新教材高中数学课时跟踪检测(十五)事件之间的关系与运算新人教B版必修第二册
- 格式:doc
- 大小:91.50 KB
- 文档页数:5
新人教B版必修二事件之间的关系与运算课时作业练习时间:40分钟(原卷+答案)一、选择题1.从装有2个红球和2个白球的袋内任取2个球,那么互斥而不对立的两个事件是()A.取出的球至少有1个红球;取出的球都是红球B.取出的球恰有1个红球;取出的球恰有1个白球C.取出的球至少有1个红球;取出的球都是白球D.取出的球恰有1个白球;取出的球恰有2个白球2.(多选)关于互斥事件的理解,正确的是()A.若A发生,则B不发生;若B发生,则A不发生B.若A发生,则B不发生,若B发生,则A不发生,二者必具其一C.A发生,B不发生;B发生,A不发生;A,B都不发生D.若A,B又是对立事件,则A,B中有且只有一个发生3.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设事件A={两弹都击中飞机},事件B={两弹都没击中飞机},事件C={恰有一弹击中飞机),事件D={至少有一弹击中飞机},下列关系不正确的是()A.A⊆D B.B∩D=∅C.A∪C=D D.A∪B=B∪D4.给出以下三个命题:(1)将一枚硬币抛掷两次,记事件A:“两次都出现正面”,事件B:“两次都出现反面”,则事件A与事件B是对立事件;(2)在命题(1)中,事件A与事件B是互斥事件;(3)在10件产品中有3件是次品,从中任取3件,记事件A:“所取3件中最多有2件是次品”,事件B:“所取3件中至少有2件是次品”,则事件A与事件B是互斥事件.其中命题正确的个数是() A.0B.1C.2D.3二、填空题5.从4名男生和2名女生中任选3人参加演讲比赛,所选3人中至少有1名女生的概率为45 ,那么所选3人中都是男生的概率为________.6.如果事件A ,B 互斥,记A - ,B - 分别为事件A ,B 的对立事件,①A ∪B 是必然事件;②A - ∪B -是必然事件;③A - 与B - 一定互斥;④A - 与B -一定不互斥.其中正确的是________.7.抛掷一颗质地均匀的骰子,事件A 为点数不小于4,事件B 为点数不大于4,则A ∩B =________. 三、解答题8.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4. (1)求他乘火车或乘飞机去的概率; (2)求他不乘轮船去的概率;(3)如果他乘某种交通工具去的概率为0.5,请问他有可能是乘何种交通工具去的?9.盒子里有6个红球、4个白球,现从中任取3个球,设事件A ={取得的3个球有1个红球、2个白球},事件B ={取得的3个球有2个红球、1个白球},事件C ={取得的3个球至少有1个红球},事件D ={取得的3个球既有红球又有白球}.问:(1)事件D 与A ,B 是什么样的运算关系? (2)事件C 与A 的交事件是什么事件?10.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:求:(1)(2)派出医生至少2人的概率.参考答案1.解析:A中的两个事件可以同时发生,不是互斥事件;B中的两个事件可以同时发生,不是互斥事件;C中的两个事件不能同时发生,但必有一个发生,既是互斥事件又是对立事件;D中的两个事件不能同时发生,也可以都不发生,故是互斥而不对立事件.答案:D2.解析:A,B互斥,A,B可以不同时发生,A,B也可以同时不发生,但只要一个发生,另一个一定不发生.对立事件是必定有一个发生的互斥事件,故ACD正确.答案:ACD3.解析:“恰有一弹击中飞机”指第一枚击中第二枚没击中或第一枚没击中第二枚击中,“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,∴A∪B≠B ∪D.答案:D4.解析:命题(1)不正确,命题(2)正确,命题(3)不正确.对于(1)(2),因为抛掷两次硬币,除事件A ,B 外,还有“第一次出现正面,第二次出现反面”和“第一次出现反面,第二次出现正面”两种事件,所以事件A 和事件B 不是对立事件,但它们不会同时发生,所以是互斥事件;对于(3),若所取的3件产品中恰有2件次品,则事件A 和事件B 同时发生,所以事件A 和事件B 不是互斥事件.故选B.答案:B5.解析:设事件A 为“3人中至少有1名女生”,事件B 为“3人都为男生”,则事件A ,B 为对立事件,所以P (B )=1-P (A )=1-45 =15.答案:156.解析:用Venn 图解决此类问题较为直观,如图所示,A - ∪B - 是必然事件. 答案:②7.解析:事件A 点数不小于4,则样本点数为4,5,6, 事件B 点数不大于4,则样本点数为1,2,3,4. ∴A ∩B ={4}. 答案:{4}8.解析:(1)记“他乘火车去”为事件A 1,“他乘轮船去”为事件A 2,“他乘汽车去”为事件A 3,“他乘飞机去”为事件A 4,这四个事件不可能同时发生,故它们彼此互斥,故P (A 1+A 4)=P (A 1)+P (A 4)=0.3+0.4=0.7.(2)设他不乘轮船去的概率为P,则P=1-P(A2)=1-0.2=0.8.(3)由于0.3+0.2=0.5,0.1+0.4=0.5,故他有可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.9.解析:(1)对于事件D,可能的结果为1个红球、2个白球或2个红球、1个白球,故D=A∪B.(2)对于事件C,可能的结果是1个红球、2个白球或2个红球、1个白球或3个均为红球,故C∩A=A.10.解析:记事件A:“不派出医生”,事件B:“派出1名医生”,事件C:“派出2名医生”,事件D:“派出3名医生”,事件E:“派出4名医生”,事件F:“派出不少于5名医生”.因为事件A,B,C,D,E,F彼此互斥,且P(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0.2,P(E)=0.2,P(F)=0.04.(1)“派出医生至多2人”的概率为P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)“派出医生至少2人”的概率为P(C+D+E+F)=P(C)+P(D)+P(E)+P(F)=0.3+0.2+0.2+0.04=0.74或1-P(A+B)=1-0.1-0.16=0.74。
