ZPW-2000A轨道电路教材
- 格式:ppt
- 大小:25.17 MB
- 文档页数:1
10.客运专线ZPW-2000A轨道电路D电路在大秦线站内ZPW-2000A轨道电路的基础上,使道岔分支长度由小于等于30m延长到的160m,提高了机车信号车载设备在站内使用的安全性、灵活性,方便了设计。
(二)信号特征1.载频频率下行: 1700-1 1701.4 Hz1700-2 1698.7 Hz2300-1 2301.4 Hz2300-2 2298.7 Hz上行: 2000-1 2001.4 Hz2000-21998.7 Hz2600-12601.4 Hz2600-2 2598.7 Hz2.低频频率:F18~F1频率分别为:10.3 Hz、11.4 Hz、12.5 Hz、13.6 Hz、14.7 Hz、15.8 Hz、16.9 Hz、18 Hz、19.1 Hz、20.2 Hz、21.3 Hz、22.4 Hz、23.5 Hz、24.6 Hz、25.7 Hz、26.8 Hz、27.9 Hz、29 Hz频偏:±11 Hz3.输出功率:70W(400Ω负载)(三)轨道电路工作参数1.轨道电路的标准分路灵敏度:(1)道渣电阻为1.0Ω·km或2.0Ω·km 时,为0.15Ω;(2)道渣电阻不小于3.0Ω·km时,为0.25Ω;2.可靠工作电压:轨道电路调整状态下,接收器接收电压(轨出1)不小于240mV,轨道电路可靠工作;3.可靠不工作:在轨道电路最不利条件下,使用标准分路电阻在轨道区段的任意点分路时,接收器接收电压(轨出1)原则上不大于153mV,轨道电路可靠不工作;4.在最不利条件下,在轨道电路任一处轨面机车信号短路电流不小于下规定值,如表LB6-1所示:表格LB6-1 机车信号短路电流不小于规定值1700 2000 2300 2600频率(Hz)0.50 0.50 0.50 0.45机车信号短路电流(A)5.直流电源电压范围:23.0V~25.0V。
二、系统框图及简要原理(一)各种类型轨道电路系统原理框图1. 区间轨道电路系统结构(1)电气绝缘节-电气绝缘节轨道电路系统结构图LB6-1 区间电气绝缘节-电气绝缘节轨道电路系统结构图\(2)机械绝缘节-电气绝缘节轨道电路系统结构图LB6-2 区间机械绝缘节-电气绝缘节轨道电路系统结构图2.站内轨道电路系统结构机械绝缘节-机械绝缘节轨道电路系统结构图LB6-3 站内机械绝缘节-机械绝缘节轨道电路系统结构图3. 典型的区间和站内正线股道轨道电路框图如图LB6-4和LB6-5所示(1)区间轨道电路结构:图LB6-4 区间轨道电路结构图(2)站内轨道区段轨道电路结构:图LB6-5 站内道岔区段轨道电路结构图(二)简要工作原理1.调谐区的工作原理由于当前铁路线路多为长轨,且多为电气化牵引,为了减少锯轨,采用电气分割相邻轨道电路信号,利用调谐单元对不同频率信号的不同阻抗值,实现相邻区段信号的隔离,划定了轨道电路的控制范围。
原理说明1.系统原理ZPW-2000A型无绝缘移频轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。
电气绝缘节长度改进为29m,由空心线圈、29m长钢轨和调谐单元构成。
调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收;对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,这样便实现了相邻区段信号的电气绝缘。
同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。
ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列车运行前方主轨道电路的所属“延续段”。
主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向小轨道传送。
主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。
调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件通过(XG、XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的必要检查条件之一。
本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。
主轨道和调谐区小轨道检查原理示意图见图2-1。
该系统“电气—电气”和“电气—机械”两种绝缘节结构电气性能相同。
2.电路工作原理及冗余设计2.1 发送器2.1.1 用途ZPW-2000A型无绝缘移频轨道电路发送器在区间适用于非电码化和电码化区段18信息无绝缘移频自动闭塞,供自动闭塞、机车信号和超速防护使用。
在车站可适用于非电码化和电码化区段站内移频电码化发送,并可作站内移频轨道电路使用。
2.1.2 原理框图及电路原理简要说明同一载频编码条件,低频编码条件源,以反码形式分别送入两套微处理器CPU中,其中CPU1产生包括低频控制信号Fc的移频信号。
广州电务段高铁在岗人员强化培训客专ZPW-2000A轨道电路广州电务段第一节客专ZPW-2000轨道电路简介一、客专ZPW-2000A轨道电路技术特点:1.接收器载频选择可通过列控中心进行集中配置,发送器采用无接点的计算机编码方式;2.发送器由既有的N+1提高为1+1的备用模式;3.将既有ZPW-2000A轨道电路的调谐单元和匹配单元整合为一个调谐匹配单元;4.优化了补偿电容的配置,采用25微法一种,不同的信号载频采用不同的补偿间距;补偿电容采用了全密封工艺;5.加大了空心线圈的导线线径,从而提高了关键设备的安全容量要求。
6.客专ZPW-2000A轨道电路系统带有监测和故障诊断功能,系统的状态修提供了技术支持;7.站内采用与区间同制式的客专ZPW-2000A轨道电路;8.站内道岔区段的弯股采用与直股并联的一送一受轨道电路结构,轨道电路在大秦线站内ZPW-2000A轨道电路的基础上,使道岔分支长度由小于等于30m延长到的160m,提高了机车信号车载设备在站内使用的安全性、灵活性,方便了设计。
二、轨道电路技术条件1.使用环境温度:☒室内温度为:-55℃~+40℃;☒室外温度为:-40℃~+70℃;2.周围空气相对湿度:☒室内:不大于85%(温度30°C时)☒室外:不大于95%(温度为30℃时);3.大气压力:70kPa~106kPa(相当于海拔高度3000m以下);4.周围无腐蚀性和引起爆炸危险的有害气体;5.振动条件:☒–室内设备:在5Hz~200Hz时应能承受加速度为5m/s2的正弦稳态振动;☒–室外设备:在5Hz~500Hz时应能承受加速度为20m/s2的正弦稳态振动。
6.在电气化牵引区段钢轨的牵引回流不大于2000A、钢轨电流不平衡系数不大于10%时能够可靠工作 三、信号特征1.载频频率:1型:标称载频+1.4Hz ;2型:标称载频-1.3Hz 。
误差为±0.15Hz 。