初中数学瓜豆原理题型,中考数学瓜豆原理求最值例题讲解及答案解析
- 格式:pdf
- 大小:488.48 KB
- 文档页数:18
中考数学复习线段和差最值系列之瓜豆原理两个动点,一个动点随着另一个动点的运动而运动,通过找到两动点的轨迹,求线段最值.瓜豆原理说的是“种瓜得瓜,种豆得豆”,两点运动的轨迹性质一样.一.轨迹之圆篇引例1:如图,P 是圆O 上一个动点,A 为定点,连接AP ,Q 为AP 中点. 考虑:当点P 在圆O 上运动时,Q 点轨迹是?【分析】观察动图可知点Q 轨迹是个圆,而我们还需确定的是此圆与圆O 有什么关系?考虑到Q 点始终为AP 中点,连接AO ,取AO 中点M ,则M 点即为Q 点轨迹圆圆心,半径MQ 是OP 一半,任意时刻,均有△AMQ ∽△AOP ,QM :PO =AQ :AP =1:2.【小结】确定Q 点轨迹圆即确定其圆心与半径,由A 、Q 、P 始终共线可得:A 、M 、O 三点共线,由Q 为AP 中点可得:AM =12AO .Q 点轨迹相当于是P 点轨迹成比例缩放.引例2:如图,P 是圆O 上一个动点,A 为定点,连接AP ,作AQ ⊥AP 且AQ =AP . 考虑:当点P 在圆O 上运动时,Q 点轨迹是?【分析】Q 点轨迹是个圆,可理解为将AP 绕点A 逆时针旋转90°得AQ ,故Q 点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ;考虑AP =AQ ,可得Q 点轨迹圆圆心M 满足AM =AO ,且可得半径MQ =PO .即可确定圆M 位置,任意时刻均有△APO ≌△AQM .引例3:如图,△APQ 是直角三角形,∠P AQ =90°且AP =2AQ ,当P 在圆O 运动时,Q 点轨迹是?【分析】考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ;考虑AP :AQ =2:1,可得Q 点轨迹圆圆心M 满足AO :AM =2:1.即可确定圆M 位置,任意时刻均有△APO ∽△AQM ,且相似比为2.【模型总结】为了便于区分动点P 、Q ,可称点P 为“主动点”,点Q 为“从动点”. 此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值);主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ =∠OAM ;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP :AQ =AO :AM ,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q 与P 的关系相当于旋转+伸缩. 古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.例1:如图,点P (3,4),圆P 半径为2,A (2.8,0),B (5.6,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______.【分析】M 点为主动点,C 点为从动点,B 点为定点.考虑C 是BM 中点,可知C 点轨迹:取BP 中点O ,以O 为圆心,OC 为半径作圆,即为点C 轨迹.当A 、C 、O 三点共线且点C 在线段OA 上时,AC 取到最小值,根据B 、P 坐标求O ,利用两点间距离公式求得OA ,再减去OC 即可.最小值为32. 二.轨迹之线段篇引例:如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时,Q 点轨迹是?【分析】当P 点轨迹是直线时,Q 点轨迹也是一条直线.可以这样理解:分别过A 、Q 向BC 作垂线,垂足分别为M 、N ,在运动过程中,因为AP =2AQ ,所以QN 始终为AM 的一半,即Q 点到BC 的距离是定值,故Q 点轨迹是一条直线.【引例】如图,△APQ 是等腰直角三角形,∠P AQ =90°且AP =AQ ,当点P 在直线BC 上运动时,求Q 点轨迹?【分析】当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q 点轨迹线段.【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值);主动点、从动点到定点的距离之比是定量Q 2Q 1AB C(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )例2:如图,在平面直角坐标系中,A (-3,0),点B 是y 轴正半轴上一动点,C 、D 在x 正半轴上,以AB 为边在AB 的下方作等边△ABP ,点B 在y 轴上运动时,求OP 的最小值.【分析】求OP 最小值需先作出PB 点在直线上运动,故可知P 点轨迹也是直线.取两特殊时刻:(1)当点B 与点O 重合时,作出P 点位置P 1;(2)当点B 在x 轴上方且AB 与x 轴夹角为60°时,作出P 点位置P 2.连接P 1P 2,即为P 点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP2=OA =3,所以OP =32. 练习题1.如图,在等腰Rt △ABC 中,AC =BC =P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.2.如图,正方形ABCD中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.3.△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.4.如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.5.如图,已知点A是第一象限内横坐标为AC ⊥x 轴于点M ,交直线y =-x 于点N ,若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥P A ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是________.6.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .OABCDE FAB CDE OGAB CDEF7.如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k 的值为( )A .2B .4C .6D .88.如图,A (-1,1),B (-1,4),C (-5,4),点P 是△ABC 边上一动点,连接OP ,以OP 为斜边在OP 的右上方作等腰直角△OPQ ,当点P 在△ABC 边上运动一周时,点Q 的轨迹形成的封闭图形面积为________.9.如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.10.如图,线段AB =2,点C 为平面上一动点,且∠ACB =90°,将线段AC 的中点P 绕点A 顺时针旋转90°得到线段AQ ,连接BQ ,则线段BQ 的最大值为 .ABCDP11.如图,⊙O的直径AB=2,C为⊙O上动点,连接CB,将CB绕点C逆时针旋转90⁰得到CD,连接OD,则OD的最大值为________12.如图,在 ABC中,∠ACB=90°,点D在BC边上,BC=5,CD=2,点E是边AC所在直线上的一动点,连接DE,将DE绕点D顺时针方向旋转60°得到DF,连接BF,则BF的最小值为____13.已知边长为6的等边△ABC中,E是高AD所在直线上的一个动点,连接BE,将线段BE绕点B顺时针旋转60°得到BF,连接DF,则在点E运动的过程中,当线段DF长度的最小值时,DE的长度为.14.如图1,在△ABC中,BE平分∠ABC,CF平分∠ACB,BE与CF交于点D.(1)若∠BAC=74°,则∠BDC=;(2)如图2,∠BAC=90°,作MD⊥BE交AB于点M,求证:DM=DE;(3)如图3,∠BAC=60°,∠ABC=80°,若点G为CD的中点,点M在直线BC上,连接MG,将线段GM绕点G逆时针旋转90°得GN,NG=MG,连接DN,当DN最短时,直接写出∠MGC的度数.15.如图1,在平面直角坐标系中,直线y =﹣5x +5与x 轴,y 轴分别交于A 、C 两点,抛物线y =x 2+bx +c 经过A 、C 两点,与x 轴的另一交点为B . (1)求抛物线解析式;(2)若点M 为x 轴下方抛物线上一动点,当点M 运动到某一位置时,△ABM 的面积等于△ABC 面积的35,求此时点M 的坐标; (3)如图2,以B 为圆心,2为半径的⊙B 与x 轴交于E 、F 两点(F 在E 右侧),若P 点是⊙B 上一动点,连接P A ,以P A 为腰作等腰Rt △P AD ,使∠P AD =90°(P 、A 、D 三点为逆时针顺序),连接FD .求FD 长度的取值范围.参考答案:1. π -2 4.8 6.527.D 8.3 9.4-12 1 12.7214.127°,25°15.(1)y=x 2-6x+5 (2)M(2,-3)、(4,-3) (3)2。
