线段平行或在同一条直线上且相等。
(2)平移后的图形与原图形的对应线段平行(或在同一直线上)且相等。
(3)平移后的图形与原图形的对应角相等。
5、平移作图6、坐标系中的平移 二、知识巩固与拓展1、下列哪种运动不属于平移( )A,急刹车的汽车在地面上的运动 B,高层建筑的电梯的运动 C,小球自由落体 D,时钟分针的运动2、如图3.1.,1,△ABC 沿着BC 方向平移到△DEF 的位置,若BE=2cm ,则CF= cm.3、在平面直角坐标系中,将点P(-2,1)向右平移3个单位长度,再向上平移4个单位得到P /点,则P /点的坐标 为 。
4、平移△ABC ,是A 平移到E 点处。
5、如图3.1.2,将周长为10的△ABC 沿BC 方向平移1个单位得到△DEF ,则四边形ABFD 的周长等于 。
6、如图3.1.3,将面积为4的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的2倍,那么图中的四边形ACED 的面积等于 。
7、如图3.1.4,将直角三角形ABC 沿射线BC 的方向平移得到△DEF,求图中阴影部分面积。
8、如图3.1.5,矩形ABCD 中,横向阴影部分是矩形,另一部分是平行四边形,根据图中的尺寸,求空白部分面积。
9、在如图的方格纸中: (1)、作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)、作出将△A 1B 1C 1先向右平移6格,再向下平移2格,得到的△A 2B 2C 2 。
10、△ABC 的三个顶点坐标分别为A(0,2),B (-2,0),C(2,0).李佳把△ABC 平移后得到△A 1B 1C 1 ,并写出了三个顶点坐标A 1(0,0),B 1 (-3,-2),C 1(3,-2). (1)你认为李佳所写的三个顶点坐标正确吗?(2)如果李佳所写的三个顶点纵坐标都正确,三个顶点的横坐标中只有一个正确,那么你能帮李佳正确写出三个顶点的坐标吗?(3)如果李佳所写的点B 1 (-3,-2)正确,你能写出△ABC 平移到△A 1B 1C 1的方法吗?A BCD E F 3.1.1图 A B C EA B CD E F 3.1.2图 BA C D EF 3.1.3图 AB CD E F 3.1.4图A BC D a ccb 3.1.5图 MN B A C- 2 -3.2图形的旋转一、基本知识1、旋转的概念:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。
第十五章图形的平移与旋转一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。
注意:1.平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2.平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;3.平移前后两图形是全等的。
平移的特征:平移不改变图形和,只改变了图形的位置;经过平移,对应点所连的线段(或 )且相等;对应线段(或)且相等,对应角。
二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。
这个定点称为,转动的角称为。
任意一对对应点与旋转中心的连线所成的角都是 .注意:1.旋转中心在旋转过程中保持不动;2.图形的旋转是由,和所决定的;3.作平移图与旋转图。
(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。
图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。
2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。
3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。
这个点叫做对称中心。
中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。
4、成中心对称:把一个图形绕着某一点旋转180º,如果它能够和另一个图形重合,就称这两个图形成中心对称。
