沥青路面水损害的研究
- 格式:pdf
- 大小:238.38 KB
- 文档页数:2
沥青路面渗水的试验检测方法和原因分析及预防摘要:对于我国当前的沥青路面来讲,损坏较为严重的就是水损害,主要的原因就是当前的沥青路面原材料大部分是半刚性基层建材,导致路面的水直接从表面渗透到路面中下层,如果渗入路面下层的水无法及时排除,在其表层的压力下,水体产生压力直接作用在沥青层,使其出现脱落、松散以及网裂的问题。
为了能够将渗水问题进行有效控制,就需要对其进行渗水试验,从而确保路面的质量和延长其使用寿命。
关键词:沥青路面;渗水原因;试验检测一、沥青路面的渗水原因对于沥青路面而言,水损害是造成路面质量下降以及使用寿命减少的重要原因之一。
一般在通车之后的第一个雨季,沥青路面往往出现很多病害,比如,龟裂、坑槽、表面松散等。
通过研究发现,出现的这些现象基本上都是由水损因素导致的。
沥青路面主要就是利用沥青将结合料和集料有效的粘结在一起形成的,路面的水损主要就是对沥青的粘结性能的破坏,以致于沥青剥落。
导致性能降低的因素有多种,主要有以下几方面。
(一)水力冲刷在路面产生渗水时,通行的车辆很可能降水挤压到混合材料的空隙内部,车辆过后水又从轮胎被戏曲出,如此循环,导致出现剥落情况。
在其空隙的开口处以及连接位置,通常都能出现冲刷问题。
其中比较严重的就是其压实度不够,车载行使过后,水进入孔隙后被压实,从而加大了孔隙内部压力。
当温度升高后,水体膨胀对路面造成影响;当温度降低后,水体出现结冰问题,也将破坏路面结构。
(二)置换作用因为水具有较强的极性,而集料与沥青的黏结性相对较弱,在常温下,沥青的黏结性低于水体的渗透性。
尽管沥青可以将集料全部包裹住,但是其粗糙的位置以及尖角处,也易使其沥青的薄膜变薄,从薄膜处水分就可以渗透到集料当中,以致于沥青与集料的黏结性在一定程度上造成破坏,并且也对沥青的薄膜造成破损。
若是路面出现渗水,水进入缝隙内就很难流出,因此就造成停留在路面内的水分在集料的表面产生置换,损害沥青路面质量,导致使用年限下降。
浅析沥青路面水损害原因及防治摘要:本文对沥青路面水损害的形成原因进行了分析,指出沥青里面水损害是来源于沥青膜从集料表面的剥离,其条件是水分介入沥青与集料界面上,改变了沥青、集料与水分的关系。
它的破坏机理是在水动力的作用下,沥青膜逐渐从集料表面剥离,导致集料之间粘结力丧失。
在此基础上,提出三种防治途径。
关键词:水损坏;剥离;sma近几年来,许多高速公路、一级公路建成不久,沥青路面的早期破坏便时有发生。
这些损害主要表现在:里面混合料透水和蓄水的情况相当普遍,在不少地区的雨季或春融季节,路面唧浆、松散、坑槽成为严重的破坏形式。
因此有效的分析并制订措施防治水损害,具有重要意义。
一、原因分析所谓沥青路面的水损害,是指沥青路面在存在水分的条件下,经受交通荷载的反复作用,一方面水分逐步侵入到沥青与集料的界面上,同时由于水动力的作用,沥青膜渐渐从集料表面剥离,并导致集料之间的粘结力丧失而使路面破坏。
由于在沥青路面的材料选择上,一般选择坚硬的优质石料,采用较粗的途径,适当减少沥青用量等措施,带来了某些隐患,造成沥青路面的水稳定性不足,在春融季节及雨季,路面逐渐出现麻面、松散乃至坑槽。
沥青路面水损害的机理和特征,可以从破坏的发展历程上看出:水损害有可能是从沥青面层的下面层开始的。
由于水分进入沥青路面,滞留在基层上面,沥青面层的下面层又往往是空隙率较大的沥青碎石或ⅱ型沥青混合料,空隙中充满着水分,给沥青路面水损害造成了潜在的威胁。
所以在集料与沥青膜剥离、发生松散后,沥青混合料不再成一个整体,集料在荷载作用下对基层表面产生撞击,基层的粉质部分如水泥、石灰、粉煤灰以及土质部分便成为稀浆,通过路面的缝隙向上挤出,在沥青路面上可以看到白色的唧浆,面层可见局部的龟甲状裂缝,这是沥青路面水损害最明显的标志。
二、防治途径如上所述,沥青路面的水损害是来源于沥青膜从集料表面的剥离,其条件是水分介入到沥青与集料界面上,改变了沥青、集料与水分的关系所造成的。