教师课时分层作业(十六) 事件之间的关系与运算(建议用时:45分钟)[合格基础练]一、选择题1.掷一枚骰子,观察结果,A={向上的点数为1},B={向上的点数为2},则()A.A⊆B B.A=BC.A与B互斥D.A与B对立C[由于事件A与B不可能同时发生,故A、B互斥.]2.甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为()A.56 B.25C.16 D.13A[由题意甲不输即甲胜或甲、乙和棋,二者为互斥事件,故甲不输的概率为1 2+13=56.]3.打靶3次,事件A i表示“击中i发”,其中i=0,1,2,3.那么A=A1∪A2∪A3表示()A.全部击中B.至少击中1发C.至少击中2发D.以上均不正确B[由题意可得事件A1、A2、A3是彼此互斥的事件,且A0∪A1∪A2∪A3为必然事件,A=A1∪A2∪A3表示的是打靶3次至少击中一次.]4.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A .“至少有一个黑球”与“都是黑球”B .“至少有一个黑球”与“都是红球”C .“至少 有一个黑球”与“至少有一个红球”D .“恰有一个黑球”与“恰有两个黑球”D [A 中的两个事件是包含关系,不是互斥事件;B 中的两个事件是对立事件;C 中的两个事件都包含“一个黑球一个红球”的事件,不是互斥关系;D 中的两个事件是互斥而不对立的关系.]5.对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A .0.09B .0.20C .0.25D .0.45D [由题图可知抽得一等品的概率为0.3,抽得三等品的概率为0.25,则抽得二等品的概率为1-0.3-0.25=0.45.]二、填空题6.一商店有奖促销活动中只有一等奖与二等奖两个奖项,其中中一等奖的概率为0.1,中二等奖的概率为0.25,则不中奖的概率为________.0.65 [中奖的概率为0.1+0.25=0.35,中奖与不中奖互为对立事件,所以不中奖的概率为1-0.35=0.65.]7.从4名男生和2名女生中任选3人去参加演讲比赛,所选3人中至少有1名女生的概率为45,那么所选3人中都是男生的概率为________.15[设A ={3人中至少有1名女生},B ={3人都为男生},则A ,B 为对立事件,所以P(B)=1-P(A)=15.]8.给出四对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“甲射中7环”与“乙射中8环”;③甲、乙两人各射击1次,“两人均射中目标”与“两人均没有射中目标”;④甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中目标,但乙未射中目标”.其中是互斥事件的有________对.2[某人射击1次,“射中7环”与“射中8环”这两个事件不可能同时发生,故①是互斥事件;甲、乙两人各射击1次,“甲射中7环”与“乙射中8环”可能同时发生,故②不是互斥事件;甲、乙两人各射击1次,“两人均射中目标”与“两人均没有射中目标”这两个事件不可能同时发生,故③是互斥事件;甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中目标,但乙未射中目标”,前者包含后者,故④不是互斥事件.综上可知,①③是互斥事件,故共有2对事件是互斥事件.]三、解答题9.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件:(1)“恰有1名男生”与“恰有2名男生”;(2)“至少有1名男生”与“全是男生”;(3)“至少有1名男生”与“全是女生”;(4)“至少有1名男生”与“至少有1名女生”.[解]从3名男生和2名女生中任选2人,有如下三种结果:2名男生,2名女生,1男1女.(1)“恰有1名男生”指1男1女,与“恰有2名男生”不能同时发生,它们是互斥事件;但是当选取的结果是2名女生时,该两事件都不发生,所以它们不是对立事件.(2)“至少1名男生”包括2名男生和1男1女两种结果,与事件“全是男生”可能同时发生,所以它们不是互斥事件.(3)“至少1名男生”与“全是女生”不可能同时发生,所以它们互斥,由于它们必有一个发生,所以它们是对立事件.(4)“至少有1名女生”包括1男1女与2名女生两种结果,当选出的是1男1女时,“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.[教师独具]1.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.[解](1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100辆,而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24辆.所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24.由频率估计概率得P(C)=0.24.[等级过关练]1.掷一枚骰子的试验中,出现各点的概率均为16.事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+B(B 表示事件B的对立事件)发生的概率为()A.13 B.12C.23 D.56C[由题意知,B表示“大于或等于5的点数出现”,事件A与事件B互斥,由概率的加法计算公式可得P(A+B)=P(A)+P(B)=26+26=46=23.]2.为维护世界经济秩序,我国在亚洲经济论坛期间积极倡导反对地方贸易保护主义,并承诺包括汽车在内的进口商品将最多在5年内把关税全部降低到世贸组织所要求的水平,其中21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年关税达到要求,其余进口商品将在3年或3年内达到要求,则包括汽车在内的进口商品不超过4年的时间关税达到要求的概率为________.0.79[设“包括汽车在内的进口商品恰好4年关税达到要求”为事件A,“不到4年达到要求”为事件B,则“包括汽车在内的进口商品在不超过4年的时间关税达到要求”是事件A∪B,而A,B互斥,∴P(A∪B)=P(A)+P(B)=0.18+(1-0.21-0.18)=0.79.]3.如果事件A和B是互斥事件,且事件A∪B的概率是0.8,事件A的概率是事件B的概率的3倍,则事件B的对立事件的概率为________.0.8[根据题意有P(A∪B)=P(A)+P(B)=4P(B)=0.8,∴P(B)=0.2,则事件B的对立事件的概率为1-0.2=0.8.][教师独具]1.一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件:事件A :恰有一件次品;事件B :至少有两件次品;事件C :至少有一件次品;事件D :至多有一件次品.