梁板壳的几何大变形_从近似的非线性理论到有限变形理论
- 格式:pdf
- 大小:483.03 KB
- 文档页数:8
生物软组织力学特性及超弹性模型生物软齟织力学待性属于生物粘弹性固体力学的研究范峙,己广泛应用于生狗怵的基础研允.如机肉讥皮肤国' 心肌阿及布横阿等.为ia袒工程握供了大盘的生物力学数据.宙于生命体结构与功能的复杂性和特殊性.便软组织在变形时表现岀各向杲性、非线性*粘弹性,墜性等特点(珂・其力学模型主要有粘弹性模型利趙弹性摸型.粘弹件锁魁吧研朮生物轮组织的…个早期榄型*理论成筋,c广泛应用到肌罔、闸帯、柏顺、戌|庆、粘贬朋血倚竽轶殂织的生韌力学研咒」山同吋•诫翦地粘押件理论研兗为超禅性模型的发展幵拓了思齬・尽管软组织的力学行为表现出与时间相黄的特性•但崔好应变卒范鬧内(即准静态条件卜[・展魅可将其觇为超弹性体-自上个世紀80年代以来.各圜学者対生物软组织的翘艸峙和为进苗了广泛地研究・程理论利临氐研冗方而血取得了氏足地逬燧・本章首先介细主物软组织力学性能的研宛冇法和歆组织变形时的力学特征.在介绍趙弹性应变能函数王曲,肯龙从连续介质力学出狀.介貂有限变形理论「在这一部分渓及有限变形时的桶种应山/陶变表达方式;隹介绍粗弹性模型吋.就简单的荐向局性应变能碉毀开始・邃歩引入横向同性超弹性模塑・最后提出前卿録腺准静歩轴向力学件能研託方江口因为木文卞要研究家殒前制艘腺在低疵变率下的撞忡力学忤施・故未研JE材料的粘弹杵櫃型.2 1生物软组织力学特性研究方法生樹软组织不冏于常见的金属或高聚物尊材料.其组织结构貝朵.力学ttttfiffi 处环境和实验方註的雖响较大,研覽具力学性醴的硏究方法構像篇考虫鞠理学与工凰学冇面的知HI.生物力学研眾方法主要包含以下儿个主要步悄问:(1)研眾宦砌須纵的i松在学和细观组织结构.以便于理W0FS对镇的几何构翹及对力学性能的滋响.(2)测定问趣屮涉及的M料或组织的力学性葩°在该却需屮・III/试样欣材不便、fj效试禅尺• f不足威试佯的离体狀态,塔加了确宦本构方程的难度,但可以枚为春晶的建立示构方用的粽学厢式,而把某此嚳筛鬲待牛.网实验卿俯定"(3)粮抿物理学基本定律和材科本构方程,推导岀微分方程或积分方程:⑷井清组织嶠肓府工作坏境.得到肖盘义的边界荼件;同时.粥解析圧或坡值法求解边界値何邂*⑸进存生理丈验.验证上述边界値问遞的解.在该步購中,釦必便实验与靂论相一魏・简華地说就绘幣戒拒同的假说;(6)将实验结果与相应的理论解进行对比.验证假设是否合理.求得本构方程:(7)探讨理论与丈验的实际应用。
非线性有限元法综述摘要:本文针对非线性有限元法进行综述,分别从UL列式及TL列式、CR列式、几何精确梁、壳理论三个方面介绍其分析思路和发展动态,旨在为相关学者提供一些思路参考。
关键词:几何非线性;UL列式;TL列式;CR列式;几何精确梁、壳理论1引言几何非线性是由于位置改变引起了结构非线性响应。
进行结构几何非线性分析,实质上就是要得到结构真实的变形与受力情况。
有限元方法是进行结构几何非线性分析的最成熟的方法,也是应用最广泛的分析方法.2非线性有限元法研究思路非线性有限元法主要指UL列式法、TL列式法、CR列式法和几何精确梁、壳理论等,它们有着基本相同的思路,即利用虚功原理建立平衡方程。
方程中充分考虑了非线性因素对结构应变和应力的影响,也就是将线性应变和非线性应变都代入到表达式中,然后确定单元的本构关系并选取合适的形函数,导出单元对应的弹性刚度矩阵和几何刚度矩阵,再选取合适的增量-迭代算法进行求解,由此就完成了结构的整个几何非线性分析求解过程。
非线性有限元法将结构的变形过程划分为三个主要阶段:C0状态、C1状态和C2状态,如图1所示。