M AINTENANCE养护天地本栏目由高远路业集团独家协办由于具有表面平整无接缝、行车振动小、噪声低、开放交通快、养护维修方便等优点,沥青路面成为我国路面的主要结构形式。
沥青路面早期损坏的现象,如松散、坑槽、车辙等,严重影响了公路的服务水平和行车安全。
路面的早期破坏多与汽车的重载和超载有关,水损害也是造成沥青路面早期破坏的主要模式之一。
有的沥青路面在竣工通车后不久就发生了严重的水损害,严重危及路面的行驶质量和行车安全。
水损害的表现形式水损害是指水由沥青路面孔隙、裂缝进入路面内部后,在冻融、车辆轮胎动荷载产生的动水压力或真空负压抽吸的反复作用下,水分逐渐渗入沥青与矿料的界面或沥青内部,使沥青与矿料之间的黏附性降低并逐渐丧失黏结能力,沥青膜逐渐从矿料表面剥离,沥青混合料掉粒、松散,造成沥青路面结构整体性的破坏。
较为普遍的水损害现象有麻面、松散、掉粒、坑洞、唧浆、网裂、辙槽等。
松散类:路表麻面、松散、掉粒、坑洞。
沥青面层在孔隙水压力的反复作用下,使沥青膜从集料表面剥落、混合料中的集料相互之间丧失粘结力而逐渐变软直至松垮,导致麻面、松散现象。
在局部松散处,松散的集料颗粒逐渐掉粒、流失进而形成大小不一的坑洞。
裂缝类:唧浆、网裂、坑洞。
半刚性基层基顶结合料与从路表连通孔隙及裂缝处下渗的水混合,在行车荷载的反复作用下,产生的高速动水压力冲刷基顶形成灰浆并从裂缝中被挤压而出形成了唧浆现象。
随着基层结合料的逐渐流失,面层也随着底部脱空现象的产生而形成沉陷、网裂,进而发展成坑洞。
变形类:辙槽。
在行车荷载作用下,滞留在面层内的水使集料特别是粗集料表面裹覆的沥青膜逐渐剥落,沥青混合料强度不断损失直至完全松散。
行车轮迹带下不仅出现了压缩变形现象,而且产生了严重的剪切破坏现象,轮下松散的沥青混合料向两侧挤出并鼓起,在轮迹带下形成车辙。
辙槽内有时还伴随着唧浆和网裂现象。
水损害机理分析造成沥青路面水损害的因素很多,可分为外部因素和内部因素。
第37卷第18期2021年9月甘肃科技Gansu Science and TechnologyVol.37No.18Sep.2021浅析沥青路面水损害成因及防治措施冯铎(甘肃省交通科学研究院集团有限公司,甘肃兰州730000)摘要:沥青路面水损害指沥青路面因孔隙及水的交互作用及交通荷载和气候因素的反复作用下,造成沥青膜从粒料表面剥落,进一步诱发唧浆、结构松散、坑洞等次生病害发生。
文章通过对沥青路面水损害成因进行了分析探讨,及沥青路面水损害机理系统分析的基础上,从原材料选择、路面结构设计、施工工艺、防排水系统等方面提出了具体的防治措施,为公路工程水损害治理提供参考。
关键词:沥青路面;水损害;防治措施中图分类号:U416沥青路面水损害现象影响路面使用性能及行车安全,近年来受到越来越多的关注。
沥青路面早期破坏大多与水有关,在各种早期破坏类型中,水损害是最主要也是危害最大的。
沥青路面的水损害,是指沥青路面因孔隙及水的交互作用及交通荷载和气候因素的反复作用下,使进入路面孔隙的水不断产生水压力或积水的循环作用,致使水分逐渐侵入沥青与粒料的接口,造成沥青膜从粒料表面剥落,从而导致沥青混凝土内部黏结力逐渐衰退,路面结构功能下降。
此外,由于沥青膜剥落进一步诱发唧浆、结构松散、坑洞等次生病害发生。
因此,采取有效措施减轻并解决水损害问题,是当前沥青路面早期病害研究所面临的主要问题UF。
1沥青路面水损害成因分析水侵害对沥青路面影响中最具代表性的表现是剥落,所谓剥落是沥青混合料在受外力作用(如水分、温度、交通量、空气)下,使得沥青黏结料界面与矿料之间的粘附性损失或沥青胶结料本身的凝聚力降低,造成沥青与矿料分离,进而降低沥青混合料的结构强度,而沥青混合料的强度主要来自沥青与矿料之间的粘附性与矿料之间的嵌挤作用,若发生剥落现象则会使沥青与矿料间丧失黏结力,对路面的结果、使用性能及服务年限会产生极大的负面影响。