并给出以下结论:①A ∪B =C ;②D ∪B 是必然事件;③A ∩B =C ;④A ∩D =C .其中正确结论的序号是( )A .①②B .③④C .①③D .②③A [事件A ∪B :至少有一件次品,即事件C ,所以①正确;事件D ∪B :至少有两件次品或至多有一件次品,包括了所有情况,所以②正确;事件A ∩B =∅,③不正确;事件A ∩D :恰有一件次品,即事件A ,所以④不正确.]2.三个臭皮匠顶上一个诸葛亮,能顶得上吗?在一次有关“三国演义”的知识竞赛中,三个臭皮匠A ,B ,C 能答对题目的概率P (A )=13,P (B )=14,P (C )=15,诸葛亮D 能答对题目的概率P (D )=23,如果将三个臭皮匠A ,B ,C 组成一组与诸葛亮D 比赛,答对题目多者为胜方,问哪方胜?[解] 如果三个臭皮匠A ,B ,C 能答对的题目彼此互斥(他们能答对的题目不重复),则P (A ∪B ∪C )=P (A )+P (B )+P (C )=4760>P (D )=23,故三个臭皮匠方为胜方,即三个臭皮匠顶上一个诸葛亮;如果三个臭皮匠A ,B ,C 能答对的题目不互斥,则三个臭皮匠未必能顶上一个诸葛亮.。
5.3.2 事件之间的关系与运算1.抛掷一枚骰子,“向上的点数是则( )A .A ⊆B B .A =BC .A +B 表示向上的点数是1或2或3D .AB 表示向上的点数是1或2或32.打靶3次,事件A i 表示“击中i 发”,其中i =0,1,2,3.那么A =A 1∪A 2∪A 3表示( )A .全部击中B .至少击中1发C .至少击中2发D .以上均不正确3.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17 ,从中取出2粒都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( )A .17B .1235C .1735D .14.从4名男生和2名女生中任选3人去参加演讲比赛,所选3人中至少有1名女生的概率为45,那么所选3人中都是男生的概率为________.5.从一批产品中取出3件产品,设A ={3件产品全不是次品},B ={3件产品全是次品},C ={3件产品不全是次品},则下列结论正确的是________(填写序号).①A 与B 互斥;②B 与C 互斥;③A 与C 互斥;④A 与B 对立;⑤B 与C 对立. 6.设某人向一个目标射击3次,用事件A i 表示随机事件“第i 次射击击中目标”(i =1,2,3),指出下列事件的含义:(1)A 1∩A 2; (2)A 1∩A 2∩A -3; (3)A - 1∪A -2; (4)A - 1∩A - 2∩A - 3.7.(多选)一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,现给出以下四个事件:事件A:恰有一件次品;事件B:至少有两件次品;事件C:至少有一件次品;事件D:至多有一件次品.并给出以下结论,其中正确的是( )A.A∪B=C B.D∪B是必然事件C.A∩B=C D.A∩D=C8.(多选)某小组有三名男生和两名女生,从中任选两名去参加比赛,则下列各对事件中为互斥事件的是( )A .恰有一名男生和全是男生B .至少有一名男生和至少有一名女生C .至少有一名男生和全是男生D .至少有一名男生和全是女生9.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设事件A ={两弹都击中飞机},事件B ={两弹都没击中飞机},事件C ={恰有一弹击中飞机},事件D ={至少有一弹击中飞机},下列关系不正确的是( )A .A ⊆DB .B ∩D =∅C .A ∪C =D D .A ∪B =B ∪D10.掷一枚骰子的试验中,出现各点的概率均为16 .事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B (B 表示事件B 的对立事件)发生的概率为( )A .13 B .12 C .23 D .5611.为维护世界经济秩序,我国在亚洲经济论坛期间积极倡导反对地方贸易保护主义,并承诺包括汽车在内的进口商品将最多在5年内把关税全部降低到世贸组织所要求的水平,其中21%的进口商品恰好5年关税达到要求,18%的进口商品恰好4年关税达到要求,其余进口商品将在3年或3年内达到要求,则包括汽车在内的进口商品不超过4年的时间关税达到要求的概率为________.12.国家射击队的队员为在世界射击锦标赛上取得优异成绩在加紧备战,经过近期训练,某队员射击一次命中7~10环的概率如下表所示:(1)命中9环或10环的概率; (2)至少命中8环的概率; (3)命中不足8环的概率.13.(多选)下列命题中为真命题的是( )A .若事件A 与事件B 互为对立事件,则事件A 与事件B 为互斥事件 B .若事件A 与事件B 为互斥事件,则事件A 与事件B 互为对立事件C .若事件A 与事件B 互为对立事件,则事件A ∪B 为必然事件D .若事件A ∪B 为必然事件,则事件A 与事件B 为互斥事件14.已知袋中有红球、黑球、黄球、绿球若干,从中任取一球,得到红球的概率为13 ,得到黑球或黄球的概率为512 ,得到黄球或绿球的概率为512 ,求得到黑球、得到黄球、得到绿球的概率分别是多少?5.3.2 事件之间的关系与运算1.答案:C解析:设A ={1,2},B ={2,3},则A ∩B ={2},A ∪B ={1,2,3},所以A +B 表示向上的点数为1或2或3.2.答案:B解析:由题意可得事件A 1、A 2、A 3是彼此互斥的事件,且A 0∪A 1∪A 2∪A 3为必然事件,A =A 1∪A 2∪A 3表示的是打靶3次至少击中一次.3.答案:C解析:设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A +B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735,即任意取出2粒恰好是同一色的概率为1735. 4.答案:15解析:设A ={3人中至少有1名女生},B ={3人都为男生},则A ,B 为对立事件,所以P (B )=1-P (A )=15.5.答案:①②⑤解析:A ={3件产品全不是次品},指的是3件产品全是正品,B ={3件产品全是次品},C ={3件产品不全是次品}包括1件次品2件正品,2件次品1件正品,3件全是正品3个事件,由此知:A 与B 是互斥事件,但不对立;A 与C 是包含关系,不是互斥事件,更不是对立事件;B 与C 是互斥事件,也是对立事件.所以正确结论的序号为①②⑤.6.