这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。
在成中心对称的两个图形中,连结对称点的线段都经过,并且被对称中心。
DCFE CBA第四讲 图形的平移与旋转【基础知识精讲】一、平移:1.平移的定义——在平面内,把一个图形沿某一个方向移动一定的距离,这样的图形运动叫图形的平移。
说明:(1)平移是图形的一种运动(变换)(2)平移的要素:①平移方向;②平移距离。
2.平移的性质:①平移前后图形的大小、形状都不改变。
即:平移前后的图形全等形。
②平移前后对应点的连线段平行(或在同一直线上)且相等;对应线段平行(或在同一直线上)且相等;对应角相等。
二、旋转1.旋转的定义——在平面内,把一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫图形的旋转。
说明:(1)旋转是图形的一种运动(变换)(2)旋转的要素: ①旋转中心 ②旋转方向 ③旋转角2.旋转的性质①旋转前后图形的大小、形状都不改变。
即:旋转前后的图形全等形。
②图形上任意点都绕中心沿相同方向转动相同的角度(旋转角); ③对应点到旋转中心的距离相等。
【重难点高效突破】例1.如图,经过平移△ABC 的边AB 移到了EF ,作出平移后的三角形.例2.如图,△ABC 绕C 点旋转后,B 转到了D 处,作出旋转后的三角形。
例3.如图,在长32m 宽20m 的土地上要修筑同样宽的两条“之”字路,路宽2m ,则剩余耕地的面积为 . 例4、如图,E 为正方形ABCD 的边AB 上一点,AE=3,BE=1,P 为AC 上的动点,则PB+PE 的最小值是_________.例5、如图,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BC=12,CF=5,则△DEF 的面积为______________。
例6、如图,在△ABC 中,AB 2=32,∠BAC=45°, ∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,求BM+MN 的最小值。
例7、如图,设P 为等边△ABC 内的一点,且PA=3,PB=4,PC=5,能否确定∠APB 的大小?请说明理由。
图形的平移和旋转知识点1.平移的定义与规律关键:平移不改变图形的形状和大小,也不会改变图形的方向.(1)平移的规律:经过平移,对应线段、对应角分别相等,•对应点所连的线段平行且相等(或共线且相等).(2)简单作图平移的作图主要关注要点:1.方向,2.距离.整个平移的作图,就象把整个图案的每个特征点放在一套平行的轨道上滑动一样,每个特征点滑过的距离是一样的. 2.旋转的定义与规律(1)定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,•这样的图形运动称为旋转.关键:旋转不改变图形的大小和形状,但改变图形的方向. (2)旋转的规律经过旋转,图形上的每一点,都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(3)简单的旋转作图: 旋转作图关键有两点:①旋转方向,②旋转角度.主要分四步:边、转、截、连.旋转就象把每个特征点与旋转中心用线连住的风筝,每个点转的角度是相同的,每个点与旋转中心的距离是不会改变的,即对应点与旋转中心距离相等.小试牛刀1.平移是由_________________________________________所决定。
2. 平移不改变图形的 和 ,只改变图形的 。
3.钟表的分针匀速旋转一周需要60分,它的旋转中心是___________,经过20分,分针旋转___________度。
4.(2010年兰州市)如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD = 2,将腰CD 以D 为中心逆时针旋转90°至DE ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为 .5、(2008年湖北省咸宁市)如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论,其中正确的是_____ ①△AED ≌△AEF ; ②BE DC DE += ③S △ABE +S △ACD >S △AED ; ④222BE DC DE +=例题讲解1、如图所示:正方形ABCD 中E 为BC 的中点,将面ABE 旋转后得到△CBF. (1)指出旋转中心及旋转角度.