最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?A OQP【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.PQA MO【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P 是圆O 上一个动点,A 为定点,连接AP ,作AQ ⊥AP 且AQ =AP . 考虑:当点P 在圆O 上运动时,Q 点轨迹是?OP QA【分析】Q 点轨迹是个圆,可理解为将AP 绕点A 逆时针旋转90°得AQ ,故Q 点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ;考虑AP =AQ ,可得Q 点轨迹圆圆心M 满足AM =AO ,且可得半径MQ =PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .MA QPO引例3:如图,△APQ 是直角三角形,∠P AQ =90°且AP =2AQ ,当P 在圆O 运动时,Q 点轨迹是?Q【分析】考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ; 考虑AP :AQ =2:1,可得Q 点轨迹圆圆心M 满足AO :AM =2:1. 即可确定圆M 位置,任意时刻均有△APO ∽△AQM ,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为一边作等边△APQ . 考虑:当点P 在圆O 上运动时,Q 点轨迹是?OPA Q【分析】Q 点满足(1)∠PAQ =60°;(2)AP =AQ ,故Q 点轨迹是个圆:考虑∠PAQ =60°,可得Q 点轨迹圆圆心M 满足∠MAO =60°;考虑AP =AQ ,可得Q 点轨迹圆圆心M 满足AM =AO ,且可得半径MQ =PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .60°MQAPO【小结】可以理解AQ 由AP 旋转得来,故圆M 亦由圆O 旋转得来,旋转角度与缩放比例均等于AP 与AQ 的位置和数量关系.【思考2】如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为斜边作等腰直角△APQ . 考虑:当点P 在圆O 上运动时,如何作出Q 点轨迹?OPQA【分析】Q 点满足(1)∠PAQ =45°;(2)AP :AQ :1,故Q点轨迹是个圆.连接AO ,构造∠OAM =45°且AO :AM 1.M 点即为Q 点轨迹圆圆心,此时任意时刻均有△AOP ∽△AMQ .即可确定点Q 的轨迹圆.【练习】如图,点P (3,4),圆P 半径为2,A (2.8,0),B (5.6,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______.【分析】M 点为主动点,C 点为从动点,B 点为定点.考虑C 是BM 中点,可知C 点轨迹:取BP 中点O ,以O 为圆心,OC 为半径作圆,即为点C 轨迹.OOyxABC M P当A 、C 、O 三点共线且点C 在线段OA 上时,AC 取到最小值,根据B 、P 坐标求O ,利用两点间距离公式求得OA ,再减去OC 即可.OPMCBAxyO【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.DEFOACM P当然,若能理解M 点与P 点轨迹关系,可直接得到M点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.FE DCBAO考虑DE ⊥DF 且DE =DF ,故作DM ⊥DO 且DM =DO ,F 点轨迹是以点M 为圆心,2为半径的圆.OABCDEFM直接连接OM ,与圆M 交点即为F 点,此时OF 最小.可构造三垂直全等求线段长,再利用勾股定理求得OM ,减去MF 即可得到OF 的最小值.【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.E DM ABCO连接AM 并延长与圆M 交点即为所求的点O ,此时AO 最大,根据AB 先求AM ,再根据BC 与BO 的比值可得圆M 的半径与圆A 半径的比值,得到MO ,相加即得AO .OCBAM DE此题方法也不止这一种,比如可以如下构造旋转,当A 、C 、A ’共线时,可得AO 最大值.A'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时,Q 点轨迹是?【分析】当P 点轨迹是直线时,Q 点轨迹也是一条直线.可以这样理解:分别过A 、Q 向BC 作垂线,垂足分别为M 、N ,在运动过程中,因为AP =2AQ ,所以QN 始终为AM 的一半,即Q 点到BC 的距离是定值,故Q 点轨迹是一条直线.N CBAQP M【引例】如图,△APQ 是等腰直角三角形,∠P AQ =90°且AP =AQ ,当点P 在直线BC 上运动时,求Q 点轨迹?【分析】当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q 点轨迹线段.Q 2Q 1ABC【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠PAQ (当∠PAQ ≤90°时,∠PAQ 等于MN 与BC 夹角)MNααPQ A BCP 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )M NααA BC【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P从点E运动到点A时,点F运动的路径长是________.A【分析】根据△DPF是等边三角形,所以可知F点运动路径长与P点相同,P从E点运动到A点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O 运动到点N时,点B运动的路径长是________.【分析】根据∠PAB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A (-3,0),点B 是y 轴正半轴上一动点,点C 、D 在x 正半轴上,以AB 为边在AB 的下方作等边△ABP ,点B 在y 轴上运动时,求OP 的最小值.【分析】求OP 是等边三角形且B 点在直线上运动,故可知P 点轨迹也是直线.取两特殊时刻:(1)当点B 与点O 重合时,作出P 点位置P 1;(2)当点B 在x 轴上方且AB 与x 轴夹角为60°时,作出P 点位置P 2.连接P 1P 2,即为P 点轨迹.P 2P 1y xBAO根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32. PP 2P 1y xBAO【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2G 1D CBACG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE ,所以CH =52,因此CG 的最小值为52. GABCDEFFHG 2G 1ED CBA三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k的值为( )A .2B .4C .6D .8【分析】∠AOC =90°且AO :OC =1:2,显然点C 的轨迹也是一条双曲线,分别作AM 、CN 垂直x 轴,垂足分别为M 、N ,连接OC ,易证△AMO ∽△ONC ,∴CN =2OM ,ON =2AM ,∴ON ·CN =4AM ·OM ,故k =4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ACDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M为半径的圆EMPD CBA考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.NEA BCD PM。