解析:(1)A 1∩A 2表示第1次和第2次射击都击中目标.(2)A 1∩A 2∩A -3表示第1次和第2次射击都击中目标,而第3次没有击中目标. (3)A -1∪A -2表示第1次和第2次都没击中目标.(4)A -1∩A -2∩A -3表示3次都没击中目标. 7.答案:AB解析:事件A ∪B :至少有一件次品,即事件C ,所以A 正确;事件D ∪B :至少有两件次品或至多有一件次品,包括了所有情况,所以B 正确; 事件A ∩B =∅,C 不正确;事件A ∩D :恰有一件次品,即事件A ,所以D 不正确. 8.答案:AD解析:A 中两个事件是互斥事件,恰有一名男生即选出的两名中有一名男生和一名女生,它与全是男生不可能同时发生;B 中两个事件不是互斥事件;C 中两个事件不是互斥事件;D 中两个事件是互斥事件,至少有一名男生与全是女生显然不可能同时发生.9.答案:D解析:“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一弹击中”包含两种情况:一种是恰有一弹击中,另一种是两弹都击中,∴A ∪B ≠B ∪D .10.答案:C解析:由题意知,B -表示“大于或等于5的点数出现”,事件A 与事件B -互斥,由概率的加法计算公式可得P (A +B -)=P (A )+P (B -)=26+26=46=23.11.答案:0.79解析:设“包括汽车在内的进口商品恰好4年关税达到要求”为事件A ,“不到4年达到要求”为事件B ,则“包括汽车在内的进口商品在不超过4年的时间关税达到要求”是事件A ∪B ,而A ,B 互斥,∴P (A ∪B )=P (A )+P (B )=0.18+(1-0.21-0.18)=0.79.12.解析:记事件“射击一次,命中k 环”为A k (k ∈N ,k ≤10),则事件A k 之间彼此互斥. (1)设“射击一次,命中9环或10环”为事件A ,那么当A 9,A 10之一发生时,事件A 发生,由互斥事件概率的加法公式得P (A )=P (A 9)+P (A 10)=0.28+0.32=0.6.(2)设“射击一次,至少命中8环”为事件B ,那么当A 8,A 9,A 10之一发生时,事件B 发生,由互斥事件概率的加法公式得P (B )=P (A 8)+P (A 9)+P (A 10)=0.18+0.28+0.32=0.78.(3)设“射击一次命中不足8环”为事件C ,由于事件C 与事件B 互为对立事件,故P (C )=1-P (B )=1-0.78=0.22.13.答案:AC解析:对立事件首先是互斥事件,故A 为真命题.互斥事件不一定是对立事件,如将一枚硬币抛掷两次,共出现(正,正),(正,反),(反,正),(反,反)四种结果,事件M =“两次出现正面”与事件N =“只有一次出现反面”是互斥事件,但不是对立事件,故B 为假命题.事件A ,B 为对立事件,则在一次试验中A ,B 一定有一个发生,故C 为真命题.事件A ∪B 表示事件A ,B至少有一个要发生,A ,B 不一定互斥,故D 为假命题.14.解析:记“得到红球”为事件A ,“得到黑球”为事件B ,“得到黄球”为事件C ,“得到绿球”为事件D ,事件A ,B ,C ,D 显然彼此互斥,则由题意可知,P (A )=13,①P (B +C )=P (B )+P (C )=512,② P (C +D )=P (C )+P (D )=512.③由事件A 和事件B +C +D 是对立事件可得P (A )=1-P (B +C +D )=1-[P (B )+P (C )+P (D )],即P (B )+P (C )+P (D )=1-P (A )=1-13=23.④②③④联立可得P (B )=14,P (C )=16,P (D )=14.即得到黑球、得到黄球、得到绿球的概率分别是14,16,14.。
课时20 事件之间的关系与运算知识点一事件的运算1.掷一个质地均匀的正方体骰子,事件E={向上的点数为1},事件F={向上的点数为5},事件G={向上的点数为1或5},则有( )A.E⊆F B.G⊆FC.E+F=G D.EF=G答案C解析根据事件之间的关系,知E⊆G,F⊆G,事件E,F之间不具有包含关系,故排除A,B;因为事件E与事件F不会同时发生,所以EF=∅,故排除D;事件G发生当且仅当事件E 发生或事件F发生,所以E+F=G.故选C.2.盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有1个红球,2个白球},事件B={3个球中有2个红球,1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.(1)事件D与A,B是什么样的运算关系?(2)事件C与A的积事件是什么?解(1)对于事件D,可能的结果为“1个红球,2个白球,或2个红球,1个白球”,故D=A+B.(2)对于事件C,可能的结果为“1个红球,2个白球,或2个红球,1个白球,或3个均为红球”,故CA=A.知识点二事件关系的判断3.从1,2,3,4,5,6,7,8,9这9个数字中任取两个数,分别有下列事件:①恰有一个是奇数和恰有一个是偶数;②至少有一个是奇数和两个数都是奇数;③至少有一个是奇数和两个数都是偶数;④至少有一个是奇数和至少有一个是偶数.其中,为互斥事件的是( )A.①B.②④C.③D.①③答案C解析①“恰有一个是奇数”和“恰有一个是偶数”是相等事件,故①不是互斥事件;②“至少有一个是奇数”包含“两个数都是奇数”的情况,故②不是互斥事件;③“至少有一个是奇数”和“两个数都是偶数”不能同时发生,故③是互斥事件;④“至少有一个是奇数”和“至少有一个是偶数”可以同时发生,故④不是互斥事件.故选C.4.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛.判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件.(1)恰有1名男生与2名全是男生;(2)至少有1名男生与全是男生;(3)至少有1名男生与全是女生;(4)至少有1名男生与至少有1名女生.解(1)因为“恰有1名男生”与“2名全是男生”不可能同时发生,所以它们是互斥事件;当2名都是女生时它们都不发生,所以它们不是对立事件.(2)因为“2名全是男生”发生时“至少有1名男生”也同时发生,所以它们不是互斥事件.(3)因为“至少有1名男生”与“全是女生”不可能同时发生,所以它们互斥;由于它们必有一个发生,所以它们对立.(4)由于选出的是“1名男生1名女生”时,“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.知识点三互斥事件的概率5.