模式识别与机器学习第一章
- 格式:ppt
- 大小:1.51 MB
- 文档页数:63
模式识别与机器学习(⼀)模式识别与机器学习 [国科⼤]模式: 为了能够让机器执⾏和完成识别任务,必须对分类识别对象进⾏科学的抽象,建⽴它的数学模型,⽤以描述和代替识别对象,这种对象的描述即为模式。
模式识别系统过程:1. 特征提取与选择2. 训练学习3. 分类识别模式识别过程从信息层次、形态转换上讲,是由分析对象的物理空间通过特征提取转换为模式的特征空间,然后通过分类识别转换为输出的类别空间。
特征提取是对研究对象本质的特征进⾏量测并讲结果数值化或将对象分解并符号化,形成特征⽮量、符号串或关系图,产⽣代表对象的模式。
特征选择是在满⾜分类识别正确率的条件下,按某种准则尽量选⽤对正确分类识别作⽤较⼤的特征,从⽽⽤较少的特征来完成分类识别任务。
在模式采集和预处理中,⼀般要⽤到模数(A/D)转换。
A/D转换必须注意:1. 采样率,必须满⾜采样定理2. 量化等级,取决于精度要求在数据采集过程中,⼀般我们会进⾏⼀些预处理过程,如1. 去噪声:消除或减少模式采集中的噪声及其它⼲扰,提⾼信杂⽐(信噪⽐)2. 去模糊:消除或减少数据图像模糊及⼏何失真,提⾼清晰度3. 模式结构转换:例如把⾮线性模式转变为线性模式,以利于后续处理,等等预处理的⽅法包括: 滤波,变换,编码,归⼀化等特征提取/选择的⽬的:降低维数,减少内存消耗,使分类错误减⼩分类: 把特征空间划分成类空间,影响分类错误率的因数:1. 分类⽅法2. 分类器的设计3. 提取的特征4. 样本质量模式识别的主流技术有:1. 统计模式识别2. 结构模式识别3. 模糊模式识别4. ⼈⼯神经⽹络⽅法5. ⼈⼯智能⽅法6. ⼦空间法统计模式识别直接利⽤各类的分布特征或隐含地利⽤概率密度函数、后验概率等概念进⾏分类识别。
基本的技术有聚类分析、判别类域代数界⾯法、统计决策法、最近邻法等。
结构模式识别将对象分解为若⼲基本单元,即基元;其结构关系可以⽤字符串或图来表⽰,即句⼦;通过对句⼦进⾏句法分析,根据⽂法⽽决定其类别。
机器学习与模式识别机器学习和模式识别是计算机科学领域中重要的技术和研究方向。
机器学习是一种通过对数据进行分析和学习,以自动发现数据中的模式和规律,并利用这些模式和规律进行预测和决策的方法。
而模式识别是指通过分析和识别数据中的模式和特征,从中提取有效信息,进行分类、识别和推断等任务的过程。
第一部分:机器学习基础1. 机器学习的定义与分类机器学习是指通过算法和模型让计算机系统自动地从数据中学习,以便做出预测和决策。
根据监督学习、无监督学习和强化学习的不同,机器学习可以分为三类。
2. 监督学习监督学习是一种通过给定输入和对应的输出来建立模型的方法。
它通过训练数据集中的样本和标签,学习到输入和输出之间的映射关系,从而对未知数据进行预测。
3. 无监督学习无监督学习是一种通过对数据中的结构和模式进行建模来实现学习的方法。
它不依赖于预先标记的数据,而是通过对数据的统计分析和聚类等方法来揭示数据的内在关系。
4. 强化学习强化学习是一种通过试错的方式从环境中学习最优策略的方法。
在强化学习中,代理通过观察环境的状态和执行动作,从环境中获得奖励信号,并通过修改策略来优化奖励信号。
第二部分:模式识别基础1. 模式识别的定义和应用领域模式识别是一种通过对数据模式和特征进行分析和识别,从中提取有效信息的方法。
它广泛应用于图像识别、语音识别、数据挖掘等领域。
2. 特征提取与选择特征提取是指从数据中选择和提取出对模式识别任务有意义的特征。
特征选择则是在所有特征中选择对识别效果最好的子集。
3. 模式分类与识别模式分类是指将输入数据分到不同的类别中的过程,而模式识别则是指从训练好的模型中识别出新的未知模式的过程。
第三部分:机器学习与模式识别的应用1. 图像识别机器学习和模式识别在图像识别领域具有广泛的应用。
通过训练样本,可以建立模型来对图像进行分类、识别和分割等任务。
2. 语音识别机器学习和模式识别在语音识别领域也发挥着重要作用。
模式识别与机器学习第一章