专题6 动点最值之瓜豆模型模型一、运动轨迹为直线问题1:如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时,Q 点轨迹是?解析:当P 点轨迹是直线时,Q 点轨迹也是一条直线.理由:分别过A 、Q 向BC 作垂线,垂足分别为M 、N ,在运动过程中,因为AP=2AQ ,所以QN 始终为AM的一半,即Q 点到BC 的距离是定值,故Q 点轨迹是一条直线.问题2:如图,点C 为定点,点P 、Q 为动点,CP=CQ ,且∠PCQ 为定值,当点P 在直线AB 上运动,Q 的运动轨迹是?解析:当CP 与CQ 夹角固定,且AP=AQ 时,P 、Q 轨迹是同一种图形,且PP 1=QQ 1理由:易知△CPP 1≌△CPP 1,则∠CPP 1=CQQ 1,故可知Q 点轨迹为一条直线.模型总结:条件:主动点、从动点与定点连线的夹角是定量;主动点、从动点到定点的距离之比是定量.结论:① 主动点、从动点的运动轨迹是同样的图形;② 主动点路径做在直线与从动点路径所在直线的夹角等于定角③ 当主动点、从动点到定点的距离相等时,从动点的运动路径长等于主动点的运动路径长;例1.如图,在平面直角坐标系中,A (-3,0),点B 是y 轴正半轴上一动点,点C 、D 在x 正半轴上,以AB 为边在AB 的下方作等边△ABP ,点B 在y 轴上运动时,求OP 的最小值.例2.如图,已知点A 是第一象限内横坐标为的一个定点,AC ⊥x 轴于点M ,交直线y =-x 于点N ,若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥PA ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是________.【变式训练1】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,求CG的最小值是多少?GA B CDEF【变式训练2】如图,△ABC是边长为6的等边三角形,点E在AB上,点D为BC的中点,△EDM为等边三角形.若点E从点B运动到点A,则M点所经历的路径长为 .【变式训练3】如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF 为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E 的运动路径长是 .【变式训练4】如图,已知线段AB=12,点C在线段AB上,且△ACD是边长为4的等边三角形,以CD为边的右侧作矩形CDEF,连接DF,点M是DF的中点,连接MB,则线段MB的最小值为 .模型二、运动轨迹为圆问题1.如图,P 是圆O 上一个动点,A 为定点,连接AP ,Q 为AP 中点.当点P 在圆O 上运动时,Q 点轨迹是?解析:Q 点轨迹是一个圆理由:Q 点始终为AP 中点,连接AO ,取AO 中点M ,则M 点即为Q 点轨迹圆圆心,半径MQ 是OP 一半,任意时刻,均有△AMQ ∽△AOP,.问题2.如图,△APQ 是直角三角形,∠PAQ=90°且AP=2AQ ,当P 在圆O 运动时,Q 点轨迹是?解析:Q 点轨迹是一个圆理由:∵AP ⊥AQ ,∴Q 点轨迹圆圆心M 满足AM ⊥AO ;又∵AP :AQ=2:1,∴Q 点轨迹圆圆心M 满足AO :AM=2:1.即可确定圆M 位置,任意时刻均有△APO ∽△AQM ,且相似比为2.模型总结:条件:两个定量主动点、从动点与定点连线的夹角是定量(∠PAQ 是定值);主动点、从动点到定点的距离之比是定量(AP:AQ 是定值).结论:(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM ;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM ,也等于两圆半径之比.Q1=2QM AQ PO AP例1.如图,点P (3,4),圆P 半径为2,A (2.8,0),B (5.6,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______.例2.如图,A 是⊙B 上任意一点,点C 在⊙B 外,已知AB =2,BC =4,△ACD 是等边三角形,则的面积的最大值为例3.如图,正方形ABCD 中,O 是BC 边的中点,点E 是正方形内一动点,OE=2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.O A B C DEFBCD △AB【变式训练1】如图,在等腰Rt △ABC 中,AC =BC =,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【变式训练2】如图,AB 为⊙O 的直径,C 为⊙O 上一点,其中,,P 为⊙O 上的动点,连AP ,取AP 中点Q ,连CQ ,则线段CQ 的最大值为【变式训练3】如图,△ABC 中, 于点 是半径为2的⊙A 上一动点, 连结 , 若是的中点, 连结, 则长的最大值为6AB =120AOC ∠=︒,6,AB AC BC AD BC ==⊥,4,D AD P =PC E PC DE DE课后训练1.如图,在△ABC 中,∠ACB =90º,∠A =30º,BC =2,D 是AB 上一动点,以DC 为斜边向右侧作等腰Rt △DCE ,使∠CED =90º,连接BE ,则线段BE 的最小值为 .2.如图,,点O 在线段上,,⊙O 的半径为1,点P 是上一动点,以为一边作等边,则的最小值为_____.3.点A是双曲线在第一象限上的一个动点,连接AO 并延长交另一交令一分支点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也在不断变化,但始终在某函数图像上运动,则这个函数的解析式为 .6AB =AB 2AO =O e BP BPQ V AQ4.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=2,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为____________.5.如图,已知点M(0,4),N(4,0),开始时,△ABC的三个顶点A、B、C分别与点M、N、O重合,点A在y轴上从点M开始向点O滑动,到达点O结束运动,同时点B沿着x轴向右滑动,则在此运动过程中,点C的运动路径长 .6.如图,已知在扇形AOB中,OA=3,∠AOB=120º,C是在上的动点,以BC为边作正方形BCDE,当点C从点A移动至点B时,求点D运动的路径长?。
最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠P AQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠P AQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠P AQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠P AQ=45°;(2)AP:AQ1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.F考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM 并延长与圆M 交点即为所求的点O ,此时AO 最大,根据AB 先求AM ,再根据BC 与BO 的比值可得圆M 的半径与圆A 半径的比值,得到MO ,相加即得AO .此题方法也不止这一种,比如可以如下构造旋转,当A 、C 、A ’共线时,可得AO最大值.A'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.Q2AB CQ1【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O 运动到点N时,点B运动的路径长是________.【分析】根据∠P AB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.GABCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.G 2三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k的值为( )A .2B .4C .6D .8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.。