盒子里装有6个红球,4个白球,从中任取3个球.设事件A表示“3个球中有1个红球,2个白球”,事件B表示“3个球中有2个红球,1个白球”.已知P(A)=310,P(B)=12,则这3个球中既有红球又有白球的概率是________.答案4 5解析记事件C为“3个球中既有红球又有白球”,则它包含事件A“3个球中有1个红球,2个白球”和事件B“3个球中有2个红球,1个白球”,而且事件A与事件B是互斥的,所以P(C)=P(A+B)=P(A)+P(B)=310+12=45.6.在某超市的一个收银台等候的人数及相应的概率如下表所示:(2)等候人数大于等于3的概率.解设A,B,C,D,E,F分别表示等候人数为0,1,2,3,4,大于等于5的事件,则易知A,B,C,D,E,F彼此互斥.(1)设M表示事件“等候人数不超过2”,则M=A+B+C,故P(M)=P(A)+P(B)+P(C)=0.05+0.14+0.35=0.54,即等候人数不超过2的概率为0.54.(2)设N表示事件“等候人数大于等于3”,则N=D+E+F,故P(N)=P(D)+P(E)+P(F)=0.30+0.10+0.06=0.46,即等候人数大于等于3的概率为0.46.知识点四对立事件的概率7.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的不是一等品”的概率为( )A.0.7 B.0.65C.0.35 D.0.3答案C解析由对立事件的概率知抽到的不是一等品的概率为P=1-0.65=0.35.8.某射击手平时的射击成绩统计如下表所示:(1)求a和b的值;(2)求命中10环或9环的概率;(3)求命中环数不足9环的概率.解(1)因为他命中7环及7环以下的概率为0.29,所以a=0.29-0.13=0.16,b=1-(0.29+0.25+0.24)=0.22.(2)命中10环或9环的概率为0.24+0.25=0.49.(3)命中环数不足9环的概率为1-0.49=0.51.易错点不能区分事件是否互斥而错用加法公式9.掷一个质地均匀的骰子,向上的一面出现1点、2点、3点、4点、5点、6点的概率都是16,记事件A 为“出现奇数”,事件B 为“向上的点数不超过3”,求P (A +B ). 易错分析 由于忽视了“和事件”概率公式应用的前提条件,由于“朝上一面的数是奇数”与“朝上一面的数不超过3”这二者不是互斥事件,即出现1或3时,事件A ,B 同时发生,所以不能应用公式P (A +B )=P (A )+P (B )求解,而致误.正解 记事件“出现1点”“出现2点”“出现3点”“出现5点”分别为A 1,A 2,A 3,A 4,由题意知这四个事件彼此互斥.则A +B =A 1+A 2+A 3+A 4.故P (A +B )=P (A 1+A 2+A 3+A 4)=P (A 1)+P (A 2)+P (A 3)+P (A 4)=16+16+16+16=23.一、选择题1.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A ={两弹都击中飞机},B ={两弹都没击中飞机},C ={恰有一弹击中飞机},D ={至少有一弹击中飞机},下列说法不正确的是 ( )A .A ⊆DB .BD =∅C .A +C =D D .A +C =B +D答案 D解析 由于至少有一弹击中飞机包括两种情况:两弹都击中飞机,只有一弹击中飞机,故有A ⊆D ,故A 正确.由于事件B ,D 是互斥事件,故BD =∅,故B 正确.再由A +C =D 成立可得C 正确.A +C =D ={至少有一弹击中飞机},不是必然事件,而B +D 为必然事件,故D 不正确.故选D.2.下列说法正确的是( )A .对立事件一定是互斥事件,互斥事件不一定是对立事件B .A ,B 同时发生的概率一定比A ,B 中恰有一个发生的概率小C .若P (A )+P (B )=1,则事件A 与B 是对立事件D .事件A ,B 中至少有一个发生的概率一定比A ,B 中恰有一个发生的概率大 答案 A解析 根据对立事件和互斥事件的概念,得到对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 正确.对于两个不可能事件来说,同时发生的概率与恰有一个发生的概率相等,且均为零,故B 错误.若P (A )+P (B )=1,且AB =∅时,事件A 与B 是对立事件,故C 错误.事件A ,B 中至少有一个发生包括事件A 发生B 不发生,A 不发生B 发生,A ,B 都发生;A ,B 中恰有一个发生包括A 发生B 不发生,A 不发生B 发生;当事件A ,B 互斥时,事件A,B至少有一个发生的概率等于事件A,B恰有一个发生的概率,故D错误.3.从装有3个红球、2个白球的袋中任取3个球,若事件A=“至少有1个白球”,则事件A的对立事件是 ( )A.1个白球2个红球B.2个白球1个红球C.3个都是红球D.至少有一个红球答案C解析从装有3个红球、2个白球的袋中任取3个球,若事件A=“至少有1个白球”,则事件A的对立事件是所取的3个球中没有白球,∴事件A的对立事件是3个都是红球.故选C.4.一个袋子里有4个红球,2个白球,6个黑球,若随机地摸出一个球,记A={摸出黑球},B={摸出红球},C={摸出白球},则事件A+B及B+C的概率分别为( )A.56,12B.16,12C.12,56D.13,12答案A解析P(A)=12,P(B)=13,P(C)=16.因为事件A,B,C两两互斥,则P(A+B)=P(A)+P(B)=56.P(B+C)=P(B)+P(C)=12.5.在一次随机试验中,三个事件A1,A2,A3的概率分别是0.2,0.3,0.5,则下列说法正确的个数是( )①A1+A2与A3是互斥事件,也是对立事件;②A1+A2+A3是必然事件;③P(A2+A3)=0.8;④P(A1+A2)≤0.5.A.0 B.1C.2 D.3答案B解析由题意知,A1,A2,A3不一定是互斥事件,所以P(A1+A2)≤0.5,P(A2+A3)≤0.8,P(A1+A3)≤0.7,所以,只有④正确,所以说法正确的个数为1.选B.二、填空题6.某人在打靶时,连续射击2次,事件“至少有1次不中靶”的对立事件是________.答案2次都中靶解析事件“至少有1次不中靶”包含“1次中靶1次不中靶”和“2次都不中靶”,其对立事件是“2次都中靶”.7.从一副扑克牌(52张,无大小王)中随机抽取1张,事件A 为“抽得红桃K”,事件B 为“抽得黑桃”,则P (A +B )=________.答案726解析 事件A ,B 为互斥事件,可知P (A )=152,P (B )=1352=14,所以P (A +B )=P (A )+P (B )=152+14=726. 8.