模式识别与机器学习(Pattern Recognition and Machine Learning)是一本由Christopher M. Bishop撰写的经典教材,该书详细介绍了模式
识别和机器学习的基本原理和方法。
本书的第一章是《机器学习导论》(Introduction to Machine Learning),主要介绍了机器学习的基本概
念和一些重要的数学工具。
总的来说,第一章为读者提供了机器学习基本概念的全面介绍,为后
续章节的学习打下了牢固的基础。
本章内容深入浅出,既包括理论知识,
又有实际应用示例,使读者能够全面理解机器学习的原理和方法。
此外,
本章还提供了一些数学工具的介绍和解释,帮助读者更好地理解机器学习
中的数学原理。
总的来说,《模式识别与机器学习》第一章是一篇详细介绍机器学习
基本概念的重要章节。
它不仅为读者提供了机器学习的背景知识和基本概念,还为后续章节的学习打下了坚实的基础。
无论是初学者还是有一定机
器学习基础的人,阅读这一章都会受益匪浅。
《机器学习与模式识别》教学大纲课程编号:071243B课程类型:□通识教育必修课□通识教育选修课■专业必修课□专业选修课□学科基础课总学时:48讲课学时:32 实验(上机)学时:16学分:3适用对象:计算机科学与技术专业先修课程:程序设计基础与应用、数据结构、高等数学、算法导论一、教学目标《机器学习与算法导论》是计算机科学技术专业的一门专业选修课程。
本课程是面向计算机技术开设的专业选修课。
其教学重点是使学生掌握常见机器学习算法,包括算法的主要思想和基本步骤,并通过编程练习和典型应用实例加深了解;同时对机器学习的一般理论,如假设空间、采样理论、计算学习理论,以及无监督学习和强化学习有所了解。
模式识别部分是研究计算机模式识别的基本理论、方法和应用。
通过本课程的学习,使学生掌握模式识别的基本概念、基本原理、基本分析方法和算法,培养学生利用模式识别方法,运用技能解决本专业和相关领域的实际问题的能力。
学生通过本门课程的学习,能够对机器学习和模式识别的内容有一个较为全面的了解和认识,更深刻地理解机器学习的实质内容,使学生具备前沿的计算机技术必要的专业知识。
从而,为学生今后从事计算机技术应用与计算机技术前沿研究,以及相关领域的科学研究做好理论和技术上的准备。
目标1:通过对机器学习与模式识别基本概念、原理、和基本方法的讲解,让学生理解并掌握机器学习和模式识别的基本技术。
目标2:培养学生利用模式识别方法,运用技能解决本专业和相关领域的实际问题的能力。
目标3:鼓励学生运用知识解决各自学科的实际问题,培养他们的独立科研的能力和理论联系实际的能力。
二、教学内容及其与毕业要求的对应关系(黑体,小四号字)本课程主要介绍决策论与信息论基础、概率分布、回归的线性模型、分类的线性模型、核方法、支持向量机、图模型、混合模型和期望最大化、隐Markov 模型和条件随机场模型、统计决策方法、概率密度函数的估计、线性分类器、非线性分类器、其他分类方法、特征选择、特征提取、非监督模式识别、模式识别系统的评价等。
《机器学习与模式识别》教学大纲课程编号:071243B课程类型:□通识教育必修课□通识教育选修课■专业必修课□专业选修课□学科基础课总学时:48讲课学时:32 实验(上机)学时:16学分:3适用对象:计算机科学与技术专业先修课程:程序设计基础与应用、数据结构、高等数学、算法导论一、教学目标《机器学习与算法导论》是计算机科学技术专业的一门专业选修课程。
本课程是面向计算机技术开设的专业选修课。
其教学重点是使学生掌握常见机器学习算法,包括算法的主要思想和基本步骤,并通过编程练习和典型应用实例加深了解;同时对机器学习的一般理论,如假设空间、采样理论、计算学习理论,以及无监督学习和强化学习有所了解。
模式识别部分是研究计算机模式识别的基本理论、方法和应用。
通过本课程的学习,使学生掌握模式识别的基本概念、基本原理、基本分析方法和算法,培养学生利用模式识别方法,运用技能解决本专业和相关领域的实际问题的能力。
学生通过本门课程的学习,能够对机器学习和模式识别的内容有一个较为全面的了解和认识,更深刻地理解机器学习的实质内容,使学生具备前沿的计算机技术必要的专业知识。