瓜豆原理(与相似有关)编者的话:上一节课已经体验了瓜豆妙用,能解决相应的最值问题.本节课继续学习瓜豆相关知识,但是难度要比上一节课要增大,本节不仅需要旋转还需要进行放缩,即与相似有联系.不过相信在理解前一节的基础上,再学本节会简单很多,我们一起来攻克吧!一、典型例题例1.如图,∠AOB =60°,C ,D 是边OA 上的两点,且OD =8,CD =2,点P 是射线OB 上一动点,连接PD ,点Q 是PD 的中点,连CQ ,则CQ 的最小值为.解:第一步:判断.点D 为定点,P 为主动点,Q 为从动点,满足瓜豆原理.第二步:画路径.局部变化:点Q 是点P 以定点D 为位似中心,以1为相似比缩小而2来.P 点在射线OB 上运动,则整体上变化:Q 点的路径是射线OB 以定点D 为位似中心,1为相似比缩小而来,即射线Q 1Q 为Q 的运动路径.(实际作图:两点确定一条直线,只2要寻找两个特殊点即可.当点P 在点O 时,取OD 中点Q 1,连Q 1Q 并延长即可).由位似的性质,△DQ 1Q ∽△DOP ,且相似比为1,Q 1Q ∥OB .2第三步:计算.即当CQ ⊥Q 1Q 时,CQ 2最小.∠AOB =∠AQ 1Q =60°,CQ 1=2,则CQ 2=3.例2.平面内两定点A ,B 之间的距离为8,P 为一动点,且PB =2,连接AP ,并且以AP 为斜边在AP 的上方作等腰直角△APC ,如图,连接BC ,则BC 的最大值与最小值的差为.解:第一步,判断.确定P点的路径为⊙B.A为定点,P为主动点,C为从动点,满足瓜豆原理.第二步,画路径.局部变化是点P到点C的变化是先绕点A逆时针旋转45°,再以A 为位似中心,以2为相似比缩小.点P在⊙B上运动,则整体的变化:将⊙B先绕点A逆22为相似比缩小得到⊙O.(实际作图:以AB为斜2边向上构造等腰直角三角形,顶点即为圆心O,连OC,以O为圆心OC为半径画圆即得到⊙O)第三步:计算.BC的最值转化为点圆位置关系,则BC2-BC1= C1C2,即为⊙O的直径时针旋转45°,再以A为位似中心,以22.例3.如图,等腰直角△ABC中,∠A=90°,AB=AC=3,D是AB上的点,且AD=3.点E是BC边上的一动点,过E作EF⊥ED,使DE:EF1:3,连接FD,CF,则CF的最小值是.解:第一步:判断.点D为定点,E为主动点,F为从动点,满足瓜豆原理.第二步:画路径.局部变化:点F是点E绕点D顺时针旋转60°,再以定点D为位似中心,以2为位似比放大得到;点E在BC上运动,则整体上变化:F的路径为BC绕点D 顺时针旋转60°,再以定点D为位似中心,以2为位似比放大得到B’C’.(实际作图:将BD,DC分别顺时针旋转60°再扩大2倍得到B’,C’,连接即可).第三步:计算最小值CK.AD:AC=1:√3,可得∠ADC=60°=∠BDB’,则B’,D,C共线且B’C=6;又△BDC∽△B’DC’,所以∠B’=∠B=45°,则CK=32.例4.如图,△ABO为等腰直角三角形,A(-4,0),直角顶点B在第二象限,点C在y轴上移动,以BC为斜边作等腰直角△BCD,我们发现直角顶点D点随着点C的运动也在一条直线上运动,这条直线的函数解析式是.图1图2解:第一步:判断.点B为定点,点C为主动点,点D为从动点,满足瓜豆原理.由于D 点的位置没有明确,故分两种情况进行讨论.第二步:画路径.局部变化:点D是点C先绕B旋转45°,再以B为位似中心以2为2位似比缩小而来.则整体上:D点的路径为y轴绕点B旋转45°,再以B为位似中心以22为位似比缩小.(实际作图:直线型的我们可以寻找两个特殊点,两点确定一条直线.如图1,点C在y轴上,当BC1⊥y轴时,D1(-1,3);当C2在O点时,D2(0,2);如图2,当BC1⊥y轴时,D1(-1,1);当C2在O点时,D2(-2,0)第三步:计算.y=-x+2;y=x+2.二、巩固练习1.如图,矩形ABCD中,AB=4,AD=3,E为对角线BD上一动点,以E为直角顶点,AE 为直角边作等腰直角Rt△AEF,A,E,F按逆时针排列.当点E从点D运到到点B时,点F的运动路径长为.【答案】:52.提示:法1,寻找始末位置,F1为开始的位置,F2为最终的位置,连接即为F的路径.利用勾股即可求得.法2,口算.E点的路径长为5,F点是由E点旋转扩大得到,满足瓜豆,知其路径也为线段,并且扩大2倍,即F的路径为52.2.如图,AB=2,点D是等腰Rt△ABC斜边AC上的一动点,以BD为边向右下作等腰△BDE,其中顶角∠BDE=120°,则点D从A运动到C的过程中,则E点的运动路径长为.【答案】:26.提示:满足瓜豆原理.法1:画出路径具体求解.法2:口算法,D到E 旋转放大3倍,即E点的路径为3AC=26.3.如图,在等边△ABC中,BC=6,D,E是BC边上的两点,且BD=CE=1,P是DE上一动点,过点P分别作AC,AB的平行线交AB,AC于点M,N,连接MN,AP交于点G,则点P由点D移动到点E的过程中,线段BG扫过BG扫过的区域面积为.【答案】:即G1G2=33提示:满足瓜豆原理.找始末位置G1,G2,则G1G2为△ADE的中位线21133.∴S=1G1G2⋅G2V=33.DE=2,G2V=AU=222224.如图,在平面直角坐标系中,已知正方形ABCO,A(0,4),点D为x轴上一动点,以AD为边在AD的右侧作等腰直角三角形ADE,∠ADE=90°,连接OE,则OE的最小值为.【答案】:22.提示:瓜豆直线型,路径是x轴绕点O逆时针旋转45°得到.实际操作,找一个特殊点(图上已经有一点),C点为开始点,连接CE即为E点运动路径,则OE1为最小值.即OE1=OC=22.25.如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,点D是半径为2的⊙A上一点,点E是CD的中点,则BE长的最大值是.【答案】:71.提示:以C为位似中心,为位似比缩小,转化为点圆位置关系.226.如图,在等腰Rt△ABC中,AC=BC=22,点P在以斜边AB为直径的半圆上,M为PC 的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是.【答案】:π提示:法1:画路径求路径,以C为位似中心,1为位似比缩小,即为点M2的路径长.法2:口算.M路径为P点路径长的一半.7.如图,在矩形ABCD中,AD=2,AB=4,长度为2的动线段AE绕点A旋转,连接EC,取EC的中点F,连接DF,则DF长的取值范围为.【答案】:25-1≤AC≤25+1.提示:确定E点的路径为圆.以C为位似中心,1为2位似比缩小,转化为点圆位置关系.8.如图,边长为4的正方形ABCD外有一点E,∠AED=90°,F为CE的中点,连接BF,则BF的最大值为.【答案】:13+1.提示:确定E点的路径为圆.以C为位似中心,1为位似比缩小,转2化为点圆位置关系.9.如图,在矩形ABCD中,AB=6,AD=8,点E在AD边上,且AE:ED=1:3.动点P点A出发,沿AB运动到点B停止.过点E作EF⊥PE交射线BC于点F,设M是线段EF 的中点,则在点P运动的整个过程中,点M运动路线的长为.【答案】:9.提示:E为定点,P为主动点,F为从动点(一线三垂直可得PE:EF=1:3),为线段型瓜豆,找始末两特殊点F1,F2.F在F1F2上运动,则M点的路径为△EF1F2的中位线.10.如图,△ABC中,∠ACB=90°,∠A=30°,BC=2,D是AB上一动点以DC为斜边向上作等腰直角△DCE,使∠CED=90°,连接BE,则BE的最小值为.【答案】:2.提示:线段型瓜豆,找始末位置,得路径线段E1E2.△E2CE1∽△BAC.得212BE2=.2211.如图,直线m // n,m,n之间的距离为3,A,B为直线n上的两点,且AB=2,点C是到∠CE2E1=∠CBA=60°,则∠BE2E1=30°,∴BE3=直线m上的动点,四边形ACDE为矩形,CD=3AC,则BD的最小值.【答案】:23+1.提示:定点A ,主动点C ,从动点为D ,点C 绕点A 逆时针旋转60°,并以A 为位似中心放大2倍得到D ,满足直线型瓜豆.找特殊点D 1即有D 点路径,此时D 1D 与m ,n 的夹角为60°,则BD ≥BD 2=1BD 3=23+1.212.如图,BE ,AC 为四边形ABCE 的对角线,CE =2,∠CAE =60°,∠CAB =90°,∠CBA =30°,连接BE ,则BE 的最大值为.【答案】:221+43.3提示:第一步:定角定弦隐圆.点A 的路径是以O 为圆心,OA 为半径的圆上(部分圆).O 在CE 的垂直平分线上,且∠COE =120°.第二步:C 为定点,A 为主动点,B 为从动点,满足瓜豆.A 到B 是绕点C 逆时针旋转60°,再以C 为位似中心放大2倍,即B 点的路径为将e O 绕点C 逆时针旋转60°再以C 为位似中心放大2倍.(实际作图:过C 作CE 的垂线,过O 作CO 的垂线相交于点O ’,此时Rt △O ’OC 为含30°的直角三角形,O ’C =2OC ,∠O ’CO =60°,再以O ’B 为半径作圆即可).第三步:计算.点圆位置关系.OC =CE 2343.=,O 'C =2OC =33322⎛43⎫⎛23⎫4343+221BE ≤O 'E +O 'B =O 'C 2+22+O 'C = 3⎪⎪+ 3⎪⎪+3=3⎝⎭⎝⎭。
中考线段最值问题----瓜豆原理【问题引入】如下图1所示,Q为OP的中点,P为线段AB上的一个动点,Q为OP的中点,当P点在线段AB上运动时,Q点的运动轨迹是什么?【问题分析】如下图2,当P点为于A点时,此时Q点位于OA的中点Q1;当P点位于B点时,此时Q点位于OB的中点Q2;我们发现,△OQ1Q2△△OAB,随着Q点位置的不同,△OQ1Q2与△OAB 一直相似,其本质为动态相似!【模型建立】此类题中,题目或许先描述的是动点P,但最终问题问的是另一个动点Q,P和Q之间存在着某种联系,从P点出发探讨Q点运动轨迹即为本文要探讨的瓜豆原理。
