模式识别与机器学习期末总结
- 格式:pdf
- 大小:1.03 MB
- 文档页数:3
1.对一个染色体分别用一下两种方法描述:(1)计算其面积、周长、面积/周长、面积与其外接矩形面积之比可以得到一些特征描述,如何利用这四个值?属于特征向量法,还是结构表示法?(2)按其轮廓线的形状分成几种类型,表示成a、b、c等如图表示,如何利用这些量?属哪种描述方法?(3)设想其他的描述方法。
(1)这是一种特征描述方法,其中面积周长可以体现染色体大小,面积周长比值越小,说明染色体越粗,面积占外接矩形的比例也体现了染色体的粗细。
把这四个值组成特征向量可以描述染色体的一些重要特征,可以按照特征向量匹配方法计算样本间的相似度。
可以区分染色体和其它圆形、椭圆细胞结构。
(2)a形曲线表示水平方向的凹陷,b形表示竖直方向的凹陷,c形指两个凹陷之间的突起,把这些值从左上角开始,按顺时针方向绕一圈,可以得到一个序列描述染色体的边界。
它可以很好的体现染色体的形状,用于区分X和Y染色体很合适。
这是结构表示法。
(3)可以先提取待识别形状的骨架,在图中用蓝色表示,然后,用树形表示骨架图像。
2. 设在一维特征空间中两类样本服从正态分布,,两类先验概率之比,试求按基于最小错误率贝叶斯决策原则的决策分界面的x值。
答:由于按基于最小错误率的贝叶斯决策,则分界面上的点服从3、设两类样本的类内离散矩阵分别为,试用fisher准则求其决策面方程,并与第二章习题二的结构相比较。
答:由于两类样本分布形状是相同的(只是方向不同),因此应为两类均值的中点。
4,设在一个二维空间,A类有三个训练样本,图中用红点表示,B类四个样本,图中用蓝点表示。
试问:(1)按近邻法分类,这两类最多有多少个分界面(2)画出实际用到的分界面(3) A1与B4之间的分界面没有用到下图中的绿线为最佳线性分界面。
答:(1)按近邻法,对任意两个由不同类别的训练样本构成的样本对,如果它们有可能成为测试样本的近邻,则它们构成一组最小距离分类器,它们之间的中垂面就是分界面,因此由三个A类与四个B类训练样本可能构成的分界面最大数量为3×4=12。
例2.1 假设在某个地区细胞识别中正常(1w )和异常(2w )两类的先验概率分别为:正常状态: P (1w )=0.9;异常状态: P (2w )=0.1;现有一待识别的细胞,其观察值为X ,从类条件概率密度分布曲线上查的P (1|w x )=0.2,P (2|w x )=0.4。
试对该细胞X 进行分类。
解:利用贝叶斯公式,分别计算出及的后验概率:P (1w )=∑=2111)()|()()|(j jj w P w x P w P w x P =818.01.04.09.02.09.02.0=⨯+⨯⨯; 182.0818.01)|(1)|(12=-=-=x w P x w P ;根据贝叶斯决策式)|(max )|(2,1x w P x w P j j i ==,则i w x ∈;有182.0)|(818.0)|(21=>=x w P x w P 所以合理的决策是把X 归类于正常状态。
例2.2 在例2.1的基础上,利用下表的决策表,按最小风险贝叶斯决策进行分类。
解:已知条件:9.0)(1=w P1.0)(2=w P2.0)|(1=w x P 4.0)|(2=w x P 011=λ,612=λ, 121=λ,022=λ 根据例 2.1的计算结果可知后验概率:818.0)|(1=x w P182.0)|(2=x w P 再按式子∑===cj j j i j i i x w P w w E x R 1)|(),()],([)|(αλαλα,其中i=1,2,…a ,计算出条件风险:092.1)|()|()|(2122111===∑=x w P x w P x R j j j λλα818.0)|()|(1212==x w P x R λα 由于)|()|(21x R x R αα> 即决策为2w 的条件风险小于决策为1w 的条件风险,判断待识别的细胞X 为类—异常细胞。
决 策 损失 状态1w 2w 1α 2α 0 6 1 0。