(2)判断AE 与CF 的位置关系.(3)如果正方形的面积为18cm 2,△BCF 的面积为4cm 2,问四边形AECD 的面积是多少?(第8题图)A B C D E F A B C DE2、如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,求∠EAF3、如图,已知正方形ABCD的对角线AC、BD相交于O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,求证:OE=OF。
图形的平移和旋转通过图形的平移和旋转帮助学生理解图形的平移和旋转的概念和方法图形的平移和旋转图形的平移和旋转是空间几何中非常重要的概念,它们帮助学生更好地理解图形的变换和运动。
本文将详细介绍图形的平移和旋转的概念和方法,并通过实例加深读者对这些概念的理解。
一、图形的平移平移是指将图形在平面上沿着指定的方向移动一段距离,而保持图形的形状和大小不变。
在平面坐标系中,平移可以通过改变图形的坐标来实现。
对于二维平面中的图形,平移涉及两个要素:平移的向量和平移的距离。
以坐标平面上的一个点P(x, y)为例,如果向量V(a, b)表示平移向量,则平移后的新点P'(x', y')的坐标可表示为:x' = x + ay' = y + b这样,对于平面上的其他点也可以进行同样的平移操作。
通过改变平移向量V的值,可以实现不同的平移方向和距离。
二、图形的旋转旋转是指将图形绕着某个固定点旋转一定角度,而保持图形的形状和大小不变。
在平面几何中,旋转可以通过改变图形中每个点的坐标来实现。
旋转涉及三个要素:旋转中心、旋转角度和旋转方向。
假设旋转中心为点O(x0, y0),旋转角度为θ,旋转方向为顺时针。
对于平面上的任一点P(x, y),其旋转后的新点P'的坐标可表示为:x' = (x - x0) * cosθ - (y - y0) * sinθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0类似地,通过改变旋转角度和旋转中心的值,可以实现不同的旋转效果。
需要注意的是,对于逆时针旋转,只需将旋转角度取负。
三、图形的平移和旋转实例为了更好地理解图形的平移和旋转,下面举例说明。
例一:平移操作考虑一个正方形,其中心点为O(0, 0),边长为2。
要将这个正方形向右平移4个单位,可将平移向量设为V(4, 0)。
根据平移公式,正方形的每个顶点的新坐标可计算如下:A(0, 0) 平移 4 个单位后的新坐标:A'(4, 0)B(2, 0) 平移 4 个单位后的新坐标:B'(6, 0)C(2, 2) 平移 4 个单位后的新坐标:C'(6, 2)D(0, 2) 平移 4 个单位后的新坐标:D'(4, 2)如此,正方形向右平移4个单位后,每个顶点的新坐标确定,从而实现了整个图形的平移操作。
图形的平移与旋转图形的平移和旋转是几何学中常见的操作,可以用于改变图形的位置和方向。
在本文中,我们将介绍图形平移和旋转的定义、原理、应用以及相关的数学概念和公式。
一、平移的定义与原理平移是指将一个图形在平面上沿着某个方向移动一定的距离,而不改变图形的形状和方向。
平移的原理是将图形的每一个点都按照相同的方式进行移动。
在二维平面上,平移可以通过向量来表示。
假设一个点的坐标为 (x, y),平移向量为 (a, b),那么平移后这个点的新坐标为 (x+a, y+b)。
也就是说,平移向量中的每一个分量都等于图形中每一个点的坐标在对应方向上的平移量。
二、旋转的定义与原理旋转是指将一个图形绕着某个点(旋转中心)按照一定的角度进行旋转,而不改变图形的大小。
旋转的原理是将图形的每一个点都按照相同的方式进行旋转。
同样在二维平面上,旋转可以通过向量来表示。
假设一个点的坐标为 (x, y),旋转角度为θ(弧度制),旋转中心为原点 (0, 0),那么旋转后这个点的新坐标为 (x', y'),其中x' = x * cos(θ) - y * sin(θ)y' = x * sin(θ) + y * cos(θ)也就是说,旋转后的点的新坐标可以通过将旋转矩阵与原坐标矩阵相乘的方式计算得出。