造成沥青路面水损害的因素很多,且不是单一成因或机理可以解释,通常由多种不同因素构成,主要成因分述如下:1.1材料因素1.1.1沥青沥青胶结料的吸附特性及抗剥能力受到沥青等级、质量、化学成分、黏度、酸性物质含量、蜡含量及与粒料的接触面积等因素,这些性质会影响沥青和粒料在拌合中的吸附能力及裹附能力。
⼀、沥青路⾯⽔损害的形成 沥青路⾯的⽔损害破坏,是沥青路⾯在⽔分存在的条件下,经受车辆荷载及温度变化的反复作⽤⽽发⽣的路⾯破坏过程。
其显著特征是沥青膜的剥落,从⽽使沥青路⾯出现松散、剥离、坑槽等病害。
1.1上⾯层渗⽔ ⽔损害与上⾯层的空隙率密切相关,当空隙率⼤于渗⽔的临界值7%时,便会出现不同程度的渗⽔。
路⾯上部分地表⽔从⾯层的空隙中渗到路⾯基层中,集聚在路⾯夹层中,这些集聚⽔,在车辆荷载的反复作⽤下,随着路⾯上下反复运动,它冲击着路⾯材料,使路⾯材料松散解体,从⽽导致路⾯的早期损坏。
1.2 中⾯层存⽔ 按密级配设计的中下⾯层,实测空隙率波动范围甚宽,形成了⽔损害分散不连续的特征。
我国路⾯基层普遍采⽤半刚性基层,也是不透⽔的,上⾯渗⼊路⾯和冰冻地区春融期融化的⽔容易积聚在基层表⾯,成为浮浆,⽽⾬季⽔进⼊沥青层内部是不可避免的,遗憾的是路⾯设计⼀般不考虑路⾯结构层内部的排⽔问题。
相反,普遍设计了埋置路缘⽯、砌筑式路肩、浆砌挡墙,阻碍了渗⼊路⾯内部的⽔排出,⽽有的路段纵坡不顺,拦置式路缘⽯使路表⽔不能从边缘迅速排出,反⽽阻⽔导致局部积⽔,这个问题在桥⾯板上特别突出。
1.3重交通的作⽤ 超重车引起的危害也是很明显的。
我国公路路⾯设计荷载是100KN的轴载,但随着⼤量的重型车和拖挂车通过,它们的很多车轴载都超过100KN。
据我国有关⽅⾯统计研究在路⾯⾏驶的货车有45-95%是超轴载的,所以沥青路⾯⼀些结构薄弱地段出现路⾯早期损坏是不⾜为奇的,如果有⽔害存在,路⾯的早期损坏会提前到来。
1.4 环境条件 ⼀些特殊路段如近郊道路,未能根据路段⾃然的地质、地貌、⽔⽂状态,严格按照公路路基排⽔设计要求⽽设计,全线的排⽔沟、管道、桥涵未构成完整的排⽔系统,地下⽔和部分地表迳流⽔危害着路基、路⾯强度和稳定性,或者路基标⾼设计偏低,路基⼟是处于潮湿状态和过潮湿状态。
⼆、预防⽔损害的措施 既然沥青路⾯的⽔损害来源于沥青膜从集料表⾯的剥离,其条件是⽔分介⼊到沥青与集料界⾯上,改变了沥青、集料与⽔分的关系所造成的。
第31卷第3期2001年5月东南大学学报(自然科学版)JO UR NAL OF SOUTHEA ST UNIVER SITY (Natural Science Edition)Vol 131No 13May 2001沥青混合料水稳定性的试验研究赵永利 吴 震 黄晓明(东南大学交通学院,南京210096)摘要:由于水稳定性不足造成的水损害,是我国沥青路面早期破坏的主要形式之一.但工程实践表明,浸水马歇尔试验与路面的实际状况相差较远,其残留稳定度也未能反映出沥青混合料水稳定性的真实情况.本文以劈裂试验为基础,通过对浸水条件的改进,进一步深入地研究了几种常见沥青混合料的水稳定性,提出了以真空循环饱水条件下的沸煮劈裂试验的残留稳定度来评价沥青混合料的水稳定性.试验结果表明,此方法的试验结果明显好于现行规范中的方法,而采用密实结构AC 16I 的水稳定性明显优于其他几种沥青混合料.关键词:沥青混合料;水稳定性;饱水;劈裂;残留稳定度中图分类号:U4161217 文献标识码:A 文章编号:1001-0505(2001)03-0099-04收稿日期:2001-01-09. 作者简介:赵永利,男,1971年生,博士研究生.我国高速公路建设正在飞速发展,高速公路的建设极大地推动了我国经济的发展,加快了物资人员的流通.但现有高速公路的有效服务时间普遍未能达到其设计使用年限,由于沥青面层水稳定性不足造成的水损害,常使高速公路在通车2~3年内便出现明显的坑槽、松散等现象,这已经成为我国高速公路沥青路面破坏的主要形式之一[1].沥青路面的水损害,是指沥青路面在有水存在的条件下,经受交通荷载和温度胀缩的反复作用,一方面水分对沥青起乳化作用,导致沥青混合料强度下降,同时水分逐步侵入到沥青与集料界面上,由于水动力的作用,沥青膜渐渐的从集料表面剥离,导致集料之间的粘结力丧失而发生的路面破坏过程[2].