9抽样理论及总体参数估计
- 格式:ppt
- 大小:301.00 KB
- 文档页数:19
抽样分布一、抽样分布的理论及定理 (一) 抽样分布抽样分布是统计推断的基础,它是指从总体中随机抽取容量为n 的若干个样本,对每一样本可计算其k 统计量,而k 个统计量构成的分布即为抽样分布,也称统计量分布或随机变量函数分布。
(二) 中心极限定理中心极限定理是用极限的方法所求的随机变量分布的一系列定理,其内容主要反映在三个方面。
1.如果总体呈正态分布,则从总体中抽取容量为n 的一切可能样本时,其样本均数的分布也呈正态分布;无论总体是否服从正态分布,只要样本容量足够大,样本均数的分布也接近正态分布。
2.从总体中抽取容量为n 的一切可能样本时,所有样本均数的均数(X μ)等于总体均数(μ)即μμ=X3.从总体中抽取容量为n 的一切可能样本时,所有样本均数的标准差(X σ)等于总体标准差除以样本容量的算数平方根,即n X σσ=中心极限定理在统计学中是相当重要的。
因为许多问题都使用正态曲线的方法。
这个定理适于无限总体的抽样,同样也适于有限总体的抽样。
中心极限定理不仅给出了样本均数抽样分布的正态性依据,使得大多数数据分布都能运用正态分布的理论进行分析,而且还给出了推断统计中两个重要参数(即样本均数X μ与样本标准差X σ)的计算方法。
(三)抽样分布中的几个重要概念1.随机样本。
统计学是以概率论为其理论和方法的科学,概率又是研究随机现象的,因此进行统计推断所使用的样本必须为随机样本(random sample )。
所谓随机样本是指按照概率的规律抽取的样本,2.抽样误差。
从总体中抽取容量为n 的k 个样本时,样本统计量与总体参数之间总会存在一定的差距,而这种差距是由于抽样的随机性所引起的样本统计量与总体参数之间的不同,称为抽样误差。
3.标准误。
样本统计量分布的标准差或某统计量在抽样分布上的标准差,符号SE 或Xσ表示。
根据中心极限定理其标准差为n X σσ=正如标准差越小,数据分布越集中,平均数的代表性越好。
第四章抽样理论与参数估计第一节抽样理论的基本知识分层抽样,又叫分层随机抽样,这种抽样方法是按照总体已有的某些特征,承认总体中已有的差异,按差异将总体分为几个不同的部分,每一部分称为一个层,在每一个层中实行简单随机抽样。
它充分利用了总体的已知信息,因而是一种非常适用的抽样方法,其样本代表性及推论的精确性一般优于简单随机抽样。
分层的原则是层与层之间的变异越大越好,各层内的变异要小。
试述分层抽样的原则和方法?分层抽样是按照总体上已有的某些特征,将总体分成几个不同部分,在分别在每一部分中随机抽样。
分层的总的原则是:各层内的变异要小,而层与层之间的变异越大越好。
在具体操作中,没有一成不变的标准,研究人员可根据研究需要依照多个分层标准,视具体情况而定。
⑷两阶段随机抽样两阶段随机抽样首先将总体分成M个部分,每一部分叫做一个"集团"(或"群"),第一步从M个集团中随机抽取m个"集团”作为第一阶段样本,第二步是分别从所选取的m个"集团”中抽取个体(g构成第二阶段样本。
一般而言,两阶段抽样相对于简单随机抽样,标准误要大些,但是,两阶段抽样简便易行,节省经草贼,因而它是大规模调查研究中常被使用的抽样方法。
例如,如果我们要了解全国城市初中二年级学生的身高,第一步我们可以从全国几百个城市中随机抽取几十个城市作为第一阶段的样本。
第二步,在第一阶段随机抽取出来的城市中再随机抽取初中二年级的学生。
(二)非旃抽样非概率抽样不是完全按随机原则选取样本,有方便抽样、判断抽样。