三、平移与旋转的应用平移和旋转在几何学和计算机图形学中有着广泛的应用。
下面我们来介绍一些常见的应用场景。
1. 图像处理:在图像处理中,平移和旋转常常用于改变图像的位置和角度。
通过对图像进行平移和旋转操作,可以实现图像的校正、调整和修饰。
2. 动画制作:在动画制作中,平移和旋转用于控制和改变动画中的图形的位置和角度。
通过对图形进行平移和旋转操作,可以实现图形的移动、旋转和变形,为动画添加更多的变化和效果。
3. 机器人运动控制:在机器人运动控制中,平移和旋转用于控制和改变机器人的位置和朝向。
通过对机器人进行平移和旋转操作,可以实现机器人的移动和旋转,为机器人的运动提供更多的灵活性和精确性。
图形的旋转与平移图形的旋转与平移在几何学中起着重要的作用,它们能够帮助我们理解和描述物体在平面上的位置和形态的变化。
本文将介绍图形的旋转和平移的概念、特性及其应用。
一、图形的旋转旋转是指围绕某一点或某一轴线进行转动,使图形按一定角度沿轴旋转后得到的新图形。
图形的旋转有以下几个重要特性:1. 旋转角度:指图形旋转的角度,可以是逆时针方向的正角度或顺时针方向的负角度。
2. 旋转中心:指图形旋转的中心点,可以是图形内部的某个点,也可以是图形外部的某个点。
3. 旋转方向:旋转可以按逆时针方向或顺时针方向进行。
图形的旋转可以应用于许多领域,如计算机图形学、工程制图等。
在计算机图形学中,旋转可用于实现图像的变换和动画效果。
二、图形的平移平移是指沿着平行于某一方向的轴线移动图形,使图形在平面上平行地移动到另一个位置,但形状和大小保持不变。
图形的平移有以下几个重要特性:1. 平移向量:指平移移动的方向和距离,可以用向量表示。
2. 平移方向:平移可以沿着任意方向进行,只要是平行于轴线即可。
3. 平移距离:指图形平移的具体距离。
平移常用于地图上的位置标记、机械设计、建筑设计等领域。
在计算机图形学中,平移可用于实现图像的拖动和位置调整。
三、旋转与平移的组合应用旋转和平移常常需要组合应用,以实现更加复杂的变换效果。
例如,在游戏开发中,我们可以利用旋转和平移将一个平面上的二维图形转换为在三维空间中的位置和姿态,以实现更真实的游戏画面。
旋转和平移的组合应用还可用于机器人控制、航天器轨道设计等领域。
通过将图形围绕不同的方向旋转和平移,可以控制机器人或航天器在空间中的位置和方向。
总结:图形的旋转与平移是几何学中的基本概念,它们能够帮助我们描述和理解物体的位置和形态变化。
通过旋转和平移,我们可以实现图像的变换、位置调整和动画效果等。
无论是在计算机图形学还是实际应用中,旋转与平移都具有重要的意义。
理解和掌握图形的旋转与平移,对于几何学的学习和应用都具有重要的帮助。
图形的平移和旋转【图形的平移】(1) 平移的概念:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移,平移不改变图形的形状和大小.注意:①平移是运动的一种形式,是图形变换的一种,本讲的平移是指平面图形在同一平面内的变换.②图形的平移有两个要素:一是图形平移的方向,二是图形平移的距离,这两个要素是图形平移的依据.③图形的平移是指图形整体的平移,经过平移后的图形,与原图形相比,只改变了位置,而不改变图形的大小,这个特征是得出图形平移的基本性质的依据.(2)平移的基本性质:由平移的基本概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.注意:①要正确找出“对应线段,对应角”,从而正确表达基本性质的特征.②“对应点所连的线段平行且相等”,这个基本性质既可作为平移图形之间的性质,又可作为平移作图的依据.(3)简单的平移作图平移作图:确定一个图形平移后的位置所需条件为:①图形原来的位置;②平移的方向;③平移的距离.1, 【典型例题】例 1.如图,△ABC 绕 C 点旋转后,顶点 A 的对应点为点 D ,试确定顶点 B 对应点的位置,以及旋转后的三角形.分析:绕 C 点旋转,A 点的对应点是 D 点,那么旋转角就是∠ACD ,根据对应点与旋转中心所连线段的夹角等于旋转角即∠BCB′=ACD, 又由对应点到旋转中心的距离相等,即CB=CB ′,就可确定 B′的位置,如图所示.解:(1)连结 CD(2) 以 CB 为一边作∠BCE,使得∠BCE=∠ACD(3) 在射线 CE 上截取 CB′=CB则 B′即为所求的 B 的对应点.