造成沥青路面水损害的原因,除了降雨及交通荷载的作用外,主要是由于路面排水结构设计不合理,以及沥青混合料的水稳定性差两个原因.我国现行的沥青路面设计、施工规范,对矿料与沥青的粘附性及沥青混合料的水稳定性都作了具体的要求.但大量的工程实践表明,现有的测试方法和表示参数不能有效地反应路面的实际情况和混合料的水稳定性.为此,本文探索新的试验方法,对几种典型沥青混合料的水稳定性进行了测试.1 沥青混合料的马歇尔试验试验中集料采用玄武岩,沥青采用壳牌AH 70#沥青,选用的级配为AC 16I,AK 16A,AK 16C 和SAC 16,其级配曲线范围如表1所示.表1 各种沥青混合料的矿料级配范围筛孔尺寸/mm通过百分率/%AC 16I AK 16A AK 16C SAC 1619.0010010010010016.0095~10090~10090~10095~10013.2075~9070~9072~9275~909.5058~7850~7055~7555~704.7542~6330~5035~5530~402.3632~5022~3729~3622~311.1822~3716~2822~3416~240.6016~2812~2316~2612~200.3011~218~1811~2010~180.157~157~146~138~150.0754~85~94~96~10根据马歇尔试验的结果,确定了各种混合料的最佳沥青用量及相应的物理力学参数,如表2所示.表2 马歇尔试验结果级配类型AC 16I AK16AAK 16C SAC 16最佳油石比/% 5.1 4.6 4.6 4.6稳定度/kN 12.410.013.211.3流值/0.1mm 34343137孔隙率/%4.34.44.24.5采用标准的浸水马歇尔试验方法,测定混合料的水稳定性,其试验结果如表3所示.表3 浸水马歇尔试验结果混合料类型说明稳定度/kN 流值/0.1mm空隙率/%残留稳定度/%AC 16I (油石比5.1%)标准试件12.432.8 4.3浸水试件12.639.1 4.3100AK 16C (油石比4.6%)标准试件13.236.3 4.1浸水试件13.731.2 4.2100AK 16A (油石比4.6%)标准试件10.039.5 4.3浸水试件8.641.2 4.486.0SAC 16(油石比4.6%)标准试件11.332.5 4.6浸水试件10.640.44.693.8注:残留稳定度超过100%的记为100%.从表3中可以看出,采用浸水马歇尔试验,其残留稳定度未能充分地反映出水分对混合料的侵蚀作用,其较高的残留稳定度也与实际工程中路面的损坏程度不相符,之所以会产生这种现象,主要有以下几方面的原因:1)在该试验条件下,沥青混合料的孔隙率较小,浸水48h 后,水分不能充分进入到试件的孔隙中,也就无法对沥青膜产生侵蚀作用;特别是闭合孔隙中所封闭的大量气体,进一步阻碍了水分的浸入.而沥青路面在实际使用初期,其实际孔隙率要比实验室内大许多,水分易于进入到孔隙中.2)在浸水马歇尔条件下,混合料内部的水是处于静止状态的,不能模拟出在车轮挤压下,水分对沥青膜产生机械冲刷及反复吸压作用,而水压的作用是沥青混合料出现水损害的一个重要原因.3)在马歇尔稳定度的测试中,试件呈环向挤压状态,此种状态下,试件的承载能力对矿料的咬合情况敏感,而对沥青膜的粘附情况不敏感;在环向挤压状态下,马歇尔试件会出现由于大变形产生的破坏,而不会出现路面上由于水损害而常见的松散破坏.因此浸水马歇尔试验结果不是评价沥青混合料水稳定性的有效指标,必须探索新的试验方法.2 沥青混合料的劈裂试验为了模拟路面的实际状态,本文以劈裂试验测试试件的承载力,在劈裂条件下,试件内部呈受拉状态,试件的破坏是由于内部的粘结力不足以抵抗外加荷载造成的,因此更利于反映水分对沥青的软化和对沥青膜的剥落作用.试验温度为25e ,加荷速度为50mm/min,试验结果如表4所示.