抽样理论与参数估计
- 格式:ppt
- 大小:134.50 KB
- 文档页数:39
抽样分布与参数估计首先,我们来了解什么是抽样分布。
在统计学中,抽样分布是指从总体中多次抽样得到的样本统计量的分布。
假设我们的总体是指所有感兴趣的个体的集合,而样本是从总体中选取的一部分个体。
抽样分布的形状和性质取决于总体的分布和样本的大小。
通过分析抽样分布,可以得到有关总体参数的有用信息。
例如,我们想要知道一些城市成年人的平均年收入。
在实际情况下,我们无法调查每个人的收入情况,因此我们需要从总体中随机抽取一部分个体作为样本,并计算他们的平均年收入。
如果我们多次从总体中抽取样本并计算平均年收入,然后绘制这些平均值的分布图,我们就可以得到平均年收入的抽样分布。
这个抽样分布将给我们提供有关总体平均年收入的估计和推断。
接下来,我们将讨论参数估计。
参数估计是指使用样本数据来估计总体参数的过程。
总体参数是用于描述总体特征的数值,如总体平均值、总体标准差等。
通过从总体中抽取样本,并计算样本统计量,我们可以利用样本统计量来估计总体参数。
常用的参数估计方法有点估计和区间估计。
点估计是指用单个数值来估计总体参数,例如用样本均值来估计总体均值。
点估计给出了一个单一的值,但不能提供关于估计的精度的信息。
因此,我们常常使用区间估计。
区间估计是指给出一个区间,这个区间内有一定的置信水平使得总体参数落在这个区间内的概率最高。
区间估计能够向我们提供关于估计的精确程度的信息。
区间估计依赖于抽样分布的性质。
中心极限定理是制定抽样分布理论的一个重要原则。
根据中心极限定理,当样本容量足够大时,样本均值的抽样分布将近似于正态分布。
这使得我们可以使用正态分布的性质来计算置信区间。
构建置信区间的一种常用方法是使用样本均值的标准误差。
标准误差是样本均值的标准差,它用来衡量样本均值和总体均值之间的误差。
根据正态分布的性质,当样本容量足够大时,样本均值与总体均值之间的误差可以用标准误差来估计。
通过计算标准误差并结合正态分布的性质,我们可以得到样本均值的置信区间。
抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。
(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。
1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。
2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。
因为许多问题都使用正态曲线的方法。
这个定理适于无限总体的抽样,同样也适于有限总体的抽样。
中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。
(三)抽样分布中的几个重要概念1.随机样本。
统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。
所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。
从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。
3.标准误。
样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。
根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。
第四章抽样理论与参数估计第一节抽样理论的基本知识分层抽样,又叫分层随机抽样,这种抽样方法是按照总体已有的某些特征,承认总体中已有的差异,按差异将总体分为几个不同的部分,每一部分称为一个层,在每一个层中实行简单随机抽样。
它充分利用了总体的已知信息,因而是一种非常适用的抽样方法,其样本代表性及推论的精确性一般优于简单随机抽样。
分层的原则是层与层之间的变异越大越好,各层内的变异要小。
试述分层抽样的原则和方法?分层抽样是按照总体上已有的某些特征,将总体分成几个不同部分,在分别在每一部分中随机抽样。
分层的总的原则是:各层内的变异要小,而层与层之间的变异越大越好。
在具体操作中,没有一成不变的标准,研究人员可根据研究需要依照多个分层标准,视具体情况而定。
⑷两阶段随机抽样两阶段随机抽样首先将总体分成M个部分,每一部分叫做一个"集团"(或"群"),第一步从M个集团中随机抽取m个"集团”作为第一阶段样本,第二步是分别从所选取的m个"集团”中抽取个体(g构成第二阶段样本。
一般而言,两阶段抽样相对于简单随机抽样,标准误要大些,但是,两阶段抽样简便易行,节省经草贼,因而它是大规模调查研究中常被使用的抽样方法。