(4) 连结 DB′则△DB′C 就是△ABC 绕 C 点旋转后的图形.例 2.如图,四边形 ABCD 是边长为 1 的正方形,且 DE= 1 ,4△ABF 是△ADE 的旋转图形.(1) 旋转中心是哪一点?(2) 旋转了多少度?(3) AF 的长度是多少?(4) 如果连结 EF ,那么△AEF 是怎样的三角形?分析:由△ABF 是△ADE 的旋转图形,可直接得出旋转中心和旋转角,要求AF 的长度,根据旋转前后的对应线段相等,只要求 AE 的长度,由勾股定理很容易得到. △ABF 与△ADE 是完全重合的,所以它是直角三角形.解:(1)旋转中心是 A 点.(2)∵△ABF 是由△ADE 旋转而成的∴B 是 D 的对应点∴∠DAB=90°就是旋转角(3)∵AD=1,DE= 1412 (1)2 4∴AE= = 4∵对应点到旋转中心的距离相等且 F 是 E 的对应点∴AF= 174(4)∵∠EAF=90°(与旋转角相等)且 AF=AE ∴△EAF 是等腰直角三角形.【图形的旋转】(1) 旋转的概念:图形绕着某一点(固定)转动的过程,称为旋转,这一固定点叫做旋转中心。
高中数学公式大全平面几何中的平移与旋转的计算公式高中数学公式大全:平面几何中的平移与旋转的计算公式平移和旋转是平面几何中常见的变换方式,它们在数学和实际应用中起着重要的作用。
本文将向您介绍平面几何中的平移与旋转,并提供相关的计算公式,以便您在解题过程中能够准确应用。
一、平移的计算公式平移是平面上一个点或者图形在不改变形状和大小的前提下,沿着某个方向平行移动到另一个位置。
平移的计算公式如下:设平面上点A(x,y)经过平移后到达点A'(x',y'),平移的平行移动量为(P,Q),则有:x' = x + Py' = y + Q这两个公式表示了平面上点的坐标经过平移后的新坐标。
其中,(P,Q)表示平移的向量,即平行移动的量。
二、旋转的计算公式旋转是平面上一个点或者图形围绕某个点旋转一定角度后到达另一个位置。
旋转的计算公式如下:设平面上点A(x,y)经过绕点O旋转θ角度后到达点A'(x',y'),则有:x' = (x - h)cosθ - (y - k)sinθ + hy' = (x - h)sinθ + (y - k)cosθ + k其中,(h,k)为旋转的中心点的坐标,θ为旋转的角度。
三、平移与旋转的综合应用在实际应用中,平移和旋转常常结合使用,以实现更复杂的变换。
例如,将某个图形进行平移后再绕某一点旋转。
以点A(x,y)为例,首先进行平移,平移的向量为(P,Q),则有:A'的坐标为(x',y'),则有:x' = x + Py' = y + Q接着,在平移后的点A'上进行旋转,绕点O旋转θ角度,旋转后的点为B(x',y'),则有:x' = (x' - h)cosθ - (y' - k)sinθ + hy' = (x' - h)sinθ + (y' - k)cosθ + k这样,即可实现平面上点A(x,y)的综合变换。
平移和旋转平移和旋转是几何学中常见的两种基本变换,它们在日常生活和工程设计中都有着重要的应用。
无论是建筑设计、机械制造还是计算机图形学,都离不开平移和旋转的操作。
在本文中,我们将详细介绍平移和旋转的定义、性质、应用以及在实际工程中的应用。
一、平移的定义和性质1. 平移的定义平移是指在平面上,将一个图形沿着某个方向移动一定的距离,而不改变它的形状和大小。
通俗地说,平移就是将一个图形整体沿着某个方向平行移动,移动的距离和方向是确定的。
如图1所示,将图形A通过平移变换得到图形A',图形A'与图形A相比没有发生变形,只是位置发生了改变。
平移变换可以保持图形的形状和大小不变,只是改变了位置。
在平移变换下,图形的各个点之间的位置关系保持不变。
即对于平面上的两点A和B,假设A经过平移变换得到A',B经过平移变换得到B',那么线段AB和线段A'B'的长度相等,并且它们的方向是相同的。
2. 旋转的性质旋转变换可以保持图形的形状和大小不变,只是改变了方向。
在旋转变换下,图形的每个点都以固定点为中心按照一定的角度旋转。
对于一个图形来说,它的每个点到固定点的距离在旋转变换后保持不变,而且每个点的旋转角度也是相同的。
三、平移和旋转的应用平移在日常生活和工程设计中有着广泛的应用。
在建筑设计领域,平移可以用于设计楼层的布局和空间的规划,实现空间的合理利用。