表4 劈裂试验结果混合料类型劈裂强度/MPa 极限变形/mmAC 16I(油石比5.1%) 1.12 4.3AK16A(油石比4.6%) 1.01 4.4SAC 16(油石比4.6%)1.059.1AK 16C(油石比4.6%) 1.06 3.8为了检验混合料的水稳定性,本文对浸水条件进行了探索,首先采用沸水浸泡2h 的试验条件.之所以将试件放在沸水中浸煮2h,而没有像马歇尔试验一样在60e 的水中浸泡48h,是参考了沥青与粗集料的粘附性试验[3],并基于以下几方面的考虑:首先,在沸水中有利于加速水对沥青膜的侵蚀作用.根据表面能理论对沥青混合料水损害的解释,沥青膜是在表面张力的作用下,被水分逐渐剥落下来的;但当温度较低时,沥青的液体性质不能充分表现出来,表面张力很难发挥作用,使这一侵蚀过程较缓慢;而根据沥青材料的时温换算关系,提高温度可以有效地加快作用速度.试验中发现在沸水中浸煮2h 的效果,与在60e 水中浸泡2d 的效果基本相同,而时间的缩短不仅加快了试验速度,同时也减少了试验的误差.其次,在沸水中浸煮时,水中及矿料表面会产生一定量的气泡,这些气泡的产生将加速水分对沥青的剥落作用,同时水分的对流也对沥青膜有一定的冲刷作用;试验中明显发现在沸水表面飘浮着一些剥落100东南大学学报(自然科学版)第31卷下来的沥青膜.表5 沸煮劈裂试验结果混合料类型劈裂强度/MPa 极限变形/mmAC 16I(油石比5.1%) 1.0510.8AK 16A(油石比4.6%)0.837.9SAC 16(油石比4.6%)0.828.8试件在沸水中浸煮2h 后,将其冷却到25e ,再进行劈裂试验,测其强度.试验结果表明,经沸水浸煮后,混合料的劈裂强度有了明显的降低,而极限变形则呈增加趋势,其试验结果如表5所示.此结果表明,在沸煮2h 的条件下,水分已对沥青混合料产生了明显的侵蚀作用;但在沸煮2h 的过程中,由于时间较短,水分仍不能充分浸入到试件内部;图1 饱水率与真空度的关系为了反映试件整体的水稳定性,本文进行了真空饱水条件下的沸煮劈裂试验.试验结果表明,通过真空饱水可以有效地提高水分在孔隙中的填充程度;而填充在孔隙中的水分,在沸煮条件下受热膨胀溢出,其效果类似于沥青路面在轮载作用下,水分在混合料内部的流动.由图1可以看出,试件的饱水率(试件内,水的体积与试件孔隙体积之比)与真空压成正比,表明真空条件是提高试件的饱水率的有效途径.同时也可以看出即使在较高的真空压(9713kPa)下,试件的饱水率也是有限的;可见,单纯将试件浸水48h,并不能使其充分饱水.而沥青路面在实际使用过程中,轮载的反复作用,使水分有足够的压力挤入孔隙中.一些资料表明,某些水损害地段,现场取样的饱水率在25%~100%之间,部分采用吸水率较大集料的地段的饱水率甚至大于100%.饱水率的不同,也是造成室内试验与路面实际使用状况有较大差异的一个重要原因.表6 真空饱水沸煮劈裂试验混合料类型劈裂强度/MPa 极限变形/mmAC 16I(油石比5.1%) 1.0210.5AK16A(油石比4.6%)0.768.5SAC 16(油石比4.6%)0.7410.2试件经过25e 真空饱水,再经过沸煮2h,冷却后进行劈裂试验,结果如表6所示.从表6中可以看出其强度有了进一步的降低.为了进一步提高水分对沥青混合料的侵蚀程度,本文又进行了真空循环饱水条件下的沸煮劈裂试验,试验中采用真空压为9713kPa,循环次数为15次.由图2可以看出,增加真空的循环次数对于提高混合料的饱水率,效果并不明显,但往复的加压、减压循环,使水分不断地进出试件内部,有利于模拟由于车轮吸压作用产生的压力水对混合料的侵蚀作用.从表7中可以看出,经过真空循环饱水后,试件的劈裂强度进一步降低,特别是对于SAC 16,其强度的损失幅度非常大,表明对于一种特定的沥青混合料结构,存在着一个耐水侵蚀的极限,超过此极限,水侵蚀将变得十分严重.