方便抽样是由调查人员自由、方便地选择被调查者的非随机选样。
判断抽样是通过某些条件过滤,然后选择某些被调查者参与调查的抽样法。
当采取非概率抽样的方法选取样本时,研究者要说明采用此种方取样的原因以及对研究结果可能造成的影响。
第二节抽样分布[统计量分布、基本随机变量函数的分布]总体:又称母全体、全域,指具有某种特征的一类事物的全体。
第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。
抽样理论及其在统计学中的应用统计学是一门利用数学方法研究群体现象的学科。
为了更好地研究群体现象,我们需要对群体进行抽样调查。
抽样理论是判断整个群体特征的基础,也是实现精确统计的重要手段之一。
本文将介绍抽样理论的定义、分类、适用范围,以及在统计学中的应用。
一、抽样理论的定义和分类抽样理论是一种通过取样调查的结果来推断总体情况的方法。
简单来说,就是采用部分代表整体的方法,对群体的特征进行研究。
在抽样调查中,样本要求代表总体,这就需要抽样时采用一定的方法来避免样本偏差,以便保证群体的特征可以被准确地反映出来。
抽样理论可以根据抽样方法的不同,分为概率抽样和非概率抽样两种。
其中,概率抽样是指每个单位有等概率被选中的抽样方法,包括简单随机抽样、系统抽样、分层抽样和整群抽样等。
非概率抽样则是指在抽样时每个单位被选中的概率不等的抽样方法,包括方便抽样、判断抽样和双重抽样等。
根据样本集合的大小和形成方式,抽样调查可分为全面调查、定额调查和随机调查。
其中,全面调查指对调查对象全部进行调查;定额调查是在总体大小不明确的情况下,按照一定比例对总体进行抽样调查;随机调查则是指以随机的方法,对总体中的一部分进行抽样调查。
二、抽样理论的适用范围抽样理论适用于群体现象的调查与研究。
不管是经济、政治、社会、文化等各个领域,都需要运用抽样方法进行调查。
比如市场调查,为了了解顾客的需求,企业就需要对顾客进行抽样调查。
在政府决策中,也需要对社会进行抽样调查,以了解社会各个方面的情况,为政府决策提供依据。
抽样理论是群体调查的基础,只有保证了样本的代表性和准确性,才能得出让人信服的结果。
三、抽样理论在统计学中的应用抽样理论在统计学中有着非常重要的应用。
首先在数据分析中,样本的取得对分析结果至关重要。
随机抽样可以在保证样本的代表性的同时,避免人为因素对样本的影响,保证数据的可比性和可靠性。
其次,在假设检验和置信判断等方面,抽样理论也被广泛应用。
参数估计的介绍一、总体参数估计概述统计推断(Statistical inference)就是根据样本的实际数据,对总体的数量特征作出具有一定可靠程度的估计和判断。
统计推断的基本内容有参数估计和假设检验两方面。
概括地说,研究一个随机变量,推断它具有什么样的数量特征,按什么样的模式来变动,这属于估计理论的内容,而推测这些随机变量的数量特征和变动模式是否符合我们事先所作的假设,这属于检验理论的内容。
参数估计和假设检验的共同点是它们都对总体无知或不很了解,都是利用部分观察值所提供的信息,对总体的数量特征作出估计和判断,但两者所要解决问题的着重点的所有方法有所不同。
本节先研究总体参数估计的问题。
总体参数估计是以样本统计量(即样本数字特征)作为未知总体参数(即总体数字特征)的估计量,并通过对样本单位的实际观察取得样本数据,计算样本统计量的取值作为被估计参数的估计值。
不论社会经济活动还是科学试验,人们作出某种决策之前总是要对许多情况进行估计。