模式识别学习心得体会篇一:最新模式识别与智能系统专业毕业自我总结最模式识别与智能系统专业大学生毕业自我总结优秀范文个人原创欢迎下载模式识别与智能系统专业毕业论文答辩完成之际,四年大学生活也即将划上一个句号,而我的人生却仅仅是个逗号,我即将开始人生的又一次征程。
作为×××大学(改成自己模式识别与智能系统专业所在的大学)毕业生的我即将告别大学生活,告别亲爱的模式识别与智能系统专业的同学和敬爱的老师,告别我的母校——×××大学。
回顾在×××大学模式识别与智能系统专业的求学生涯,感慨颇多,有酸甜苦辣,有欢笑和泪水,有成功和挫折!大学——是我由幼稚走向成熟的地方,在此,我们认真学习模式识别与智能系统专业知识,拓展自己的知识面,培养自己的模式识别与智能系统实践活动能力。
在思想道德上,×××大学(改成自己就读模式识别与智能系统专业所在的大学)学习期间我系统全面地学习了思政课程的重要思想,不断用先进的理论武装自己的头脑,热爱祖国,热爱人民,坚持四项基本原则,树立了正确的人生观、价值观、世界观,使自己成为思想上过硬的模式识别与智能系统专业合格毕业生。
在模式识别与智能系统专业学习上,我严格要求自己,刻苦钻研篇二:最新模式识别与智能系统专业毕业自我个人小结优秀范文原创最模式识别与智能系统专业大学生毕业个人总结优秀范文个人原创欢迎下载在×××(改成自己模式识别与智能系统就读的大学)模式识别与智能系统专业就读四年青春年华时光,匆匆而过。
四年的时间足以证明了,我爱上了×××(改成自己模式识别与智能系统就读的大学)的一草一木,一人一事。
回想四年里有过多少酸甜苦辣、曾经模式识别与智能系统班级里的欢声笑语,曾经期末考试备战中的辛勤汗水……所有的一切都历历在目。
1、贝叶斯分类器贝叶斯分类器的定义:在具有模式的完整统计知识的条件下,按照贝叶斯决策理论进行设计的一种最优分类器。
贝叶斯分类器的分类原理:通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。
贝叶斯分类器是各种分类器中分类错误概率最小或者在预先给定代价的情况下平均风险最小的分类器。
贝叶斯的公式:什么情况下使用贝叶斯分类器:对先验概率和类概率密度有充分的先验知识,或者有足够多的样本,可以较好的进行概率密度估计,如果这些条件不满足,则采用最优方法设计出的分类器往往不具有最优性质。
2、K近邻法kNN算法的核心思想:如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。
假设有N个已知样本分属c个类,考察新样本x在这些样本中的前K个近邻,设其中有个属于类,则类的判别函数就是决策规则:若则∈什么情况下使用K近邻法:kNN只是确定一种决策原则,在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别,并不需要利用已知数据事先训练出一个判别函数,这种方法不需要太多的先验知识。
在样本数量不足时,KNN法通常也可以得到不错的结果。
但是这种决策算法需要始终存储所有的已知样本,并将每一个新样本与所有已知样本进行比较和排序,其计算和存储的成本都很大。
对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。
3、PCA和LDA的区别Principal Components Analysis(PCA):uses a signal representation criterionLinear Discriminant Analysis(LDA):uses a signal classification criterionLDA:线性判别分析,一种分类方法。
它寻找线性分类器最佳的法线向量方向,将高维数据投影到一维空间,使两类样本在该方向上的投影满足类内尽可能密集,类间尽可能分开。