在机械制造领域,平移可以用于设计机械零件的运动轨迹,实现机械装置的运动控制。
在计算机图形学领域,平移可以用于设计图形界面和动画效果,实现图形的移动和变换。
1. 平移和旋转在建筑设计中的应用在建筑设计中,平移和旋转是常见的设计手段。
平移可以用于设计建筑的平面布局和空间分隔,实现建筑的功能和美观。
设计师可以通过平移将不同功能的区域进行合理的布局,使建筑空间更加通透和舒适。
而旋转可以用于设计建筑的外观和结构,实现建筑的立面和空间形态。
几何旋转与平移:旋转和平移图形几何旋转和平移是平面几何中的两个重要概念,它们在图形的变换和构造中扮演着重要的角色。
旋转和平移可以改变图形的位置、角度和大小,帮助我们更好地理解几何形状的特性。
本文将重点讨论几何旋转和平移的原理、应用以及它们之间的关系。
一、旋转图形旋转是指将一个图形按照一定的轴心和旋转角度进行旋转变换,使图形在平面上绕轴心旋转一周。
在旋转过程中,图形的各个点相对于轴心的角度保持不变,但位置会发生变化。
旋转可以分为顺时针旋转和逆时针旋转,旋转角度可以是正数也可以是负数。
旋转常用的记法是“Rθ”,其中R表示旋转操作,θ表示旋转的角度。
例如,将点A(x, y)绕原点逆时针旋转α度后得到点A'(x', y'),我们可以表示为:A' = Rα(A)。
旋转对图形的特性有着重要影响。
通过旋转,我们可以观察到图形的对称性、轴对称性和旋转对称性。
旋转对于解决几何问题、构造等方面具有广泛的应用。
同时,旋转还在计算机图形学、物体模拟等领域中扮演着重要角色。
二、平移图形平移是指将一个图形沿着平面上的直线方向进行移动,使得图形中的所有点保持相对位置不变。
在平移过程中,图形的形状、角度和大小都保持不变,只是位置发生了变化。
平移可以是沿水平方向或竖直方向进行,也可以是沿其他方向进行。
平移常用的记法是“T(a, b)”,其中T表示平移操作,(a, b)表示平移的位移向量。
例如,将点A(x, y)沿着向量(a, b)进行平移后得到点A'(x+a, y+b),我们可以表示为:A' = T(a, b)(A)。
平移是几何中的一项基本操作,它对于图形的移动、构造和变换起着至关重要的作用。
通过平移,我们可以观察到图形的平行性、共线性和等距性质。
平移在建筑设计、地图绘制、仿射变换等领域中得到广泛应用。
三、旋转与平移的关系旋转和平移是两种不同的几何变换,它们之间存在一定的联系。
在平面几何中,我们可以通过组合旋转和平移来进行更复杂的图形变换。
图形的平移和旋转知识点汇总一、图形的平移平移:指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
平移可以不是水平的。
特征:经过平移,对应线段,对应角分别相等, 对应点所连的线段平行且相等(或共线且相等)。
关键:平移变换不改变图形的形状、大小和方向..,平移前后的两个图形是全等形。
平移二要素:平移的方向、距离。
二、图形的旋转旋转:在平面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角。
性质:①对应点到旋转中心的距离相等。
②对应点与旋转中心所连线段的夹角等于旋转角。
③旋转前、后的图形全等。
旋转三要素:旋转的中心、方向、角度。
(注意:三要素中只要任意改变一个......,图形就会不一样。
)三、图形的对称定义:(1)轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做关于这条直线的对称点,这条直线叫做对称轴,两个图形关于直线对称也称轴对称。
(2)轴对称图形:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。
对称轴:折痕所在的这条直线叫做对称轴。
(3)中心对称:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。
(4)中心对称图形:把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。
这个点就是它的对称中心。
●中心对称......之间的关系:....与中心对称图形区别:(1)中心对称是指两个图形....的关系,中心对称图形是指具有某种性质的图形。