图1 单元的变形C0状态是单元的初始状态,C1状态是单元受力变形后上一次处于平衡的状态;C2状态是单元的当前状态,也就是所求的状态。
2.1UL法和TL法研究思路UL法和TL法为几何非线性问题提供了新的分析思路。
这两种方法本质上没有很大区别,但是方程建立的参考状态有所不同。
完全拉格朗日法(TL法)是以结构变形前C0状态为参考建立平衡方程的,考虑结构从C0状态到C2状态之间的变形;而更新的拉格朗日法(UL法)以结构变形后C1状态为参考建立平衡方程的[2],考虑结构从C1状态到C2状态之间的变形。
两种拉格朗日法的主要形式如下:(1)TL列式(2)UL列式从上面两式可以看出:TL法和UL法的另一个不同是TL法的增量平衡方程中考虑了初位移矩阵的影响,而UL法则忽略了其影响,只考虑了弹性刚度矩阵和初应力矩阵的影响。
第二章 弹性力学基本理论及变分原理弹性力学是固体力学的一个分支。
它研究弹性体在外力或其他因素(如温度变化)作用下产生的应力、应变和位移,并为各种结构或其构件的强度、刚度和稳定性等的计算提供必要的理论基础和计算方法。
本章将介绍弹性力学的基本方程及有关的变分原理。
§2.1小位移变形弹性力学的基本方程和变分原理在结构数值分析中,经常用到弹性力学中的定解问题及与之等效的变分原理。
现将它们连同相应的矩阵形式的张量表达式综合引述于后,详细推导可参阅有关的书籍。
§2.1.1弹性力学的基本方程的矩阵形式弹性体在载荷作用下,体内任意一点的应力状态可由6个应力分量表示,它们的矩阵表示称为应力列阵或应力向量111213141516222324252633343536444546555666x x y y z z xy xy yz yz zx zx D D D D D D D D D D D D D D D D D D D D D σεσεσετγτγτγ⎧⎫⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭ (2.1.1) 弹性体在载荷作用下,将产生位移和变形,弹性体内任意一点位移可用3个位移分量表示,它们的矩阵形式为[]T u u v u v w w ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭(2.1.2)弹性体内任意一点的应变,可由6个应变分量表示,应变的矩阵形式为x y Tz xy z xy yz zx xy yz zx εεεσεεεγγγγγγ⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎡⎤==⎨⎬⎣⎦⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭(2.1.3)对于三维问题,弹性力学的基本方程可写成如下形式 1 平衡方程0xy x zx x f x y z τστ∂∂∂+++=∂∂∂ 0xy y zy y f xyzτστ∂∂∂+++=∂∂∂0yz zx zz f x y zττσ∂∂∂+++=∂∂∂ x f 、y f 和z f 为单位体积的体积力在x 、y 、z 方向的分量。
有限元⽅法的发展及应⽤有限元⽅法的发展及应⽤摘要:有限元法是⼀种⾼效能、常⽤的计算⽅法。
有限元法在早期是以变分原理为基础发展起来的,所以它⼴泛地应⽤于以拉普拉斯⽅程和泊松⽅程所描述的各类物理场中。
⾃从1969年以来,某些学者在流体⼒学中应⽤加权余数法中的迦辽⾦法或最⼩⼆乘法等同样获得了有限元⽅程,因⽽有限元法可应⽤于以任何微分⽅程所描述的各类物理场中,⽽不再要求这类物理场和泛函的极值问题有所联系。