图2 饱水率与真空循环次数的关系表7 真空循环饱水沸煮劈裂试验结果混合料类型劈裂强度/MPa极限变形/mmAC 16I(油石比5.1%)0.99 4.9AK 16A(油石比4.6%)0.73 6.0SAC 16(油石比4.6%)0.569.6AK 16C(油石比4.6%)0.757.7如以沥青混合料在不同浸水条件下的劈裂强度与标准条件下的劈裂强度的比值,作为评价沥青混合料水稳定性的指标,即残留稳定度,其结果见图3.从图3中可以看出,无论是单一的残留稳定度,还是级差,其变化幅度都明显大于浸水马歇尔试验;同时也可以看出,随着浸水条件的逐步苛刻,采用骨架结构的SAC 16,其水稳定性的下降幅度远远大于采用密实结构的AC 16I.3 结 论水稳定性是沥青混合料的重要性能,利用劈裂试验可以有效地反映出沥青混合料内部的界面粘结状态,而不同浸水101第3期赵永利等:沥青混合料水稳定性的试验研究102东南大学学报(自然科学版)第31卷条件下的残留稳定度有显著不同;利用沸水浸煮的方法可以加速水侵蚀的程度和速度,而真空饱水可以有效地提高混合料的饱水程度,真空循环饱水虽不能进一步提高混合料的饱水程度,但真空循环过程中,水分的反复吸压和冲刷可以加速沥青膜的剥落.从试验结果看,真空循环饱水条件下的沸煮劈裂试验,是一个操作方便快速,条件苛刻、效果明显的试验方法,可更进一步地模拟沥青路面的实际水损害状态.AC16I,AK16A,AK16C和SAC16几种常见的沥青混合料,虽然其马歇尔残留稳定度都满足规范的要求;但当试验条件逐渐苛刻时,各种混合料的水稳定性表现出明显的不同,而采用密实结构的AC 16I的水稳定性明显优于其他结构.参考文献1沙庆林.高速公路沥青路面的水损害及其防治措施.国外公路,2000,20(3):1~42沈金安.改性沥青与SMA路面.北京:人民交通出版社,199913~73中华人民共和国交通部.JTJ052)2000公路工程沥青及沥青混合料试验规程.北京:人民交通出版社,2000197~102Tests of Moisture Susceptibility for Asphalt Paving MixturesZhao Yongli Wu Zhen Huang Xiaoming(Transportation College,Southeast Uni versity,Nanjing210096,China)Abstract:Water damage of asphalt pavements due to insufficient moisture susceptibility has bec ome one of the major types of early destruction.Practice on projec ts indicates that immersion Marshall test doesn.t accord with the actual in-place condition and that residual Marshall stability is not reliable.Based on freeze-tha w cycle indirect tensile test,a further study of moisture susceptibility for some familiar graded HMA mixtures is carried out through modification of im-mersion conditions,and a ne w method of boiled indirect tensile test under vacuum saturation cycle for appraising mois-ture susceptibility of HMA paving mixtures is put for ward.The test results show that the new method is more reliable than that in the present criterion and the moisture susceptibility of AC-16I is distinctly superior to other kinds of as-phalt mixtures.Key words:asphalt paving mixtures;moisture susceptibility;moisture saturation;indirect tensile;residual stability。
