材料力学:第六章 弯 曲 变 形
- 格式:ppt
- 大小:2.65 MB
- 文档页数:42
第六章弯曲变形判断弯曲变形1、“平面弯曲梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线”2、“由于挠曲线的曲率与弯矩成正比,因此横截面的挠度与转角也与横截面的弯矩成正比”3、“只要满足线弹性条件,就可以应用挠曲线的近似微分方程”4、“两梁的抗弯刚度相同、弯矩方程相同,则两梁的挠曲线形状相同”5、“梁的挠曲线方程随弯矩方程的分段而分段,只要梁不具有中间铰,梁的挠曲线仍然是一条光滑、连续的曲线。
”6、“最大挠度处的截面转角一定为0”7、“最大弯矩处的挠度也一定是最大”8、“梁的最大挠度不一定是发生在梁的最大弯矩处。
”9、“只要材料服从虎克定律,则构件弯曲时其弯矩、转角、挠度都可以用叠加方法来求”10、“两根几何尺寸、支撑条件完全相同的静定梁,只要所受的载荷相同,则两梁所对应的截面的挠度和转角相同,而与梁的材料是否相同无关”11、“一铸铁简支梁在均布载荷的作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力和变形均相同”选择弯曲变形1、圆截面的悬臂梁在自由端受集中力的作用,当梁的直径减少一半而其他条件不变时,最大正应力是原来的倍;最大挠度是原来的倍。
若梁的长度增大一倍,其他条件不变,最大弯曲正应力是原来的倍,最大挠度是原来的倍。
A:2; B:16 C:8 D:4;2、y’’=M(x)/EI在条件下成立。
A:小变形; B:材料服从虎克定律;C:挠曲线在xoy面内; D:同时满足A、B、C;3、等直梁在弯曲变形时,挠曲线最大曲率发生在处。
A:挠度最大; B:转角最大 C:剪力最大; D:弯矩最大;4、在简支梁中,对于减少弯曲变形效果最明显。
A:减小集中力P; B:减小梁的跨度;C:采用优质钢; D:提高截面的惯性矩5、板条弯成1/4圆,设梁始终处于线弹性范围内:①σ=My/I Z,②y’’=M(x)/EI Z哪一个会得到正确的计算结果?A:①正确、②正确;B:①正确、②错误; C:①错误、②正确; D:①错误、②错误;6、应用叠加原理求横截面的挠度、转角时,需要满足的条件是。
第15单元第六章 弯曲变形§6-1 引言应用:梁的刚度问题,静不定梁,压杆稳定挠曲轴:变弯后的梁轴(当外力位于梁对称面内时,挠曲线为平面曲线)。
挠度()y x : 横截面形心的位移 转角()θx :横截面绕中性轴的转角挠曲轴方程:()y y x = (挠曲轴的解析表达式)()tg dy dxy x θ=='()θθ≈='tg y x(通常θ<︒1=0.01745弧度)§6-2 梁变形基本方程目的:求()y x ,()()[]θx y x =' 途径:建立微分方程求解 一、挠曲轴微分方程1.中性层曲率表示的弯曲变形公式()1ρ=M x EI(其中M 可以通过弯矩方程表示为x 的函数,ρ为曲率半径,它可由'y 和''y 表示) 2.由数学()11232ρ=±''+'y y3.挠曲轴微分方程()()±''+'=y y M x EI1232(1) 4.方程简化,挠曲轴近似微分方程 小变形,()'≈<y θ0.0175(弧度)'<<y 21112+'≈y ((1)式分母等于1)正负号确定——确定坐标系:y 向上''>y 0(从数学) ''<y 0M >0(本书规定) M <⇒选正号()∴''=y M x EI二、积分法计算梁的变形()θ='=+⎰y M x EI dx C()y M x EIdx Cx D =++⎰⎰C 、D 为积分常数,它由位移边界与连续条件确定。
