教育统计学讲义抽样理论和参数估计
- 格式:ppt
- 大小:1.42 MB
- 文档页数:15
抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。
(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。
1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。
2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。
因为许多问题都使用正态曲线的方法。
这个定理适于无限总体的抽样,同样也适于有限总体的抽样。
中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。
(三)抽样分布中的几个重要概念1.随机样本。
统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。
所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。
从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。
3.标准误。
样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。
根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。
第四章抽样理论与参数估计第一节抽样理论的基本知识分层抽样,又叫分层随机抽样,这种抽样方法是按照总体已有的某些特征,承认总体中已有的差异,按差异将总体分为几个不同的部分,每一部分称为一个层,在每一个层中实行简单随机抽样。
它充分利用了总体的已知信息,因而是一种非常适用的抽样方法,其样本代表性及推论的精确性一般优于简单随机抽样。
分层的原则是层与层之间的变异越大越好,各层内的变异要小。
试述分层抽样的原则和方法?分层抽样是按照总体上已有的某些特征,将总体分成几个不同部分,在分别在每一部分中随机抽样。
分层的总的原则是:各层内的变异要小,而层与层之间的变异越大越好。
在具体操作中,没有一成不变的标准,研究人员可根据研究需要依照多个分层标准,视具体情况而定。
⑷两阶段随机抽样两阶段随机抽样首先将总体分成M个部分,每一部分叫做一个"集团"(或"群"),第一步从M个集团中随机抽取m个"集团”作为第一阶段样本,第二步是分别从所选取的m个"集团”中抽取个体(g构成第二阶段样本。
一般而言,两阶段抽样相对于简单随机抽样,标准误要大些,但是,两阶段抽样简便易行,节省经草贼,因而它是大规模调查研究中常被使用的抽样方法。
例如,如果我们要了解全国城市初中二年级学生的身高,第一步我们可以从全国几百个城市中随机抽取几十个城市作为第一阶段的样本。
第二步,在第一阶段随机抽取出来的城市中再随机抽取初中二年级的学生。
(二)非旃抽样非概率抽样不是完全按随机原则选取样本,有方便抽样、判断抽样。
方便抽样是由调查人员自由、方便地选择被调查者的非随机选样。
判断抽样是通过某些条件过滤,然后选择某些被调查者参与调查的抽样法。
当采取非概率抽样的方法选取样本时,研究者要说明采用此种方取样的原因以及对研究结果可能造成的影响。
第二节抽样分布[统计量分布、基本随机变量函数的分布]总体:又称母全体、全域,指具有某种特征的一类事物的全体。
(抽样检验)抽样与参数估计抽样和参数估计推断统计:利用样本统计量对总体某些性质或数量特征进行推断。
从数据得到对现实世界的结论的过程就叫做统计推断(statisticalinference)。
这个调查例子是估计总体参数(某种意见的比例)的壹个过程。
估计(estimation)是统计推断的重要内容之壹。
统计推断的另壹个主要内容是本章第二节要介绍的假设检验(hypothesistesting)。
因此本节内容就是由样本数据对总体参数进行估计,即:学习目标:了解抽样和抽样分布的基本概念理解抽样分布和总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体比例和总体方差的区间估计第一节抽样和抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取壹部分元素(单位)进行调查,且根据样本数据所提供的信息来推断总体的数量特征。
总体(Population):调查研究的事物或现象的全体参数个体(Itemunit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Samplesize):样本中所含个体的数量壹般将样本单位数不少于三十个的样本称为大样本,样本单位数不到三十个的样本称为小样本。
壹、抽样方法及抽样分布1、抽样方法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每壹个样本都有相同的机会(概率)被抽中。
注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,又可分为重复抽样和不重复抽样。
而且,根据抽样中是否排序,所能抽到的样本个数往往不同。
②、分层抽样:总体分成不同的“层”(类),然后在每壹层内进行抽样③、整群抽样:将壹组被调查者(群)作为壹个抽样单位④、等距抽样:在样本框中每隔壹定距离抽选壹个被调查者(2)非概率抽样:不是完全按随机原则选取样本①、非随机抽样:由调查人员自由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择壹群特定数目、满足特定条件的被调查者2、抽样分布壹般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(samplingdistribution)。
抽样分布与参数估计概述引言在统计学中,我们经常需要推断整个总体的性质,并据此进行决策或推断。
然而,由于种种原因,我们往往无法直接观察到整个总体的数据。
这时,我们通过对样本的观察和分析来进行总体的推断,这就涉及到了抽样分布和参数估计。
抽样分布抽样分布是指由相同样本大小的一系列独立随机样本所得到的统计量的分布。
在统计学中,我们通常将样本平均值、样本比例或者其他统计量作为总体参数的估计量。
而抽样分布那么将这些统计量的取值范围进行了描述。
中心极限定理中心极限定理是抽样分布的重要定理之一。
它指出,当样本容量足够大时,样本均值的抽样分布将近似于正态分布。
换言之,即使总体分布未知或不是正态分布,样本均值的抽样分布将会趋近于正态分布。
中心极限定理的意义在于,它允许我们利用正态分布的性质来对总体参数进行估计和推断。
通过对样本数据进行观察和分析,我们可以得到样本的均值和标准差,进而利用正态分布的性质来进行置信区间的构造、假设检验等。
参数估计参数估计是指利用样本数据对总体参数进行估计的过程。
常见的参数估计方法包括点估计和区间估计。
点估计点估计是通过单个统计量来估计总体参数的方法。
例如,我们可以用样本均值作为总体均值的估计值,用样本比例作为总体比例的估计值。
点估计能够给出一个具体的数值作为总体参数的估计,但是无法给出估计值的准确性。
区间估计区间估计是通过一个区间来估计总体参数的范围。
而这个区间通常使用置信区间来表示。
置信区间是指总体参数估计值在一定置信水平下的上下限范围。
常用的置信水平有95%和99%等。
置信区间的构造通常基于抽样分布的性质。
利用样本数据和抽样分布的知识,我们可以计算出参数估计值的抽样分布,并根据置信水平选择适当的临界值,从而得到置信区间。
总结抽样分布和参数估计是统计学中重要的概念和方法。
通过对样本数据的观察和分析,我们可以利用抽样分布和参数估计方法来推断总体的性质,并进行统计推断和决策。
中心极限定理告诉我们,当样本容量足够大时,样本均值的抽样分布将近似于正态分布,从而允许我们利用正态分布的性质对总体参数进行估计和推断。