沥青路面水损害的防治与养护沥青路面作为公路交通的主要路面类型之一,在日常使用中容易受到水的侵蚀。
这种水侵蚀会引起路面表面层的剥落和龟裂,继而导致路面的破坏和损坏,影响交通安全和过车舒适度。
因此,我们需要采取一系列的防治和养护措施,来维护沥青路面的正常使用和功能。
本文将从以下几个方面进行阐述。
一、水损害的危害水是沥青路面的天敌,对路面造成的危害主要有以下几方面:1. 路面龟裂:沥青路面中含有水分,不断被水浸泡和冻融循环,路面易出现龟裂。
2. 路面变形:水分在路面内渗透后,与沥青的粘结力变弱,路面变形,严重时需要重新铺设。
3. 路面破坏:路面破坏往往是由于水浸泡和冲击造成的,这种破坏会影响车辆安全和道路通行。
4. 交通事故:水在路面上形成积水,不仅会影响车辆的制动和加速性能,还会导致交通事故发生。
二、防治与养护措施针对水侵蚀引起的路面危害,我们需要采取一系列的防治和养护措施,包括:1. 施工防护:在沥青路面施工过程中,应当注意施工质量和规范。
避免施工过程中出现泥浆、水的渗入、污染,影响施工质量和久化性。
减少路面出现缝隙和洞口,是预防水渗透的有效措施。
2. 足够的垂直排水:保证路面的垂直排水能力,是预防水侵蚀的重要保障之一。
特别是在降雨的季节,应当及时清理路面的沟渠和排水设施,保证排水能力和通畅性。
对于新铺设的路面,需要根据实际情况进行改善,提升路面的排水性能和通畅度。
3. 水损害修复:对于已经出现水损害的路面,应当及时进行修复和养护。
根据具体情况选择合适的修复方案,如更换损坏部分、填充和密封裂缝、喷涂防水涂料等等。
4. 正确使用清洗剂:清洗剂对于路面养护具有很大的作用,但是需正确选择并按照合适的比例使用。
如果清洗剂使用过量或者不合理,可能会对路面造成损害。
在使用清洗剂后,应注意清洗剂的彻底冲洗,避免残留。
5. 涂覆防水涂料:在路面表面涂覆一层防水涂料,可以有效地增强路面的防水能力和抗水侵蚀能力。
根据不同的路面情况和要求,选择合适的涂料和涂覆工艺,来提升沥青路面的抗水性能和养护效果。
沥青路面水损害的研究
发表时间:2017-10-19T17:47:14.140Z 来源:《电力设备》2017年第15期作者:李永川
[导读] 摘要:水损害是我国高速公路沥青路面最严重的早期损坏原因之一。
文章主要以高速公路为实体依托,对其进行了水损害调查,通过调查分析,拟提出解决水损害的处治措施和实施方案,以期消除或降低水损害对路面结构稳定产生的不利影响。
(天津市辰兴城市建设开发有限公司)
摘要:水损害是我国高速公路沥青路面最严重的早期损坏原因之一。
文章主要以高速公路为实体依托,对其进行了水损害调查,通过调查分析,拟提出解决水损害的处治措施和实施方案,以期消除或降低水损害对路面结构稳定产生的不利影响。
关键词:沥青路面;病害;措施
在对路面早期破坏现象广泛调查的基础上,各国道路科研工作者发现,沥青路面的早期破坏现象或多或少,或直接或间接的都与水有关,即水的破坏作用是关键因素之一。
为此,加强沥青路面水损害问题的研究是具有现实意义的。
1、道路常见病害分析
1.1沥青路面的裂缝
沥青路面建成后,都会产生各种形式的裂缝。
初期产生的裂缝对沥青路面的使用性能基本上没有影响,但随着表面雨水的侵入,导致路面强度下降,在大量行车荷载作用下,使沥青路面产生结构性破坏。
沥青路面裂缝的形式是多种多样的,裂缝从表现形式可分为横向裂缝、纵向裂缝和网状裂缝三种。
1.2沥青路面的车辙
车辙是路面结构层及土基在行车重复荷载作用下的补充压实,以致结构层材料的侧向位移所产生的累积永久变形。