1、两个概念:主动点:主动运动的点称为主动点,如上图1中的P点;从动点:由于主动点运动而“被迫”运动的点称为从动点,如上图1中的Q点;2、瓜豆原理成立的两个必要条件△主动点、从动点与定点连线的夹角为定值;△主动点、从动点到定点的距离之比是定值.举例如下:如下图3:,动点P在直线BC上运动,A为定点,Q为另一动点,且满足条件:①∠PAQ是定值;②AP:AQ是定值,则动点Q的轨迹与动点P的轨迹一致,即:P在直线BC上动,则Q在另一直线MN上动,且△BAC∽△MAN(动态相似)。
3、核心结论①从动点的运动轨迹与主动点运动轨迹一致,即如果主动点在直线上运动,则从动点也必然在直线上运动;如果主动点在圆上运动,则从动点也必然在圆上运动,故非常形象的称之为“瓜豆原理”。
②主动点的起点、终点、定点组成的三角形与从动点的起点、终点、定点组成的三角形相似(或全等),如上图中△AMN∽△ABC。
③主动点运动轨迹与从动点的运动轨迹的夹角(锐角)等于主、从动点与定点连线的夹角。
如上图中∠PAQ=α。
【类型总结】---核心处理方法:Step1:找出主动点的起点和终点;Step2:找出题中所有的定点;Step3:验证两个必要条件,即:①主、从动点与定点连线的夹角为定值;②主、从动点到定点的距离之比是定值。
最值模型-瓜豆原理动点轨迹问题是中考的重要题型,受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。
掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。
本专题就最值模型中的瓜豆原理(动点轨迹基本类型为直线型和圆弧型)进行梳理及对应试题分析,方便掌握。
【模型解读】瓜豆原理:若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。
主动点叫瓜,从动点叫豆,瓜在直线上运动,豆也在直线_上运动;瓜在圆周上运动,豆的轨迹也是圆。
古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”。
模型1、运动轨迹为直线模型1-1如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?解析:当P点轨迹是直线时,Q点轨迹也是一条直线.理由:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.模型1-2如图,在△APQ中AP=AQ,∠PAQ为定值,当点P在直线BC上运动时,求Q点轨迹?解析:当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形。
理由:当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段。
【最值原理】动点轨迹为一条直线时,利用“垂线段最短”求最值。
1)当动点轨迹确定时可直接运用垂线段最短求最值;2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定:①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线;②当某动点到某条直线的距离不变时,该动点的轨迹为直线;③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线;④若动点轨迹用上述方法都合适,则可以将所求线段转化为其他已知轨迹的线段求值。
初中数学几何模型与最值问题专题8瓜豆原理中动点轨迹不确定型最值问题【专题说明】动点轨迹非圆或直线时,基本上将此线段转化为一个三角形中,(1)利用三角形两边之和大于第三边,两边之差小于第三边求最值。
(2)在转化较难进行时,可借助直角三角形斜边上的中线及中位线或构建全等图形进一步转化求最值。
【知识精讲】所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【例题】如图,在反比例函数的图像上有一个动点A,连接AO并延长交图像的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数的图像上运动,若tan∠CAB=2,则k的值为()A.2B.4C.6D.8【模型】一、借助直角三角形斜边上的中线1、如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是()A.6B.C.D.【模型】二、借助三角形两边之和大于第三边,两边之差小于第三边1、如图,已知等边三角形ABC边长为A、B分别在平面直角坐标系的x轴负半轴、轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC长的最小值是()A-1B.3C.3D.2、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=4,BC=2.运动过程中点D到点O的最大距离是______.3、如图,在ABC △中,90ACB ∠=︒,30CAB ∠=︒,6AB =,以线段AB 为边向外作等边ABD △,点E 是线段AB 的中点,连结CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)求平行四边形BCFD 的面积;(3)如图,分别作射线CM ,CN ,如图中ABD △的两个顶点A ,B 分别在射线CN ,CM 上滑动,在这个变化的过程中,求出线段CD 的最大长度.4、如图,在Rt ABC ∆中,90ACB ∠=,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,N 是''A B 的中点,连接MN ,若4,60BC ABC =∠=︒,则线段MN 的最大值为()A .4B .8C .D .6【模型】三、借助构建全等图形1、如图,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点P是AC上的动点,连接B P,以B P为边作等边△B P Q,连接CQ,则点P在运动过程中,线段CQ长度的最小值是______.2、如图,边长为12的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A.6B.3C.2D.1.5【模型】四、借助中位线1、如图,在等腰直角∆ABC中,斜边AB的长度为8,以AC为直径作圆,点P为半圆上的动点,连接B P,取B P的中点M,则CM的最小值为()A.B.C-D.2、如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是()A .2B .322C .52D .3专题8瓜豆原理中动点轨迹不确定型最值问题答案【专题说明】动点轨迹非圆或直线时,基本上将此线段转化为一个三角形中,(1)利用三角形两边之和大于第三边,两边之差小于第三边求最值。
瓜豆原理中动点轨迹直线型最值问题以及逆向构造【专题说明】近些年的中考中,经常出现动点的运动轨迹类问题,通常出题以求出轨迹的长度或最值最为常见。
很多考生碰到此类试题常常无所适从,不知该从何下手。
动点轨迹问题是中考的重要压轴点.受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的一个黑洞.掌握该压轴点的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本文就动点轨迹问题的基本图形作一详述.动点轨迹基本类型为直线型和圆弧型.其实初中阶段如遇求轨迹长度仅有2种类型:“直线型”和“圆弧型”(两种类型中还会涉及点往返探究“往返型”),对于两大类型该如何断定,通常老师会让学生画图寻找3处以上的点来确定轨迹类型进而求出答案,对于填空选择题而言不外乎是个好方法,但如果要进行说理很多考生难以解释清楚。
瓜豆原理:一个主动点,一个从动点(根据某种约束条件,跟着主动点动),当主动点运动时,从动点的轨迹相同.只要满足:1.两“动”,一“定”;2.两动点与定点的连线夹角是定角3.两动点到定点的距离比值是定值。