三、位移边界与连续条件边界条件:固定端 y A A ==00,θ 固定铰,活动铰 0,0==F E y y 自由端:无位移边界条件 连续条件 y y C C C C 左右左右===00θθy y y y B BG G G G 左右左右左右===θθ例1:()M x M =0,()''=y x M EI 0()()θ='=+y x M EI x C 0()y x M EIx Cx D =++022由()()y D y C 00000=='==()()∴==y x M EIxx M EIx022θ例2:求挠曲轴微分方程AB 段: BC 段''=y M EI x l 10 ''=-⎛⎝ ⎫⎭⎪y M EI x l201y M EI x lC xD =++03116 y M EI x l x C x D =-⎛⎝ ⎫⎭⎪++0322262边界和连续条件()y 100= ()y l 20=y l y l 1222⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪(连续条件)'⎛⎝ ⎫⎭⎪='⎛⎝ ⎫⎭⎪y l y l 1222 (光滑条件)四个方程定4个常数()()y x M x lEI x l 1022244=- ()()y x M x l EIl2024=-例3:1.画剪力弯矩图2.列挠曲线的位移和连续条件3.画挠曲线大致形状(注明凹凸性与拐点) 位移与连续条件 A :()y 100= B:()()()()a y a y a y a y 2121'='=,C:()()020232==a y a y ,()()a y a y 2232'=' D:无挠曲线大致形状的画法 (1)根据弯矩图定凹凸性, +→⋃-→⋂,(2)弯矩图过零点处为拐点 (3)支座限定支座处的位移§6-3 计算梁位移的奇异函数法奇异函数法仍属积分法。
第六章弯曲变形知识要点1、弯曲变形的概念1)、挠曲线弯曲变形后梁的轴线变为挠曲线。
平面弯曲时,挠曲线为外力作用平面内的平面曲线。
2)、平面弯曲时的变形在小变形情况下,梁的任意二横截面绕各自的中性轴作相对转动,杆件的轴线变为平面曲线,其变形程度以挠曲线的曲率来度量。
1》纯弯曲时,弯矩—曲率的关系(由上式看出,若弯曲刚度EI为常数则曲率为常数,即挠曲线为圆弧线)2》横力弯曲时,弯矩—曲率的关系3)、平面弯曲时的位移1》挠度2》转角挠度和转角的正负号由所选坐标系的正方向来确定。
沿y轴正方向的挠度为正。
转角的正负号判定规则为,将x轴绕原点旋转90°而与y轴重合,若转角与它的转向相同,则为正,反之为负。
4)、挠曲线近似微分方程5)、受弯曲构件的刚度条件,2、积分法求梁的挠度和转角由积分常数C、D由边界条件和连续性条件确定。
对于梁上有突变载荷(集中力、集中力偶、间断性分布力)的情况,梁的弯矩M(x)不是光滑连续函数,应用上式时,应分段积分,每分一段就多出现两个积分常数。
因此除了用边界条件外,还要用连续性条件确定所有的积分常数。
边界条件:支座对梁的位移(挠度和转角)的约束条件。
连续条件:挠曲线的光滑连续条件。
悬臂梁边界条件:固定端挠度为0,转角为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等简支梁边界条件:固定绞支座或滑动绞支座处挠度为0连续条件:在载荷分界处(控制截面处)左右两边挠度相等,转角相等连接铰链处,左右两端挠度相等,转角不等3、叠加原理求梁的挠度和转角1)、叠加原理各载荷同时作用下梁任一截面的挠度和转角等于各个载荷单独作用时同一截面挠度和转角的代数和。
2)、叠加原理的限制叠加原理要求梁某个截面的挠度和转角与该截面的弯矩成线性关系,因此要求:1》弯矩M2》4、弯曲时的超静定问题——超静定梁1)、超静定梁约束反力数目多于可应用的独立的静力平衡方程数的梁称为超静定梁,它的未知力不能用静力平衡方程完全确定,必须由变形相容条件和力与变形间的物理关系建立补充方程,然后联立静力平衡方程与补充方程,求解所有的未知数。