影响沥青路面车辙深度的主要因素是沥青路面结构和沥青混凝土本身的内在因素,以及气候和交通量及交通组成等的外界因素。
1.3沥青路面的水损害
沥青路面在存在水分的条件下,经受交通荷载和温度涨缩的反复作用,一方面水分逐步侵入到沥青与集料的界面上,同时由于水动力的作用。
沥青膜渐渐地从集料表面剥离,并导致集料之间的粘结力丧失而发生路面破坏。
2、沥青路面水损害分析
2.1裂缝
裂缝病害有纵向裂缝,横向裂缝和网裂三种形式,以下将分别介绍。
(1)纵向裂缝:纵向裂缝一般有两种:一种主要发生在紧急停车带或路肩部位,其形状是沿路肩边缘向内逐步扩大,呈月牙形,这种裂缝容易使路基发生滑移,危险性很大;另一种是发生在行车道部位,多为纵向条带状,裂缝两端未延伸到路堤边缘。
(2)横向裂缝
横向裂缝是与路面中线近于垂直的裂缝,裂缝起初大多出现于路面两侧的硬路肩,逐渐发展而贯通全路幅。
贯通裂缝沿路面大致呈均匀分布。
横向裂缝通常不是由于荷载作用引起的。
2.2网裂
网裂主要是由于路面的整体强度不足而引起的。
一个原因可能是路面结构设计不合理,路基路面压实度不足,路面材料配合不当或未拌和均匀等使沥青与石料粘结性差;另一个原因可能是由于路面出现横向或纵向裂缝后未及时封填,致使水分渗入下层,使基层表面被泡软,在汽车荷载反复作用下,粉浆通过面层裂缝及空隙被压到表面产生唧浆,基层表面被逐步淘空,产生网裂。
2.3坑槽
在开始阶段,雨水由沥青路面大空隙或破损处渗入,停留在基层表面上,在行车荷载反复作用下动水冲刷半刚性基层的细料并逐渐形成灰浆,使沥青面层与基层脱开,灰浆被行车荷载挤压,通过面层裂缝或面层混合料中的空隙唧到表面。
在产生唧浆的位置,沥青面层产生网裂,接着一些碎裂的小块面层或基层材料被车轮带走,而逐步形成坑洞,并不断的扩大,最后形成坑槽。
3、沥青路面水损害的处治
3.1路面裂缝的处治方法
对于路面裂缝面积比较集中,但无明显变形,可用乳化沥青稀浆封层,或热沥青封层罩面,当然裂缝较严重时可先铺设土工布,再在其上进行热沥青封层罩面。
对于路面基层或路基强度不足而引起的裂缝,一般根据基层的破坏和路基的实际情况,采用挖补法先治理基层、路基的病害,密实稳定后,再处治面层。
3.2路面松散处治方法
对于由沥青结合料散失或脱落,集料之间失去粘结力而出现松散、掉粒等现象,当松散的面积较小时,可以考虑采用喷洒沥青撒料压入的方法;而当面积较大时,应考虑进行乳化沥青封层,或者铣刨一定厚度的面层,重新铺筑热拌沥青混凝土面层。
(2)对于由路面基层强度不足,在行车荷载和雨水的共同作用下导致路面形成较大的坑槽或者大片相互连接的坑槽,先将原有的破损基层挖除,清除干净基层底面上存在的软弱夹层,并超挖5-10cm,再用与原有基层相同的材料或强度和水稳性更好的材料对基层进行修补。
3.3路面变形处治方法
针对此类病害,应结合调查数据及现场取芯分析,采取有效的维修对策;维修的宗旨是把破损的路面从上到下,从面层到基层逐层修理,使面层和基层的强度达到原有设计标准,彻底根治病害,恢复路面正常行驶功能。
3.4沥青路面车撒的治理措施
如果路面受横向推挤形成的横向波形车辙,如果已经稳定,可将凸出的部分削除,在波谷部分喷洒或涂刷粘结沥青并填补沥青混合料并找平、压实。
如果由于基层强度不足、水稳性能不好,使基层局部下沉而造成的车辙,应先处治基层。
将面层和基层完全挖除。
4、结论
作为沥青路面而言,在世界各国推广采用近百年,从科研设计到方式均有一套完整的理论作指导。
然而,由于各国气候条件各异、施工手段各异、采用材料各异。
因此,对于不同地区、不同的工程应该采取不同的设计和施工工艺以适应各种变化的情况,从而保证沥青路
面少出质量或不出质量问题。
参考文献
[1]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001.
[2]胡伟.高速公路路面水损害的防治[J].东北公路.2000.2,14-15.
[3]王端宜邹桂莲.对沥青路面水损害早期破坏的认识[J].东北公路.V24(l):23-25.。