例如商品推销人员要估计新式时装可能为消费者所学好的程度,自选商场经理要估计附近居民的购买能力,民意调查机构要估计竞选者的得票率,医药生产部门要推广某种药品的新配方,必须估计新药疗效的提高程度等等。
这些估计通常是在信息不完全、结果不确定的情况下作出。
参数估计为我们提供一套在满足一定精确度要求下根据部分信息来估计总体参数的真值,并作出同这个估计相适应的误差说明的科学方法。
科学的抽样估计方法要具备三个基本条件。
首先是要有合适的统计量作为估计量。
我们知道统计量是样本随机变量的函数,根据样本随机变量可以构造许多统计量,但不是所有的统计量都能够充当良好的估计量。
例如,从一个样本可以计算平均数、中位数、众数等等,现在要用来估计总体平均数,究竟以哪个样本统计量作为估计量更合适,如果采用样本平均数作为估计量,这就需要回答样本平均数和总体平均数存在什么样的内在联系,以样本平均数作为良好估计量的标准是什么等等。
统计学中的抽样分布理论统计学是一门研究数据收集、分析和解释的学科。
在统计学中,抽样分布理论是一个重要的概念。
抽样分布理论是指在特定的抽样方法下,样本统计量的分布情况。
本文将介绍抽样分布理论的基本概念、应用以及与推断统计学的关系。
一、抽样分布理论的基本概念抽样分布理论是统计学的基石之一,它是建立在大数定律和中心极限定理的基础上的。
大数定律指出,当样本容量趋向于无穷大时,样本均值会趋于总体均值。
中心极限定理则指出,当样本容量足够大时,样本均值的分布会接近于正态分布。
基于这些定理,抽样分布理论可以推导出许多重要的统计量的分布情况,如样本均值的分布、样本方差的分布等。
这些分布可以用来进行统计推断和假设检验,帮助我们对总体参数进行估计和推断。
二、抽样分布理论的应用抽样分布理论在实际统计分析中有着广泛的应用。
首先,它可以用来进行参数估计。
在抽样分布理论的指导下,我们可以利用样本统计量对总体参数进行估计。
例如,通过样本均值的抽样分布,我们可以估计总体均值的置信区间。
其次,抽样分布理论可以用于假设检验。
在假设检验中,我们需要根据样本数据判断总体参数的真实值是否在某个范围内。
抽样分布理论提供了关于样本统计量的分布情况,从而帮助我们进行假设检验。
例如,通过样本均值的抽样分布,我们可以判断总体均值是否与某个假设值相等。
此外,抽样分布理论还可以用于确定样本容量。
在实际调查中,我们往往需要确定样本容量以达到一定的置信水平和抽样误差。
通过抽样分布理论,我们可以计算出所需的样本容量,从而保证统计结果的可靠性。
三、抽样分布理论与推断统计学的关系抽样分布理论是推断统计学的基础。
推断统计学是利用样本数据对总体参数进行推断的一种方法。
而抽样分布理论则提供了关于样本统计量的分布情况,为推断统计学提供了理论依据。
推断统计学的核心是利用样本数据来推断总体参数的真实值。
通过抽样分布理论,我们可以得到样本统计量的分布情况,从而对总体参数进行估计和推断。
(抽样检验)抽样与参数估计最全版(抽样检验)抽样与参数估计抽样和参数估计推断统计:利⽤样本统计量对总体某些性质或数量特征进⾏推断。
从数据得到对现实世界的结论的过程就叫做统计推断(statisticalinference)。
这个调查例⼦是估计总体参数(某种意见的⽐例)的壹个过程。
估计(estimation)是统计推断的重要内容之壹。
统计推断的另壹个主要内容是本章第⼆节要介绍的假设检验(hypothesistesting)。
因此本节内容就是由样本数据对总体参数进⾏估计,即:学习⽬标:了解抽样和抽样分布的基本概念理解抽样分布和总体分布的关系了解点估计的概念和估计量的优良标准掌握总体均值、总体⽐例和总体⽅差的区间估计第⼀节抽样和抽样分布回顾相关概念:总体、个体和样本抽样推断:从所研究的总体全部元素(单位)中抽取壹部分元素(单位)进⾏调查,且根据样本数据所提供的信息来推断总体的数量特征。