在掷一个骰子的试验中,事件A 表示“出现不大于4的偶数点”,事件B 表示“出现小于5的点数”,则事件A +B -发生的概率为________.(B -表示B 的对立事件)答案23解析 随机掷一个骰子一次共有六种不同的结果,其中事件A “出现不大于4的偶数点”包括2,4两种结果,P (A )=26=13.事件B “出现小于5的点数”包括1,2,3,4四种结果,P (B )=46=23,P (B -)=13.且事件A 和事件B -是互斥事件, ∴P (A +B -)=13+13=23.三、解答题9.掷一个骰子,下列事件:A ={出现奇数点},B ={出现偶数点},C ={出现点数小于3},D ={出现点数大于2},E={出现点数是3的倍数}.求:(1)AB ,BC ; (2)A +B ,B +C ;(3)记H -是事件H 的对立事件,求D -,A -C ,B -+C ,D -+E -. 解 (1)AB =∅,BC ={出现2点}.(2)A +B ={出现1,2,3,4,5或6点},B +C ={出现1,2,4或6点}. (3)D -={出现点数小于或等于2}={出现1或2点}, A -C =BC ={出现2点},B -+C =A +C ={出现1,2,3或5点},D -+E -={出现1,2,4或5点}.10.某商场有奖销售中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P (A )=11000,P (B )=101000=1100,P (C )=501000=120. (2)1张奖券中奖包含中特等奖、一等奖、二等奖. 设“1张奖券中奖”为事件M ,则M =A +B +C , ∵事件A ,B ,C 两两互斥,∴P (M )=P (A +B +C )=P (A )+P (B )+P (C )=11000+1100+120=611000.故1张奖券的中奖概率为611000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N ,由对立事件概率公式得P (N )=1-P (A +B )=1-⎝ ⎛⎭⎪⎫11000+1100=9891000.故1张奖券不中特等奖且不中一等奖的概率为9891000.二年级语文上册句子排序练习题1( )碧溪河从村前流过。
新教材高中数学课时素养评价十八事件之间的关系与运算新人教B版必修21225108事件之间的关系与运算(20分钟·40分)一、选择题(每小题4分,共16分)二、1.掷一枚骰子,“向上的点数是1或2”为事件A,“向上的点数是2或3”为事件B,则( )A.A⊆BB.A=BC.A+B表示向上的点数是1或2或3D.AB表示向上的点数是1或2或3【解析】选C.设A={1,2},B={2,3},A∩B={2},A∪B={1,2,3},所以A+B表示向上的点数为1或2或3.2.P(A)=0.1,P(B)=0.2,则P(A∪B)等于( )A.0.3B.0.2C.0.1D.不确定【解析】选D.因为A与B的关系不确定,故P(A∪B)的值不能确定.3.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一炮弹击中飞机},D={至少有一炮弹击中飞机},下列关系不正确的是( )A.A⊆DB.B∩D=∅C.A∪C=DD.A∪B=B∪D【解析】选D.“恰有一炮弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一炮弹击中”包含两种情况:一种是恰有一炮弹击中,一种是两炮弹都击中,所以A∪B ≠B∪D.4.某城市2019年的空气质量状况如表所示:污染指数T 30 60 100 110 130 140概率P其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染.该城市2019年空气质量达到良或优的概率为( )A. B. C. D.【解析】选A.所求概率为++=.二、填空题(每小题4分,共8分)5.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是________.【解析】摸出红球、白球、黑球是互斥事件,所以摸出黑球的概率为1-0.42-0.28=0.3.答案:0.36.一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是________.【解析】连续射击两次有以下四种情况:第一次中第二次不中,第一次不中第二次中,两次都中和两次都不中.故“至少一次中靶”的对立事件为“两次都不中靶”.答案:两次都不中靶三、解答题7.(16分)国家射击队的队员为在世界射击锦标赛上取得优异成绩在加紧备战,经过近期训练,某队员射击一次命中7~10环的概率如表所示:命中环数10 9 8 7概率0.32 0.28 0.18 0.12求该射击队员在一次射击中:(1)命中9环或10环的概率.(2)至少命中8环的概率.(3)命中不足8环的概率.【解析】记事件“射击一次,命中i环”为A i(i ∈N,i≤10),则事件A i之间彼此互斥.(1)设“射击一次,命中9环或10环”为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件概率的加法公式得P(A)=P(A9)+P(A10)=0.28+0.32=0.6.(2)设“射击一次,至少命中8环”为事件B,那么当A8,A9,A10之一发生时,事件B发生,由互斥事件概率的加法公式得P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.(3)设“射击一次命中不足8环”为事件C,由于事件C与事件B互为对立事件,故P(C)=1-P(B)=1-0.78=0.22.(15分钟·30分)1.(4分)从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.“至少有1个白球”和“都是红球”B.“至少有1个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”【解析】选C.该试验有三种结果:“恰有1个白球”“恰有2个白球”“没有白球”,故“恰有1个白球”和“恰有2个白球”是互斥事件但不是对立事件.2.(4分)掷一枚骰子的试验中,出现各点的概率为.事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+(表示事件B的对立事件)发生的概率为( )A. B. C. D.【解析】选C.由题意知,表示“大于或等于5的点数出现”,事件A与事件互斥,由概率的加法计算公式可得P(A+)=P(A)+P()=+==.3.