模式识别期末复习笔记模式识别ch2 贝叶斯决策1.贝叶斯公式2.贝叶斯决策的特例a)先验概率相同(均匀先验概率):决策仅依赖于类条件概率密度b)类条件概率密度相同:决策仅依赖于先验概率3.计算题(医学测试⽅法)4.计算题(车⾝⾼低)5.贝叶斯决策的最优性a)最⼩化误差概率的⾓度i.每次均选择概率⼤的类做判断结果,因此错误概率永远是最⼩的b)最⼩化风险的⾓度i.每次均选择条件风险最⼩的结果,因此总风险最⼩6.对于两类分类问题,最⼩风险贝叶斯决策a)可以基于似然⽐进⾏决策b)p(x|ω1)p(x|ω2)≥λ12?λ22λ21?λ11p(ω2)p(ω1)则判断为1类,否则为2类c)似然⽐超过某个阈值(θ),那么可判决为ω1类7.0-1损失(误判是等价的):最⼩化风险就是最⼤化后验,也就是选择后验最⼤的a)最⼩化误差概率与最⼩化风险等价,即选择最⼤后验的分类,即满⾜最⼩误差概率,也满⾜最⼩风险8.先验概率未知时如何设计风险最⼩的分类器?a)使先验概率取任意值时的总风险的最坏情况尽可能⼩b)极⼩化极⼤准则:i.极⼩化指的是贝叶斯风险,因为它是总风险的最⼩值ii.极⼤化指的是使贝叶斯风险达到最⼤iii.贝叶斯风险是和先验有关的,其最⼤也就是其极值,就是导数等于0 的时候c)极⼩化极⼤风险是最坏的贝叶斯风险9.从最⼩化误差概率的意义上讲,贝叶斯是最优的;贝叶斯决策得到的总风险也是最⼩的10.判别函数a)对于两类分类,根据判别函数的正负进⾏类的判断;对于多类问题,两两组成两类问题b)两类问题下:g(x)=g1(x)?g2(x)i.若g(x)≥0,即g1(x)≥g2(x),则判断为1类,否则为2类c)g1(x),g2(x)的设计i.最⼩总风险贝叶斯分类器1.g1(x)=?R(α1|x),风险的相反数ii.最⼩误差概率贝叶斯分类器1. g 1(x )=p (ω1|x )2. g 1(x )=p (x|ω1)p (ω1)3. g 1(x )=log(p (x|ω1))+log(p (ω1))11.12. 计算题(决策边界为何下偏)ch3 参数估计1. 模式分类的途径(截图)2. 当可⽤数据很多以⾄于减轻了先验知识的作⽤时,贝叶斯估计可退化为最⼤似然估计。
模式识别复习重点总结(总16页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除1.什么是模式及模式识别模式识别的应用领域主要有哪些模式:存在于时间,空间中可观察的事物,具有时间或空间分布的信息; 模式识别:用计算机实现人对各种事物或现象的分析,描述,判断,识别。
模式识别的应用领域:(1)字符识别;(2) 医疗诊断;(3)遥感; (4)指纹识别 脸形识别;(5)检测污染分析,大气,水源,环境监测; (6)自动检测;(7 )语声识别,机器翻译,电话号码自动查询,侦听,机器故障判断;(8)军事应用。
2.模式识别系统的基本组成是什么(1) 信息的获取:是通过传感器,将光或声音等信息转化为电信息;(2) 预处理:包括A\D,二值化,图象的平滑,变换,增强,恢复,滤波等, 主要指图象处理;(3) 特征抽取和选择:在测量空间的原始数据通过变换获得在特征空间最能反映分类本质的特征;(4) 分类器设计:分类器设计的主要功能是通过训练确定判决规则,使按此类判决规则分类时,错误率最低。
把这些判决规则建成标准库;(5) 分类决策:在特征空间中对被识别对象进行分类。
3.模式识别的基本问题有哪些(1)模式(样本)表示方法:(a )向量表示;(b )矩阵表示;(c )几何表示;(4)基元(链码)表示;(2)模式类的紧致性:模式识别的要求:满足紧致集,才能很好地分类;如果不满足紧致集,就要采取变换的方法,满足紧致集(3)相似与分类;(a)两个样本x i ,x j 之间的相似度量满足以下要求: ① 应为非负值② 样本本身相似性度量应最大 ③ 度量应满足对称性④ 在满足紧致性的条件下,相似性应该是点间距离的 单调函数(b)用各种距离表示相似性(4)特征的生成:特征包括:(a)低层特征;(b)中层特征;(c)高层特征 (5) 数据的标准化:(a)极差标准化;(b)方差标准化4.线性判别方法(1)两类:二维及多维判别函数,判别边界,判别规则二维情况:(a )判别函数: ( ) (b )判别边界:(c )判别规则:n 维情况:(a )判别函数: 也可表示为: 32211)(w x w x w x g ++=为坐标向量为参数,21,x x w 12211......)(+++++=n n n w x w x w x w x g X W x g T =)(为增值模式向量。