总体(Population):调查研究的事物或现象的全体参数个体(Itemunit):组成总体的每个元素样本(Sample):从总体中所抽取的部分个体统计量样本容量(Samplesize):样本中所含个体的数量壹般将样本单位数不少于三⼗个的样本称为⼤样本,样本单位数不到三⼗个的样本称为⼩样本。
壹、抽样⽅法及抽样分布1、抽样⽅法(1)、概率抽样:根据已知的概率选取样本①、简单随机抽样:完全随机地抽选样本,使得每壹个样本都有相同的机会(概率)被抽中。
注意:在有限总体的简单随机抽样中,由抽样是否具有可重复性,⼜可分为重复抽样和不重复抽样。
⽽且,根据抽样中是否排序,所能抽到的样本个数往往不同。
②、分层抽样:总体分成不同的“层”(类),然后在每壹层内进⾏抽样③、整群抽样:将壹组被调查者(群)作为壹个抽样单位④、等距抽样:在样本框中每隔壹定距离抽选壹个被调查者(2)⾮概率抽样:不是完全按随机原则选取样本①、⾮随机抽样:由调查⼈员⾃由选取被调查者②、判断抽样:通过某些条件过滤来选择被调查者(3)、配额抽样:选择壹群特定数⽬、满⾜特定条件的被调查者2、抽样分布壹般地,样本统计量的所有可能取值及其取值概率所形成的概率分布,统计上称为抽样分布(samplingdistribution)。
抽样调查的一般理论抽样调查是一种统计学上的调查方法,它的基本思想是从总体中抽取一部分样本进行调查,通过对样本数据的分析来推断总体的情况。
抽样调查的一般理论主要包括以下几个方面:1. 抽样的基本概念:抽样是从总体中随机选取一部分单位作为样本进行观察和研究的过程。
总体是指研究对象的全部单位,而样本则是从总体中抽取出来的一部分单位。
抽样调查的目的就是通过样本数据来推断总体的情况。
2. 抽样的原则和方法:抽样的原则主要包括随机性、代表性和广泛性。
随机性是指每个单位被抽取的概率相等,以保证样本的代表性;代表性是指样本能够反映总体的特征和规律,以便通过样本推断总体;广泛性则是指样本应该覆盖总体中的各个部分和层次,以避免出现偏差。
抽样的方法则包括简单随机抽样、分层抽样、整群抽样、系统抽样等。
3. 抽样的误差和样本容量:抽样误差是指由于抽样引起的样本指标与总体指标之间的偏差。
抽样误差是不可避免的,但可以通过增加样本容量和采用更科学的抽样方法来减小误差。
样本容量则是指样本中所包含的单位数,它的大小直接影响到抽样误差的大小和推断的准确性。
4. 抽样推断的原理和方法:抽样推断是通过样本数据来推断总体数据的原理和方法。
其基本原理是概率论中的大数定律和中心极限定理。
抽样推断的方法包括点估计和区间估计。
点估计是通过样本数据直接计算出一个具体的数值作为总体的估计值;区间估计则是通过样本数据计算出一个置信区间,以表示总体参数的可能取值范围。
总之,抽样调查的一般理论是统计学中的重要内容,它为抽样调查提供了科学的依据和指导。
在实际应用中,需要根据具体情况选择合适的抽样方法和样本容量,并对抽样误差进行控制和评估,以保证推断的准确性和可靠性。
抽样理论中的公式总结中心极限定理标准误差等抽样理论中的公式是进行统计推断和数据分析的重要工具,其中包括中心极限定理和标准误差等概念。
本文将对抽样理论中的公式进行总结和探讨。
一、中心极限定理中心极限定理是抽样理论中的重要概念,它告诉我们,当样本容量足够大时,样本均值的抽样分布将近似服从正态分布。