(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。
平移旋转知识点总结一、平移的基本概念1、平移的定义平移是指图形沿着一条直线方向移动,移动的距离和方向保持一致。
在平移过程中,图形的大小和形状都不发生变化,只是位置发生了改变。
可以将平移看作是图形的每个点都按照同一个方向和距离进行移动,从而得到了一个新的位置。
2、平移的表示平移可以用向量来表示,假设有一个向量V(u,v),其中u和v表示平移的水平和垂直方向上的距离。
对于一个点P(x,y),通过向量表示的平移操作可以表示为P'=(x+u, y+v)。
这表示点P经过向量V的平移操作后得到了新的点P'(x+u, y+v)。
3、平移的性质平移具有以下几个重要的性质:(1)平移是保形变换,即平移前后的图形形状相同;(2)平移不改变图形的大小;(3)平移不改变图形的角度;(4)平移保持了图形内的任意两点间的距离关系。
二、旋转的基本概念1、旋转的定义旋转是指图形以一个固定的点为中心,按照一定的角度转动。
在旋转过程中,图形的大小和形状都不发生变化,只是方向发生了改变。
可以将旋转看作是图形的每个点都按照同一个中心和角度进行转动,从而得到了一个新的方向。
2、旋转的表示旋转可以用矩阵来表示,假设有一个点P(x,y),以原点为中心,顺时针旋转角度为θ的旋转操作可以表示为P'=(x*cosθ-y*sinθ, x*sinθ+y*cosθ)。
这表示点P经过矩阵表示的旋转操作后得到了新的点P'(x',y')。
3、旋转的性质旋转具有以下几个重要的性质:(1)旋转是保形变换,旋转前后的图形形状相同;(2)旋转不改变图形的大小;(3)旋转保持了图形内的任意两点间的距禿;(4)旋转不改变图形的中心;(5)对任意两个点A和B,它们的连线在旋转前后的夹角不变。
三、平移和旋转的混合变换在实际问题中,往往需要对图形进行平移和旋转的组合变换。
对于平移和旋转的组合变换,其实际操作可以分为两步:首先进行平移,然后进行旋转。
图形的平移与旋转知识点第三章图形的平移与旋转复要点专点一:图形的平移1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移是由移动的方向和距离决定的。
2.平移的性质:(1)平移不改变图形的形状和大小:即平移前后的线段相等,平移前后的三角形或多边形全等。
(2)平移后的图形与原来图形的对应线段平行且相等,对应角相等。
(3)平移后两图形的对应点所连的线段平行且相等。
专点二:图形的旋转1.旋转的定义:在平面内,将一个图形绕着一个定点沿着某个方向(顺时针或逆时针)旋转一定的角度,这样的图形运动成为旋转,这个定点称为旋转中心,旋转的角度称为旋转角。
2.旋转的性质:(1)旋转不改变图形的形状和大小:即旋转前后的图形是一组全等形。
(2)旋转后的图形与原来的图形的对应线段相等,对应角相等。
(3)经过旋转,图形上的每点都绕着旋转中央沿相同的方向转动了相同的角度。
(4)任意一对对应点与旋转中央的间隔相称。
考点三、中心对称1、定义把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中央对称的两个图形,对称点连线都经过对称中央,而且被对称中央中分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定如果两个图形的对应点连线都经过某一点,而且被这一点中分,那末这两个图形关于这一点对称。
4、中心对称图形把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点四、坐标系中对称点的特征1、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)2、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x 轴的对称点为P’(x,-y)3、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)专点五:利用轴对称、旋转和平移作图1.平移作图的一般步骤:(1)确定平移的方向和距离;(2)确定构成图形的枢纽点(线段两个端点,三角形三个极点,n边形n个顶点);(3)按照平移的方向和距离平移各个关键点;(4)顺次连接各个枢纽点的对应点,所得的图形就是平移后的图形。