【引例】(选讲)如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段.【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).结论:P、Q两点轨迹所在直线的夹角等于∠P AQ(当∠P AQ≤90°时,∠P AQ等于MN与BC夹角)P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)如图,D 、E 是边长为4的等边三角形ABC 上的中点,P 为中线AD 上的动点,把线段PC 绕C 点逆时针旋转60°,得到P ’,EP ’的最小值【分析】结合这个例题我们再来熟悉一下瓜豆模型第一层:点P ’运动的轨迹是直线吗?第二层:点P ’的运动长度和点P 的运动长度相同吗?第三层:手拉手模型怎么构造?第四层:分析∠CAP 和∠CBP ’第五层:点P 和点P ’轨迹的夹角和旋转角的关系P'P'P'总共提到了3种处理方式: 1.找始末,定轨迹2.在轨迹上找一点旋转,构造手拉手模型,再通过角度相等得到从动点轨迹.3.反向旋转相关定点,构造手拉手模型,代换所求线段,即逆向构造. 那么什么具体选择什么方法更合适呢?我们再看一道例题 【例题2 宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .现在,我们分别用上面提到的3种策略来处理这个题目策略一:找始末,定轨迹我们分别以BE ,AE 为边,按题目要求构造等边三角形得到G 1与G 2,连接G 1与G 2得到点G 的轨迹,再作垂线CH 得到最小值.前面提到过从动点轨迹和主动点轨迹的夹角与旋转角有关,我们可以调用这个结论,得到∠AMG 1=60°,BABABABA22进一步得到△MBG 1为等腰三角形后,求CH 就不难了.策略二:在点F 轨迹上找一点进行旋转.我们分别对A ,B 顺时针旋转60°,构造手拉手模型,再通过角度相等得到从动点轨迹,对A 点旋转会得到一个正切值为14的角,即1tan tan 4∠G M E =∠A FE=,然后进一步算出最值【简证】311202EM AE EN NEC IC ⇒°⇒∠,则5=2CH对B 点旋转得到∠EMG =∠FBE =90°,相对来说要容易一些.策略三:反向旋转相关定点,构造手拉手模型,代换所求线段.将点C 逆时针旋转60°,得到点H ,易证△CGE ≌△HFE ,则有CG =HF ,作MH ⊥AB 于M ,HM 即为所求.相比之下,先求轨迹后再求垂线段时,比较麻烦,而反向旋转代换所求线段感觉清爽很多.BABA如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为底向右侧作等腰直角△EFG ,连接CG ,则CG 的最小值为 .如图,正方形ABCD 的边长为4,E 为BC 上一点,F 为AB 边上一点,连接EF ,以EF 为底向右侧作等腰直角△EFG ,连接CG ,则AG 的最小值为 .1.如图,在△ABC中,∠ACB=90°,AC=BC=4,点D是BC边的中点,点P是AC边上一个动点,连接PD,以PD为边在PD的下方作等边△PDQ,连接CQ.则CQ的最小值是2.如图,在矩形ABCD中,AB=5,BC=5 3,点P在线段BC上运动(含B、C两点),连接AP,以点A 为中心,将线段AP逆时针旋转60°到AQ,连接DQ,则线段DQ的最小值为3、如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转,使∠1=∠2,且过点D作DG⊥PG,连接CG.则CG最小值为瓜豆原理中动点轨迹直线型最值问题以及逆向构造【专题说明】近些年的中考中,经常出现动点的运动轨迹类问题,通常出题以求出轨迹的长度或最值最为常见。
专题02 瓜豆原理中动点轨迹直线型最值问题以及逆向构造【引例】如图,P 是圆O 上一个动点,A 为定点,连接AP ,Q 为AP 中点,考虑:当点P 在圆O 上运动时,Q 点轨迹是?【分析】观察动图可知点Q 轨迹是个圆,而我们还需确定的是此圆与圆O 有什么关系?考虑到Q 点始终为AP 中点,连接AO ,取AO 中点M ,则M 点即为Q 点轨迹圆圆心,半径MQ 是OP 一半,任意时刻,均有△AMQ ∽△AOP ,QM :PO =AQ :AP =1:2.【小结】确定Q 点轨迹圆即确定其圆心与半径,由A 、Q 、P 始终共线可得:A 、M 、O 三点共线,由Q 为AP 中点可得:AM =12AO .Q 点轨迹相当于是P 点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.1.如图,在中,,,,点是以点为圆心、4为半径的圆上一点,连接,点为中点,则线段长度的最大值为 A .7B .8C .6D .5【解答】解:作的中点,连接、,在直角中,,是直角斜边上的中点,,是的中点,是的中点,,在中,,即,最大值为7.故选:.2.如图,点是双曲线在第一象限上的一动点,连接并延长交另一分支于点,以为斜边作等腰,点在第二象限,随着点的运动,点的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 Rt ABC D 90ACB Ð=°8AC =6BC =D A BD M BD CM ()AB E EM CE ABC D 10AB ===E Q ABC D AB \152CE AB ==M Q BD E AB \122ME AD ==CEM D 5252CM -+……37CM ……\A A 4y x=AO B AB Rt ABC D C A C ()A .B .C .D .【解答】解:作轴与点,连接,作轴于点,为等腰直角三角形,点是的中点,,,,,,,,设点的坐标为,则点为,点是双曲线上,,,点所在的函数解析式为:,故选:.3.如图,一次函数与反比例函数的图象交于,两点,点在以为圆心,1为半径的上,是的中点,已知长的最大值为,则的值为 14y x =-12y x =-4y x =-2y x=-AD x ^D OC CE y ^E ABC D Q O AB OC OA \=CO AO ^COE AOD \Ð=Ð90OEC ODA Ð=Ð=°Q ()OEC ODA AAS \D @D OD OE \=AD CE =C (,)x y A (,)y x -Q A 4y x=4yx \-=4xy \=-\C 4y x-=C 2y x =(0)k y k x=>A B P (2,0)C -C e Q AP OQ 32k ()A.B .C .D .【解答】解:连接,由对称性得:,是的中点,,长的最大值为,长的最大值为,如图,当过圆心时,最长,过作轴于,,,在直线上,设,则,,在中,由勾股定理得:,,(舍或,,,点在反比例函数的图象上,;故选:.49322518322598BP OA OB =Q Q AP 12OQ BP \=OQ Q 32BP \3232´=BP C BP B BD x ^D 1CP =Q 2BC \=B Q 2y x =(,2)B t t (2)2CD t t =--=+2BD t =-Rt BCD D 222BC CD BD =+2222(2)(2)t t \=++-0t =)45-4(5B \-85-Q B (0)k y k x=>4832(5525k \=-´-=C4.如图,是的直径,,为半圆的中点,为弧上一动点,连接并延长,作于点,若点从点运动到点,则点运动的路径长为 AB .CD .4【解答】解:点从点运动到点,,点轨迹是以为直径圆上的弧,为半圆的中点,点从点运动到点的过程中,,,,,,,,故选:.AB O e 4AB =C AB P AC PC BQ PC ^Q P A C Q()p Q PA C BQ PC ^Q \BC CQ ¢C Q AB P \C 45ABC Ð=°45CBQ ¢\Ð=°90COQ ¢\Ð=°4AB =Q BC \=OC \=\ CQ ¢==A5.在中,,,,是以点为圆心,2为半径的圆上一点,连接,为的中点,则线段长度的最大值为 A .7B .3.5C .4.5D .3【解答】解:取的中点,连接、、.在直角中,.是直角斜边上的中点,.是的中点,是的中点,.Rt ABC D 90ACB Ð=°4AC =3BC =D A BD M BD CM ()AB E AD EM CE ABCD 5==E Q ABC D AB 1 2.52CE AB \==M Q BD E AB 112ME AD \==,即.最大值为3.5,故选:.6.如图,线段为的直径,点在的延长线上,,,点是上一动点,连接,以为斜边在的上方作,且使,连接,则长的最大值为 AB .C .D .4【解答】解:如图,作,使得,,连接,则,,,,,,,,即 定长,点 是定点, 是定长,点在半径为1 的上,,2.51 2.51CM -+Q ……1.5 3.5CM ……\B AB O e C AB 4AB =2BC =P O e CP CP PC Rt PCD D 60DCP Ð=°OD OD ()1COE D 90CEO Ð=°60ECO Ð=°OP 2CO CE =OE =OCP ECD Ð=Ð90CDP Ð=°Q 60DCP Ð=°2CP CD \=\2CO CP CE CD==COP CED \D D ∽\2OP CP ED CD==11(2ED OP ==)Q E DE \D E e OD OE DE +Q …,的最大值为,故选:.7.如图,线段,为的中点,动点到点的距离是1,连接,线段绕点逆时针旋转得到线段,连接,则线段长度的最大值是 A .2B .3C .D .