从而,为学生今后从事计算机技术应用与计算机技术前沿研究,以及相关领域的科学研究做好理论和技术上的准备。
目标1:通过对机器学习与模式识别基本概念、原理、和基本方法的讲解,让学生理解并掌握机器学习和模式识别的基本技术。
目标2:培养学生利用模式识别方法,运用技能解决本专业和相关领域的实际问题的能力。
目标3:鼓励学生运用知识解决各自学科的实际问题,培养他们的独立科研的能力和理论联系实际的能力。
二、教学内容及其与毕业要求的对应关系(黑体,小四号字)本课程主要介绍决策论与信息论基础、概率分布、回归的线性模型、分类的线性模型、核方法、支持向量机、图模型、混合模型和期望最大化、隐Markov 模型和条件随机场模型、统计决策方法、概率密度函数的估计、线性分类器、非线性分类器、其他分类方法、特征选择、特征提取、非监督模式识别、模式识别系统的评价等。
模式识别与机器学习
模式识别与机器学习是构建机器智能的两个核心技术,它们是计算机
视觉,自然语言处理,机器学习和人工智能技术的重要组成部分。
模式识
别与机器学习的共同目标是设计用于提取和处理信息的算法,以有效地完
成特定任务。
模式识别通常用于从大量的原始数据中提取有用信息,而机
器学习则用于解决更复杂的任务,例如分类,聚类和预测。
模式识别是从原始数据中提取信息的过程,旨在识别出具有其中一种
特征的模式。
它可以用于识别图像中的物体,检测语音和文本之间的关系,以及分析复杂的信号和序列中的信息。
模式识别还可以用于检测不同事件
的可能性,从而进行分类和聚类。
模式识别算法可以使用不同的方法,包
括统计学,规则提取,以及机器学习算法。
机器学习是通过使用大量训练数据,分析模式,建立模型来完成机器
智能任务的算法。
它依赖于模式识别,以提取模型所需的特征,然后从训
练数据中学习如何解释这些特征,以获得有用的推断。
机器学习技术多种
多样,包括聚类,回归,极大似然估计,支持向量机,神经网络和深度学习。
《模式识别与机器学习》教学大纲Pattern Recognition and Machine Learning第一部分大纲说明1. 课程代码:2. 课程性质:学位必修课3. 学时/学分:40/34. 课程目标:模式识别与机器学习研究计算机识别物体的机理,该课程的学习将为数据分析与处理以及人工智能等领域的学习打下基础。
本课程主要分为两大部分,第一部分主要介绍模式识别,包括模式识别的基本概念、基本原理、典型方法、实用技术以及有关研究的新成果,其目的是使学生掌握模式识别的基本概念和基本原理,了解模式识别在图像分析、语音识别和音频分类等领域的具体应用、存在的问题和发展前景。
第二部分主要介绍机器学习,包括多项式回归、正则方程、逻辑回归、神经网络、深度置信网络、卷积神经网络等,通过教学使学生掌握机器学习的基础理论,以及无监督学习和强化学习等;熟悉常见机器学习的常用算法,以及算法的主要思想和运用方法,并通过编程实践和典型应用实例加深了解。
5. 教学方式:课堂讲授、自学与讨论、课堂上机与实例项目相结合6. 考核方式:考试7. 先修课程:概率论、数字信号处理9. 教材及教学参考资料:(一)教材:《模式识别》第4版,Sergios T等编,电子工业出版社边肇祺,张学工等编著,《机器学习》,Peter Flach. 人民邮电出版社, 2016.(二)教学参考资料:[1]《模式分类》(英文版·第2版), Richard O等编,机械工业出版社[2]《模式识别导论》,范九伦等编,西安电子科技大学出版社[3]《模式识别》第2版,边肇祺等编,清华大学出版社[4]《神经网络与机器学习(英文版·第3版)》. Haykin S. 机械工业出版社[5]《Deep Learning》. Ian Goodfellow, Yoshua Bengio and Aaron Courville. MIT Press第二部分教学内容和教学要求上篇模式识别第一章绪论教学内容:1.1模式与模式识别1.2模式识别的主要方法1.3监督模式识别与非监督模式识别1.4模式识别系统举例1.5模式识别系统的典型构成教学要求:了解模式识别的相关常识与概念,以及一些常用的研究方法。