中心极限定理可以用如下公式表示:Z = (X - μ) / (σ / √n)其中,Z表示标准正态分布的随机变量,X为样本均值,μ为总体均值,σ为总体标准差,n为样本容量。
中心极限定理的应用十分广泛,它为我们进行统计推断提供了重要的依据。
通过将样本均值与总体均值的差异标准化,我们可以计算出该差异发生的概率,从而作出合理的推断。
二、标准误差在抽样理论中,标准误差用于衡量样本统计量的不确定性,它反映了样本统计量与总体参数之间的差异。
标准误差的计算公式如下:SE = σ / √n其中,SE表示标准误差,σ为总体标准差,n为样本容量。
标准误差越大,意味着样本统计量与总体参数之间的差异越大,样本的代表性就越差。
因此,在进行数据分析和推断时,我们一般希望标准误差越小,以提高推断的准确性。
三、样本容量的确定进行抽样调查时,确定合适的样本容量非常重要。
样本容量的大小决定了样本统计量的稳定性和准确性,也影响了所得到的推断结果的可靠性。
在抽样理论中,通过样本容量计算标准误差可以帮助我们确定合适的样本容量。
一般来说,当样本容量越大时,标准误差越小,样本统计量与总体参数之间的差异越小。
因此,我们可以根据抽样目的和实际情况,选择适当的样本容量以达到推断的要求。
四、其他公式与应用除了中心极限定理和标准误差之外,抽样理论中还涉及到其他一些重要的公式和概念,如置信区间、假设检验等。
这些公式和概念在实际应用中具有广泛的使用。
置信区间是对总体参数的范围估计,常用的计算公式为:CI = X ± Z * (σ / √n)其中,CI表示置信区间,X为样本均值,Z为临界值,σ为总体标准差,n为样本容量。
统计学中的抽样分布理论统计学是一门深奥而又广泛应用的学科,其中抽样分布理论是其中一个重要支柱。
本文将从抽样、样本统计量和抽样分布三个方面进行论述,以便更好的理解其理论和应用。
一、抽样与样本统计量统计学的基本任务之一是推断总体特征。
但由于总体数据规模庞大,难以全面观察和分析,因此我们通常采用小样本的方式来代表总体。
这就是抽样的概念。
抽样是指从总体中随机抽取一部分数据,用这一部分数据代表总体,以此估计总体的特征。
常用的抽样包括简单随机抽样、分层抽样、整群抽样等。
在抽样中,一个样本统计量的重要性凸显出来,因为它可以帮助我们更好的估计总体的特征。
比如,一个数据集的均值和标准差就是两个重要的样本统计量。
二、抽样分布抽样分布是指在所有可能的样本中,某个样本统计量的分布情况。
这里需要区分参数(population)和统计量(sample statistic)之间的关系。
参数是总体参数,是我们想要研究的总体特征,比如总体均值、总体方差等。
统计量是在样本中计算出来的数值,比如样本均值、样本方差等。
样本统计量是对总体参数的估计,不同的样本统计量可能对总体参数的估计存在一定的差异。
抽样分布不同于总体分布。
总体分布是指总体中所有变量的分布,而抽样分布是指在所有可能的样本中,某个样本统计量的分布。
抽样分布是一个特殊的概率分布,其形状和参数取决于总体分布和样本大小。
这是因为在计算样本统计量时,会受到样本数量和样本变异的影响。
在实际使用中,我们通过抽样分布来推断总体参数。
具体方法是:首先,通过采样方法得到一个样本,计算该样本统计量的值。
然后,通过数学公式推算样本统计量的抽样分布,从而得到一个概率区间。
若该样本统计量恰好位于这个区间内,则认为该样本统计量的估计值与总体参数的差异可以用统计学上的概率来表示。
这个概率就是所谓的显著性水平(signicance level)。
三、中心极限定理中心极限定理是抽样分布理论中最为重要的定理之一。