基本思想:由解给定的泊松⽅程化为求解泛函的极值问题。
1有限元法介绍1.1有限元法定义有限元法(FEA,Finite Element Analysis)的基本概念是⽤较简单的问题代替复杂问题后再求解。
它是起源于20世纪50年代末60年代初兴起的应⽤数学、现代⼒学及计算机科学相互渗透、综合利⽤的边缘科学。
有限元法的基本思想是将求解域看成是由许多称为有限元的⼩的互连⼦域组成,对每⼀单元假定⼀个合适的(较简单的)近似解,然后推导求解这个域总的满⾜条件(如结构的平衡条件),从⽽得到问题的解。
这个解不是准确解,⽽是近似解,因为实际问题被较简单的问题所代替。
由于⼤多数实际问题难以得到准确解,⽽有限元不仅计算精度⾼,⽽且能适应各种复杂形状,因⽽成为⾏之有效的⼯程分析⼿段。
有限元法最初应⽤在⼯程科学技术中,⽤于模拟并且解决⼯程⼒学、热学、电磁学等物理问题。
1.2有限元法优缺点有限元⽅法是⽬前解决科学和⼯程问题最有效的数值⽅法,与其它数值⽅法相⽐,它具有适⽤于任意⼏何形状和边界条件、材料和⼏何⾮线性问题、容易编程、成熟的⼤型商⽤软件较多等优点。
(1)概念浅显,容易掌握,可以在不同理论层⾯上建⽴起对有限元法的理解,既可以通过⾮常直观的物理解释来理解,也可以建⽴基于严格的数学理论分析。
(2)有很强的适⽤性,应⽤范围极其⼴泛。
它不仅能成功地处理线性弹性⼒学问题、费均质材料、各向异性材料、⾮线性应⽴-应变关系、⼤变形问题、动⼒学问题已及复杂⾮线性边界条件等问题,⽽且随着其基本理论和⽅法的逐步完善和改进,能成功地⽤来求解如热传导、流体⼒学、电磁场等领域的各类线性、⾮线性问题。
第12章结构非线性问题结构的非线性问题可分为两大类,第一类为材料非线性问题,第二类为几何非线性问题。
一些工程结构甚至需要考虑材料和几何双重非线性。
但除了结构存在明显的非线性特征,需要研究非线性分析方法[43]外,在工程精度范围内,许多问题可以用线性分析方法来近似。
§12.1 材料非线性与极限荷载在单纯的材料非线性问题中,假定结构位移微小,位移与应变的几何关系(几何方程)是线性的,而应力与应变关系是非线性的。
这时表征材料特性的弹性模量E和泊松比μ不再是常数,而是应力σ和应变ε的函数。
在有限元分析中,表现在原弹性矩阵[D]是应变的函数,也是位移的函数。
当确定位移模式后,导出的单元刚度矩阵[k]就是结点位移列阵{δ}的函数。
材料非线性问题有非线性弹性问题和非线性弹塑性问题之分。
后者是材料超过屈服极限后呈现出的非线性,常见于各种结构的弹塑性分析。
在简单加载过程中的非线性阶段两者并无本质区别,但卸载过程,前者是可逆过程,即卸载后结构会恢复到加载前的位置;后者是不可逆的,将出现残余变形。
除了加载之外,其它因素如蠕变、温变、裂纹扩展时也存在材料非线性问题。
大多数工程材料(如钢材、钢筋混凝土)在加载变形过程中都存在线弹性阶段、屈服阶段和强化阶段。
随着荷载的增加,结构上应力大的点首先达到屈服强度,发生屈服而使结构进入弹塑性状态。
这时虽然部分材料已进入塑性状态,但相当大部分仍处于弹性范围,因而结构仍可继续承载,直至塑性部分进一步扩展而发生崩溃。
工程设计中,允许材料进入塑性的结构分析称为材料非线性分析,分析基于:理想弹塑性(如图12.1.1所示)、比例加载和平截面等基本假定。
极限状态设计所关心的不是荷载作用下结构弹塑性的演变历程,而是结构出现塑性变形直到崩溃时所能承受的最大荷载,然后考虑结构应有足够的安全储备,以此结构处于极限状态时应同时满足三个条件:平衡条件、屈服条件(也称内力局限条件,即|M|≤M u)和单向机构条件。