(4分)若A,B为互斥事件,P(A)=0.4,P(A∪B)=0.7,则P(B)=________.【解析】因为A,B为互斥事件,所以P(A∪B)=P(A)+P(B),所以P(B)=P(A∪B)-P(A)=0.7-0.4=0.3.答案:0.34.(4分)同时掷两枚骰子,既不出现5点也不出现6点的概率为,则5点或6点至少出现一个的概率是________.【解析】记既不出现5点也不出现6点的事件为A,则P(A)=,5点或6点至少有一个出现的事件为B.因为A∩B=Ø,A∪B为必然事件,所以A与B是对立事件,则P(B)=1-P(A)=1-=.故5点或6点至少有一个出现的概率为.答案:5.(14分)袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率是,试求得到黑球、黄球、绿球的概率各是多少?【解析】从袋中任取一球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A,B,C,D,则有P(B∪C)=P(B)+P(C)=;P(C∪D)=P(C)+P(D)=;P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)=1-=.解得P(B)=,P(C)=,P(D)=.所以得到黑球、黄球、绿球的概率各是,,.。
课时素养评价十八事件之间的关系与运算(15分钟30分)1.掷一枚骰子,“向上的点数是1或2"为事件A,“向上的点数是2或3”为事件B,则()A。
A⊆BB。
A=BC.A+B表示向上的点数是1或2或3D.AB表示向上的点数是1或2或3【解析】选C.设A={1,2},B={2,3},A∩B={2},A∪B={1,2,3},所以A+B表示向上的点数为1或2或3。
2.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一炮弹击中飞机},D={至少有一炮弹击中飞机},下列关系不正确的是()A.A⊆DB.B∩D=C.A∪C=D D。
A∪B=B∪D【解析】选D.“恰有一炮弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一炮弹击中”包含两种情况:一种是恰有一炮弹击中,一种是两炮弹都击中,所以A∪B≠B∪D.3。
打靶三次,事件A i表示“击中i次”,i=0,1,2,3,则事件A=A1+A2+A3表示()A.全部未击中B。
至少有一次击中C.全部击中D。
至多有一次击中【解析】选B。
事件A0,A1,A2,A3彼此互斥,且=A1+A2+A3=A,故A表示至少击中一次.4.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0。
42,摸出白球的概率是0.28,那么摸出黑球的概率是________.【解析】摸出红球、白球、黑球是互斥事件,所以摸出黑球的概率为1-0。
42—0。
28=0.3。
答案:0.3【补偿训练】一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是________。
【解析】连续射击两次有以下四种情况:第一次中第二次不中,第一次不中第二次中,两次都中和两次都不中.故“至少一次中靶”的对立事件为“两次都不中靶”。
答案:两次都不中靶5。
某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别0.3,0.2,0.1,0。
新教材高中数学课时跟踪检测(十五)事件之间的关系与运算新
人教B版必修第二册
课时跟踪检测(十五)事件之间的关系与运算
A级——学考水平达标练
1.打靶三次,事件A i表示“击中i发”,其中i=0,1,2,3.那么A=A1+A2+A3表示( ) A.全部击中B.至少击中1发
C.至少击中2发D.以上均不正确
解析:选B 由题意可得事件A1、A2、A3是彼此互斥的事件,且A0+A1+A2+A3为必然事件,A=A1+A2+A3表示的是打靶三次至少击中一发.
2.(多选题)某小组有三名男生和两名女生,从中任选两名去参加比赛,则下列各对事件中是互斥事件的有( )
A.恰有一名男生和全是男生
B.至少有一名男生和至少有一名女生
C.至少有一名男生和全是男生
D.至少有一名男生和全是女生
解析:选AD A是互斥事件.恰有一名男生的实质是选出的两名同学中有一名男生和一名女生,它与全是男生不可能同时发生;B不是互斥事件;C不是互斥事件;D是互斥事件.至少有一名男生与全是女生不可能同时发生.
3.从一批羽毛球中任取一个,如果其质量小于4.8 g的概率为0.3,质量不小于4.85 g 的概率是0.32,那么质量在[4.8,4.85)内的概率是( )
A.0.62 B.0.38
C.0.70 D.0.68
解析:选B 利用对立事件的概率公式可得P=1-(0.3+0.32)=0.38.
4.如果事件A,B互斥,记A,B分别为事件A,B的对立事件,那么( )
A.A+B是必然事件 B.A∪B是必然事件
C.A与B一定互斥D.A与A不可能互斥
解析:选B 用图示法解决此类问题较为直观,如图所示,A∪B是必然事件,故选B.
5.从4名男生和2名女生中任选3人去参加演讲比赛,若所选3人中至少有1名女生的
概率为4
5
,那么所选3人中都是男生的概率为________.
解析:设A ={3人中至少有1名女生},B ={3人都为男生},则A ,B 为对立事件,所以
P (B )=1-P (A )=1
5
.
答案:15
6.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ,Ⅱ,Ⅲ的概率分别为0.35、0.30、0.25,则不中靶的概率是______.
解析:设“射手命中圆面Ⅰ”为事件A ,“命中圆环Ⅱ”为事件B ,“命
中圆环Ⅲ”为事件C ,“不中靶”为事件D ,则A ,B ,C 彼此互斥,故射手中靶的概率为P (A +B +C )=P (A )+P (B )+P (C )=0.35+0.30+0.25=0.90.
因为中靶和不中靶是对立事件,故不中靶的概率为P (D )=1-P (A +B +C )=1-0.90=0.10.
答案:0.10
7.根据以往的成绩记录,某队员击中目标靶的环数的频率分布情况如图所示:
(1)确定图中a 的值;
(2)该队员进行一次射击,求击中环数大于7的概率(频率看成概率使用). 解:(1)由题图可得0.01+a +0.19+0.29+0.45=1.00,所以a =0.06.
(2)设事件A 为“该队员射击,击中环数大于7”,它包含三个两两互斥的事件:该队员射击,击中环数为8,9,10.所以P (A )=0.45+0.29+0.01=0.75.