例如,如果我们要了解全国城市初中二年级学生的身高,第一步我们可以从全国几百个城市中随机抽取几十个城市作为第一阶段的样本。
第二步,在第一阶段随机抽取出来的城市中再随机抽取初中二年级的学生。
(二)非旃抽样非概率抽样不是完全按随机原则选取样本,有方便抽样、判断抽样。
方便抽样是由调查人员自由、方便地选择被调查者的非随机选样。
判断抽样是通过某些条件过滤,然后选择某些被调查者参与调查的抽样法。
当采取非概率抽样的方法选取样本时,研究者要说明采用此种方取样的原因以及对研究结果可能造成的影响。
第二节抽样分布[统计量分布、基本随机变量函数的分布]总体:又称母全体、全域,指具有某种特征的一类事物的全体。
第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。
抽样理论及其在统计学中的应用统计学是一门利用数学方法研究群体现象的学科。
为了更好地研究群体现象,我们需要对群体进行抽样调查。
抽样理论是判断整个群体特征的基础,也是实现精确统计的重要手段之一。
本文将介绍抽样理论的定义、分类、适用范围,以及在统计学中的应用。
一、抽样理论的定义和分类抽样理论是一种通过取样调查的结果来推断总体情况的方法。
简单来说,就是采用部分代表整体的方法,对群体的特征进行研究。
在抽样调查中,样本要求代表总体,这就需要抽样时采用一定的方法来避免样本偏差,以便保证群体的特征可以被准确地反映出来。
抽样理论可以根据抽样方法的不同,分为概率抽样和非概率抽样两种。
其中,概率抽样是指每个单位有等概率被选中的抽样方法,包括简单随机抽样、系统抽样、分层抽样和整群抽样等。
非概率抽样则是指在抽样时每个单位被选中的概率不等的抽样方法,包括方便抽样、判断抽样和双重抽样等。
根据样本集合的大小和形成方式,抽样调查可分为全面调查、定额调查和随机调查。
其中,全面调查指对调查对象全部进行调查;定额调查是在总体大小不明确的情况下,按照一定比例对总体进行抽样调查;随机调查则是指以随机的方法,对总体中的一部分进行抽样调查。
二、抽样理论的适用范围抽样理论适用于群体现象的调查与研究。
不管是经济、政治、社会、文化等各个领域,都需要运用抽样方法进行调查。
比如市场调查,为了了解顾客的需求,企业就需要对顾客进行抽样调查。
在政府决策中,也需要对社会进行抽样调查,以了解社会各个方面的情况,为政府决策提供依据。
抽样理论是群体调查的基础,只有保证了样本的代表性和准确性,才能得出让人信服的结果。
三、抽样理论在统计学中的应用抽样理论在统计学中有着非常重要的应用。
首先在数据分析中,样本的取得对分析结果至关重要。
随机抽样可以在保证样本的代表性的同时,避免人为因素对样本的影响,保证数据的可比性和可靠性。
其次,在假设检验和置信判断等方面,抽样理论也被广泛应用。
概率与统计中的抽样与估计概率与统计是一个能够帮助我们了解和解释各种现象和事件的学科。
在概率与统计的研究中,抽样与估计是重要的概念。
本文将介绍抽样与估计的基本概念、方法和应用。
一、抽样的概念与方法1.1 抽样的定义抽样是指从总体中选择一部分元素来进行观察和分析的过程。
总体是指研究对象的全体,而样本则是从总体中抽取出来的具体个体或观测值。
1.2 抽样的方法在概率与统计中,有多种抽样方法可供选择,包括简单随机抽样、系统抽样、分层抽样、多阶段抽样等。
不同的抽样方法适用于不同的研究目的和样本特点,研究者需要根据具体情况选择合适的方法。
二、点估计与区间估计2.1 点估计点估计是利用样本数据对总体参数进行估计的方法。
在点估计中,我们通过计算样本统计量来估计总体参数。
常见的点估计方法包括样本平均数估计总体均值、样本比例估计总体比例等。
2.2 区间估计区间估计是利用样本数据对总体参数进行估计时给出的一个区间范围。
在区间估计中,我们通过计算样本统计量的置信区间来估计总体参数的范围。
常见的区间估计方法包括正态分布的置信区间估计和二项分布的置信区间估计等。
三、抽样与估计的应用抽样与估计在现实生活和科学研究中具有广泛的应用。
以下是几个典型的应用场景:3.1 调查研究在社会学、市场调研、民意测验等领域,研究人员通常采用抽样与估计的方法来获取总体的信息。
通过从总体中抽取样本进行调查研究,我们可以通过样本的统计量来估计总体的特征,例如人口比例、消费行为等。
3.2 质量控制在工业生产过程中,我们通常需要抽取一部分产品进行质量检验。
通过对样本的检验结果进行统计分析,我们可以估计总体的质量水平,并进行质量控制和改进。
3.3 医学实验在临床医学研究中,抽样与估计也起到了重要的作用。
例如,研究人员可能会从人群中随机抽取一部分人进行药物试验,通过样本的反应来估计药物的疗效,并进行临床决策。
3.4 金融风险评估在金融风险评估中,我们常常需要对资产组合的价值进行估计。