【解答】解:以为斜边向上作等腰直角,连接,.,,是等腰直角三角形,是等腰直角三角形,,,,,,,,,1OD \+…OD\1+C 4AB =M AB P M PB PB P 90°PC AC AC ()AB AJB D CJBC AM BM =Q JM AM MB \==JMB \D PBCD BJ \=BC =45MBJ PBC Ð=Ð=°MBP JBC \Ð=ÐQ JB BCMB BP =JBC MBP \D D ∽\JCJBPM BM ==1PM =Q,点的运动轨迹是以为半径的圆,,故线段长度的最大值为.故选:.8.如图,点,的坐标分别为,,点为坐标平面内一点,,点为线段的中点,连接,则的最大值为 ABC .D .【解答】解:如图,点为坐标平面内一点,,在上,且半径为1,取,连接,,,是的中位线,JC \=\C JAJ AB ==Q AC AJ JC \+=…AC D A B (2,0)A (0,2)B C 1BC =M AC OM OM ()1121+12-Q C 1BC =C \B e 2OD OA ==CD AM CM =Q OD OA =OM \ACD D,当最大时,即最大,而,,三点共线时,当在的延长线上时,最大,,,,,,即;故选:.9.如图,,为的中点,的半径为1,点是上一动点,以为直角边的等腰直角三角形(点、、按逆时针方向排列),则线段【解答】解:如图,作,在上截取,连接、、、.,,,,是等腰直角三角形,,,,12OM CD \=OM CD D B C C DB OM 2OB OD ==Q 90BOD Ð=°BD \=1CD \=1122OM CD \==+OM 12+B 4AB =O AB O e P O e PB PBC P B C AC AC …OK AB ^OK OK OA OB ==AK BK KC OP OK OA OB ==Q OK AB ^KA KB \=90AKB Ð=°AKB \D OBK PBC Ð=ÐQ OBP KBC \Ð=ÐQ OB PB BK BC =OBP KBC \D D ∽,,,点的运动轨迹是以点为圆心,为半径的圆,的最大值为,,..10.如图,点是半圆上一动点,以为边作正方形(使在正方形内,连,若,则的最大值为 .【解答】解:通过旋转观察如图可知当时,最长,设与交于点,连接,,,四边形是正方形,、、共线,,在和中,,,,,的最大值故答案为:.\KC BC OP PB==1OP =Q KC \=\C K KC AK ==AC \AC \AC …AC …CAB BC BCDE )BC OE 4AB cm =OD 2+DO AB ^DO DO O e M CM 11904522MCB MOB Ð=Ð=´°=°Q 45DCM BCM \Ð=Ð=°Q BCDE C \M E DEM BEM Ð=ÐEMD D EMB D DE BC MED MEB ME ME =ìïÐ=Ðíï=îMED MEB \D @D ()SAS DM BM \===OD \2=+2+11.如图,已知点是第一象限内的一个定点,若点是以为圆心,2个单位长为半径的圆上的一个动点,连接,以为边向右侧作等边三角形.当点在上运动一周时,点运动的路径长是 .【解答】解:如图,连接、,将绕点逆时针旋转,得线段,连接、,,,为正三角形,为正三角形,,,A P O AP AP AP APB P O e B 4p AO OP AO A 60°AO ¢O B ¢OO¢AO AO ¢=Q 60OAO ¢Ð=°OAO ¢\D APB D Q 60PAB \Ð=°PA BA =,,在与中,,,,即为动点运动的路径,当点在上运动一周时,点运动的路径长是,12.如图,正方形中,,是边的中点,点是正方形内一动点,,连接,将线段绕点逆时针旋转得,连接、.则线段长的最小值为 .【解答】解:如图,连接,将线段绕点逆时针旋转得,连接,,,,,,,,,正方形中,是边的中点,,,,,PAB OAB OAO OAB ¢\Ð-Ð=Ð-ÐPAO BAO\Ð=ÐAPO D ABO D AO AO PAO BAO PA BA ¢=ìïÐ=Ðíï=îAPO ABO \D @D 2OP O B ¢\==O ¢\e B \P O e B 4p ABCD AB =O BC E 2OE =DE DE D 90°DF AE CF OF 2-DO DO D 90°DM OF FM OM 90EDF ODM Ð=Ð=°Q EDO FDM \Ð=ÐDE DF =Q DO DM =()EDO FDM SAS \D @D 2FM OE \==Q ABCD AB =O BC OC \5OD \==OM \==OF MF OM +Q …2OF \…线段长的最小值为.故答案为:.13.如图,在中,,,,点在以为直径的半圆上运动,由点运动到点,连接,点是的中点,则点经过的路径长为 .【解答】解:,,,,连接,,是直径,,即,取,的中点和,连接,,,在中,,为、的中点,,,\OF 2-2-Rt ABC D 90ACB Ð=°16AC =12BC =P AB B A CP M CP M 5p 90ACB Ð=°Q 16AC =12BC=20AB \===AP BP AB Q 90APB \Ð=°AP BP ^BC AC E F ME MFEF BPC D M Q E PC BC //ME BP \12ME BP =在中,点、为、的中点,,,,即,点在以为直径的半圆上,,点的运动路径长为,故答案为:.14.如图,在矩形中,,,点是边上的一个动点,连接,作点关于直线的对称点,连接,设的中点为,当点从点出发,沿边运动到点时停止运动,点 .【解答】解:如图,连接,取使得中点,连接,.四边形是矩形,,,,,,,点的运动轨迹是以为圆心,为半径的圆弧,圆心角为,APC DQ M F PC AC //MF AP \12MF AP =ME MF \^90EMF Ð=°\M EF 1102EF AB \==\M 12552p p ´´=5p ABCD AB =3AD =P AD BP A BP 1A 1A C 1A C Q P A AD D Q 1BA BC O OQ BD Q ABCD 90BAD \Ð=°tan AD ABD AB\Ð==60ABD \Ð=°1A Q QC =Q BO OC =11122OQ BA AB \===\Q O OQ 120°点的运动路径长..15.四边形是边长为4的正方形,点是平面内一点.且满足,现将点绕点顺时针旋转90度,则的最大值 【解答】解:如图,,,点的运动轨迹是以为直径的圆,,,点的运动轨迹是圆,且和点的运动轨迹是等圆,圆心在的延长线上,(可以利用旋转法证明:取的中点,连接,,将绕点顺时针旋转得到,连接,只要证明即可,推出的值)在中,,当点在的延长线上时,的长最大,最大值为,故答案为16.如图,在平面直角坐标系中,已知点,点是以点为圆心、2为半径的圆上的任意动点,以\Q ==ABCD P BP PC ^P D CQ =2+BP PC ^Q 90BPC \Ð=°\P BC PD DQ ^Q PD QD =\Q P O BA BC E DE PE DEC D D 90°DAO D OQ DEP DOQ D @D OQ PE ==Rt BOC D OC ===\1Q CO 1CQ 2+2+(2,3)A P A OP为直角边作等腰直角,且点在第二象限,求的最大值与最小值.【解答】解:连接,将线段绕点逆时针旋转得到线段,连接,,.,,,,,,,,,,.,.17.如图,点为坐标原点,的半径为1,点,动点在上,连接,作等边,,为顺时针顺序),求的最大值与最小值.OPQ D Q AQ OA OA O 90°OE AE AQ AP 90AOE POQ Ð=Ð=°Q AOP EOQ \Ð=ÐOP OQ =Q OA OE =()AOP EOQ SAS \D @D 2EQ AP \==OA ==Q OA OE \==AE ==AQ AE EQ -Q …AQ AE EQ +…2AQ \+…AQ \2+2AQ \-AQ \2-O O e (2,0)A B O e AB (ABC A D B C OC【解答】解:如图,以为边,在的下方作等边,连接,,,和都是等边三角形,,,,,,,,,,,,的最小值为1,最大值为3.18.在数学兴趣小组活动中,小亮进行数学探究活动.(1)是边长为3的等边三角形,是边上的一点,且,小亮以为边作等边三角形,如图1.求的长;OA OA OAD D BD OCBO ABC D Q OAD D AC AB \=AO AD =BAC OAD Ð=ÐOAC BAD \Ð=Ð()OAC DAB SAS \D @D OC BD \=1OB =Q 2OA OD ==2121BD \-+……13BD \……13OC \……OC \ABC D E AC 1AE =BE BEFCF(2)是边长为3的等边三角形,是边上的一个动点,小亮以为边作等边三角形,如图2.在点从点到点的运动过程中,求点所经过的路径长;(3)是边长为3的等边三角形,是高上的一个动点,小亮以为边作等边三角形,如图3.在点从点到点的运动过程中,求点所经过的路径长;(4)正方形的边长为3,是边上的一个动点,在点从点到点的运动过程中,小亮以为顶点作正方形,其中点、都在直线上,如图4.