8.在投掷骰子试验中,根据向上的点数可以定义许多事件,如:A ={出现1点},B ={出现3点或4点},C ={出现的点数是奇数},D ={出现的点数是偶数}.
(1)说明以上4个事件的关系; (2)求两两运算的结果.
解:在投掷骰子的试验中,根据向上出现的点数有6种基本事件,记作A i ={出现的点数为i }(其中i =1,2,…,6).则A =A 1,B =A 3∪A 4,C =A 1∪A 3∪A 5,D =A 2∪A 4∪A 6.
(1)事件A 与事件B 互斥,但不对立,事件A 包含于事件C ,事件A 与D 互斥,但不对立;事件B 与C 不是互斥事件,事件B 与D 也不是互斥事件;事件C 与D 是互斥事件,也是对立
事件.
(2)A ∩B =∅,A ∩C =A ,A ∩D =∅.
A ∪
B =A 1∪A 3∪A 4={出现点数1或3或4}, A ∪
C =C ={出现点数1或3或5},
A ∪D =A 1∪A 2∪A 4∪A 6={出现点数1或2或4或6}.
B ∩
C =A 3={出现点数3},B ∩
D =A 4={出现点数4}. B ∪C =A 1∪A 3∪A 4∪A 5={出现点数1或3或4或5}, B ∪D =A 2∪A 3∪A 4∪A 6={出现点数2或3或4或6}.
C ∩
D =∅,C ∪D =A 1∪A 2∪A 3∪A 4∪A 5∪A 6={出现点数1或2或3或4或5或6}.
9.玻璃盒子里装有各色球12个,其中5红球、4黑球、2白球、1绿球,从中任取1球.记事件A 为“取出1个红球”,事件B 为“取出1个黑球”,事件C 为“取出1个白球”,事件D 为“取出1个绿球”.已知P (A )=512,P (B )=13,P (C )=16,P (D )=1
12
.求:
(1)“取出1球为红球或黑球”的概率; (2)“取出1球为红球或黑球或白球”的概率. 解:(1)“取出1球为红球或黑球”的概率为
P (A +B )=P (A )+P (B )=512+1
3=34
.
(2)“取出1球为红球或黑球或白球”的概率为
P (A +B +C )=P (A )+P (B )+P (C )=512+13+16=1112
.
B 级——高考水平高分练
1.(多选题)下列命题错误的是( ) A .对立事件一定是互斥事件
B .若A ,B 为两个事件,则P (A +B )=P (A )+P (B )
C .若事件A ,B ,C 两两互斥,则P (A )+P (B )+P (C )=1
D .若事件A ,B 满足P (A )+P (B )=1,则A ,B 互为对立事件
解析:选BCD 由互斥事件与对立事件的定义可知A 正确;只有当事件A ,B 为两个互斥事件时才有P (A ∪B )=P (A )+P (B ),故B 不正确;只有事件A ,B ,C 两两互斥,且A ∪B ∪C =
Ω时,才有P (A )+P (B )+P (C )=1,故C 不正确;由对立事件的定义可知,只有事件A ,B 满
足P (A )+P (B )=1且A ∩B =∅时,A ,B 才互为对立事件,故D 不正确.
2.掷一枚骰子的试验中,出现各点的概率为1
6.事件A 表示“小于5的偶数点出现”,事
件B 表示“小于5的点数出现”,则一次试验中,事件A +B (表示事件B 的对立事件)发生的概率为( )
A.1
3
B.
1
2
C.2
3
D.
5
6
解析:选C 由题意知,B表示“大于或等于5的点数出现”,事件A与事件B互斥,
由概率的加法计算公式可得P(A+B)=P(A)+P(B)=2
6
+
2
6
=
4
6
=
2
3
.
3.某学校在教师外出家访了解学生家长对孩子的学习关心情况活动中,一个月内派出的教师人数及其概率如下表所示:
(1)求有4人或
(2)求至少有3人外出家访的概率.
解:(1)设派出2人及以下为事件A,3人为事件B,4人为事件C,5人为事件D,6人及以上为事件E,则有4人或5人外出家访的事件为事件C或事件D,C,D为互斥事件,根据互斥事件概率的加法公式可知,
P(C+D)=P(C)+P(D)=0.3+0.1=0.4.
(2)至少有3人外出家访的对立事件为2人及以下,由对立事件的概率可知,P=1-P(A)=1-0.1=0.9.
4.某商场有奖销售中,购满100元商品得一张奖券,多购多得,每1 000张奖券为一个开奖单位.设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)抽取1张奖券中奖概率;
(3)抽取1张奖券不中特等奖或一等奖的概率.
解:(1)∵每1 000张奖券中设特等奖1个,一等奖10个,二等奖50个,
∴P(A)=1
1 000
,
P(B)=
10
1 000
=
1
100
,
P(C)=
50
1 000
=
1
20
.
(2)设“抽取1张奖券中奖”为事件D,则P(D)=P(A)+P(B)+P(C)
=
1
1 000
+
1
100
+
1
20
=
61
1 000
.
(3)设“抽取1张奖券不中特等奖或一等奖”为事件E ,则
P (E )=1-P (A )-P (B )=1-
11 000-1100=9891 000
.
5.三个臭皮匠顶上一个诸葛亮,能顶得上吗?在一次有关“三国演义”的知识竞赛中,三个臭皮匠A ,B ,C 能答对题目的概率P (A )=13,P (B )=14,P (C )=1
5,诸葛亮D 能答对题目的
概率P (D )=2
3,如果将三个臭皮匠A ,B ,C 组成一组与诸葛亮D 比赛,答对题目多者为胜方,
问哪方胜?
解:如果三个臭皮匠A ,B ,C 能答对的题目彼此互斥(他们能答对的题目不重复),则P (A +B +C )=P (A )+P (B )+P (C )=4760>P (D )=2
3,故三个臭皮匠方为胜方,即三个臭皮匠顶上一
个诸葛亮;如果三个臭皮匠A ,B ,C 能答对的题目不互斥,则三个臭皮匠未必能顶上一个诸葛亮.。