模式识别学习心得模式识别学习心得1.什么是模式呢?广义地说,存在于时刻和空间中可观察的事物,若是咱们能够区别它们是不是相同或是不是相似,都能够称之为模式。
模式识别就是按照观察到的事物的模式对事物进行分类的进程。
在图像识别技术中,模式识别占有核心的地位。
所以的图像处置技术都是为了更好地进行模式识别做预备。
模式识别是图像识别的实质性阶段。
2。
有两种大体的模式识别方式,即统计模式识别方式和结构(句法)模式识别方式,与此相应的模式识别系统都由两个进程所组成,即设计和实现。
设计是指用必然数量的样本(叫做训练集或学习集)进行分类器的设计。
实现是指用所设计的分类器对待识别的样本进行分类决策。
模式识别系统(如图6-2)中,信息获取和预处置部份大致能够与图像的获取与处置对应。
一般情形下,模式识别技术主要包括"特征提取和选择"和"分类器的设计"。
近几十年来,模式识别技术进展专门快。
但是,进展较成熟、应用较普遍的主如果统计模式识别技术。
3.统计模式识别从一个广义的角度看,模式识别能够看成是一种机械学习的进程。
依照机械学习进程的性质,能够将模式识别方式分成有监督的模式识别方式和非监督的模式识别方式,后者又称为聚类分析方式。
这两种方式在图像识别中都有普遍的应用。
(1)有监督的模式识别方式从识别技术的大体思路和方式看,有监督的模式识别能够分成两类:基于模型的方式和直接分类的方式。
基于模型的方式的基础是贝叶斯(Bayes)决策理论方式,它对模式分析和分类器的设计有实在际的指导意义,是统计模式识别中的一个大体方式,用那个方式进行分类时要求:①各类别整体的概率散布(即所谓的先验概率和类条件概率)是已知的;②要决策分类的类别数是必然的。
假设要研究的分类问题有c个类别,各类别状态用ωi来表示,i=1,2,…,c;对应于各个类别ωi出现的先验概率P(ωi)和类条件概率密度函数p(x|ωi)是已知的。
模式识别总结第一章1、 定义模式识别:对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程。
2、 模式识别的主要方法解决模式识别问题的主要方法可以归纳为基于知识的方法和基于数据的方法。
所谓基于知识的方法,主要是指专家系统为代表的方法,一般归在人工智能的范畴中,其基本思想是,根据人们已知的(从专家那里收集整理的)关于研究对象的知识,整理出若干描述特征与类别间关系的准则,建立一定的计算机推理系统,对未知样本通过这些知识推理决策其类别。
基于数据的方法是模式识别最主要的方法,在无特殊说明的情况下,人们说模式识别通常就是指这一类方法,其任务可以描述为:在类别标号y 与特征向量x 存在一定的未知依赖关系、但已知的信息只有一组训练数据对{(x,y )}的情况下,求解定义在x 上的某一函数y’=f(x),对未知样本进行预测。
这一函数就叫做分类器。
3、 模式识别的分类模式识别可分为监督模式识别与非监督模式识别。
监督模式识别:已知要划分的类别,并且能够获得一定数量的类别已知的训练样本,这种情况下建立分类器的问题属于监督学习的问题。
非监督模式识别:事先不知道要划分的是什么类别,更没有类别已知的样本用作训练,很多情况下我们甚至不知道有多少类别。
我们要做的是根据样本特征讲样本聚成几个类,是属于同一类的样本在一定意义上是相似的,而不同类之间的样本则有较大差异。
这种学校过程称作非监督模式识别,在统计中通常被称为聚类,所得到的类别也称为聚类。
● 分类和聚类的概念分类(监督学习):通过给定的已知类别标号的样本、训练某种学习机器,使他能够对未知泪别进行分类。
聚类(无监督学习):是将数据分类到不同的类或者簇的过程,是探索学习的分析,在分类过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。
简单来说,分类就是按照某种标准给对象标签,再根据标签来分类,对未知数据的预测。