当点到达点时,点、、与点重合.则点所经过的路径长为 ,点所经过的路径长为 .【解答】解:(1)如图,和是等边三角形,,,,,,,;(2)如图2,连接,由(1),,,,,,ABC D E AC BE BEF E C A F ABC D M CD BM BMN M C D N ABCD ECB E C B B BFGH F G AE E B F G H B H 34p G ABC D Q BEF D BA BC \=BE BF =60ABC EBF Ð=Ð=°ABE CBE CBF CBE \Ð+Ð=Ð+ÐABE CBF \Ð=Ð()ABE CBF SAS \D @D 1CF AE \==CF ABE CBF D @D CF AE \=60BCF BAE Ð=Ð=°60ABC Ð=°Q BCF ABC \Ð=Ð//CF AB \又点在点处时,,点在处时,点与点重合.点运动的路径长.(3)如图3,取的中点,连接,,,,,,和是等边三角形,,,,,,,,,又点在处时,,点在处时,点与点重合.点所经过的路径的长;(4)如图,连接,,相交于点,取的中点,的中点,连接,,E C CF AC =E A F C \F 3AC ==BC HHN 12BH BC \=12BH AB \=CD AB ^Q 12BD AB \=BH BD \=ABC D Q BMN D BM BN \=60ABC MBN Ð=Ð=°DBM MBH HBN MBH \Ð+Ð=Ð+ÐDBM HBN \Ð=Ð()DBM HBN SAS \D @D HN DM \=90BHN BDM Ð=Ð=°NH BC \^MC HN CD ==M D N H \N CD ==AC BD O AB M BC N MF NH,点的运动轨迹为以点为圆心,长为半径的圆上;,,即,,,点在以点为圆心,长为半径的圆上;当点在处时,点,,重合,点和点重合;当点在点处时,点和点重合,点与点重合;连接,,由上证明可得,,,点,,三点共线,,点是的中点,是斜边中线,点在以点为圆心,长为半径的圆上;点;点所经过的路径长.12MF BM BN AB \===F M BM 90ABC FBH Ð=Ð=°Q ABC FBC FBH FBC \Ð-Ð=Ð-ÐABF CBH Ð=Ð()MBF NBH SAS \D @D NH MF BM BN \===\H N BN \E B F B H G B E C F O G C CH OG NH NB NC ==90BHC \Ð=°\C G H 90AGC \Ð=°Q O AC OG \Rt AGC D \G O OB \H 34p G ==故答案为:.19.如图,点在线段上,,,以点为圆心、长为半径的圆为,在上取动点,以为边作,使,,、、三点为逆时针顺序,连接,求的取值范围.【解答】解:如图,作,使得,连接,,.在中,,,,,,,,,,34p O AB 1OA =2OB =O OA O e O e P PB PBC D 90PBC Ð=°1tan 2PCB Ð=P B C AC AC BM AB ^24BM OB ==OP AM CM Rt ABM D 123AB OA OB =+===Q 4BM =5AM \===1tan 2PBPCB BC Ð==Q 12OB BM =\OBBPBM BC =90OBM PBC Ð=Ð=°Q OBP MBC \Ð=ÐOBP MBC \D D ∽,,,,.20.点是半径为的上一动点,点是外一定点,.连接,.(1)【阅读感知】如图①,当是等边三角形时,连接,求的最大值;将下列解答过程补充完整.解:将线段绕点顺时针旋转到,连接,.由旋转的性质知:,,即是等边三角形.又是等边三角形,在和△中, △ 在△中,当,,三点共线,且点在的延长线上时,即当,,三点共线,且点在的延长线上时,取最大值,最大值是 .(2)【类比探究】如图②,当四边形是正方形时,连接,求的最小值;(3)【理解运用】如图③,当是以为腰,顶角为的等腰三角形时,连接,求的最小值,并直接写出此时的周长.\12OP BO CM BM ==1OP =Q 2CM \=AM CM AC AM CM -+Q ……37AC \……A O eB O e 6OB =OA AB ABCD OC OC OB B 60°O B ¢OO ¢CO ¢60OBO Т=°6BO BO ¢==OBO D ¢6OO BO \¢==ABC D Q 60ABC \Ð=°AB BC=60OBO ABC \Т=Ð=°OBA O BC\Ð=ТOBA D O BC ¢OB O B OBA O BCAB CB =¢ìïÐ=Тíï=î\OBA D @O BC ¢()SAS OA O C\=¢OO C ¢OC OO O C<¢+¢O O ¢C C OO ¢OC OO O C=¢+¢OC OO O C¢+¢…\O O ¢C C OO ¢OC ABCD OC OC ABC D AB 120°OC OC ABC D【解答】解:(1)将线段绕点顺时针旋转到,连接,.由旋转的性质知:,,即是等边三角形,,又是等边三角形,,,,,在和△中,,△,,在△中,,当,,三点共线,且点在的延长线上时,,OB B 60°O B ¢OO ¢CO ¢60OBO Т=°6BO BO ¢==OBO D ¢6OO BO \¢==ABC D Q 60ABC \Ð=°AB BC =60OBO ABC \Т=Ð=°OBA O BC \Ð=ТOBA D O BC ¢OB O B OBA O BC AB CB =¢ìïÐ=Тíï=îOBA \D @()O BC SAS ¢OA O C \=¢OO C ¢OC OO O C <¢+¢O O ¢C C OO ¢OC OO O C =¢+¢当,,三点共线,且点在的延长线上时,取最大值,的最大值为.故答案为:△,.(2)如图②中,作以为边的正方形,连接,,四边形是正方形,,,四边形是正方形,,,,,在和△中,,△,在中,根据“三角形两边之差小于第三边”,得,当,,三点共线,且点在的延长线上时,,\O O ¢C C OO ¢OC OC 6+OBA D @O BC¢6+1-OB 11OBC D 1OC 1C C Q 11OBC D 16OB BC \==190OBC Ð=°\1OC ==Q ABCD BA BC \=90ABC Ð=°1OBC ABC \Ð=Ð1OBA C BC \Ð=ÐOBA D 1C BC 11OB BC OBA C BC AB BC =ìïÐ=Ðíï=îOBA \D @1()C BC SAS \1CC OA ==1OCC D 11OC CC OC -=-<O 1C C 1C OC 11OC CC OC -=-=当,,三点共线,且点在的延长线上时,取最小值,最小值是.取最小值的图象如下所示:(3)如下图,作以为腰,顶点为点,顶角为的等腰,连接,,过点作于点,,,,,,,在△,,\O 1C C 1C OC OC -OC OB B 120°2OBC D 2OC 2C C B 22BB OC ^2B 26OB BC ==Q 2120OBC Ð=°2230BOC OC B \Ð=Ð=°22BB OC ^Q \222111206022C BB OBC Ð=Ð=´°=°222OB B C =Rt 22C BB 222222222sin 60sin ,6B C B C C BB B C BC =°=Ð===\22222222OC OB B C B C B C =+=+=,,在和△中,,△,在中,根据“三角形两边之差小于第三边”,得,即,当,,三点共线,且点在的延长线上时,,当,,三点共线,且点在的延长线上时,取最小值,最小值是,当取最小值时的图象如如图③中,此时过点作于点,且延长于点,使得,,又△,,在中,,,,,2120ABC OBC Ð=Ð=°Q 2OBA C BC \Ð=ÐOBA D2C BC 22OB BC OBA C BC AB BC =ìïÐ=Ðíï=îOBA \D @2()C BC SAS \2CC OA ==2OCC D 22OC CC OC =-<OC <O 2C C 2C OC 22OC CC OC -=-==22OC CC OC -…\O 2C C 2C OC OC =OC 2-B 3BB AC ^3B OA 3O 33BO OO ^2230BOC OC B Ð=Ð=°Q OBA D @Q 2C BC 2230AOB CC B OC B \Ð=Ð=Ð=°3Rt OBO D 6OB =330O OB AOB Ð=Ð=°31sin 30632BO OB \=×°=´=3cos306OO OB =×°==Q OA =在中,,,,,,以及,在,,的周长为\33AO OO OA =-==3Rt ABO D AB ===BA BC =Q 120ABC Ð=°\AB BC ==3BB AC ^Q \3111206022ABB ABC Ð=Ð=´°=°33AB B C =3Rt ABB D 333sin 60sin 3AB ABB AB AB =°=Ð===33336AC AB B C AB AB \=+=+=ABC \D 66AB BC AC ++=+=+。