PCB阻抗叠构设计
- 格式:docx
- 大小:37.24 KB
- 文档页数:2
PCB阻抗设计及叠层目录前言 (4)第一章阻抗计算工具及常用计算模型 (7)1.0 阻抗计算工具 (7)1.1 阻抗计算模型 (7)1.11. 外层单端阻抗计算模型 (7)1.12. 外层差分阻抗计算模型 (8)1.13. 外层单端阻抗共面计算模型 (8)1.14. 外层差分阻抗共面计算模型 (9)1.15. 内层单端阻抗计算模型 (9)1.16. 内层差分阻抗计算模型 (10)1.17. 内层单端阻抗共面计算模型 (10)1.18. 内层差分阻抗共面计算模型 (11)1.19. 嵌入式单端阻抗计算模型 (11)1.20. 嵌入式单端阻抗共面计算模型 (12)1.21. 嵌入式差分阻抗计算模型 (12)1.22. 嵌入式差分阻抗共面计算模型 (13)第二章双面板设计 (14)2.0 双面板常见阻抗设计与叠层结构 (14)2.1. 50 100 || 0.5mm (14)2.2. 50 || 100 || 0.6mm (14)2.3. 50 || 100 || 0.8mm (15)2.4. 50 || 100 || 1.6mm (15)2.5. 50 70 || 1.6mm (15)2.6. 50 || 0.9mm || Rogers Er=3.5 (16)2.7. 50 || 0.9mm || Arlon Diclad 880 Er=2.2 (16)第三章四层板设计 (17)3.0. 四层板叠层设计方案 (17)3.1. 四层板常见阻抗设计与叠层结构 (18)3.10. SGGS || 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm (18)3.11. SGGS || 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm (19)3.12. SGGS || 50 55 60 || 90 95 100 || 1.6mm (20)3.13. SGGS || 50 55 60 || 85 90 95 100 || 1.0mm 1.6mm (21)3.14. SGGS || 50 55 75 || 100 || 1.0mm 2.0mm (22)3.15. GSSG || 50 || 100 || 1.0mm (22)3.16. SGGS || 75 ||100 105 || 1.3mm 1.6mm (23)3.17. SGGS || 50 100 || 1.3mm (23)3.18. SGGS || 50 100 || 1.6mm (24)3.19. SGGS || 50 || 1.6mm || 混压 (24)3.20. SGGS || 50 || 1.6mm || 混压 (25)3.21. SGGS || 50 || 100 || 2.0mm (25)第四章六层板设计 (26)4.0. 六层板叠层设计方案 (26)4.1. 六层板常见阻抗设计与叠层结构 (27)4.10. SGSSGS || 50 55 || 90 100 || 1.0mm (27)4.11. SGSSGS || 50 || 90 100 || 1.0mm (28)4.12. SGSSGS || 50 || 90 100 || 1.6mm (29)4.13. SGSGGS || 50 || 90 100 || 1.6mm (30)4.14. SGSGGS || 50 || 90 100 || 1.6mm (31)4.15. SGSSGS || 50 75 || 100 || 1.6mm (32)4.16. SGSSGS || 50 || 90 100 || 1.6mm (33)4.17. SGSSGS || 50 || 100 || 1.6mm (34)4.18. SGSSGS || 50 60 || 90 100 || 1.6mm (35)4.19. SGSSGS || 50 60 || 100 110 || 1.6mm (36)4.20. SGSSGS || 50 || 90 100 || 1.6mm (37)4.21. SGSSGS || 65 75 || 100 || 1.6mm (38)4.22. SGSGGS || 50 55 || 85 90 100 || 1.6mm (39)4.23. SGSSGS || 50 55 || 90 100 || 1.6mm (40)4.24. SGSGGS || 50 55 || 90 100 || 1.6mm (41)4.25. SGSGGS || 50 || 90 100 || 1.6mm (42)4.26. SGGSGS || 50 60 || 90 100 || 1.6mm (43)4.27. SGSGGS || 37.5 50 || 100 || 2.0mm (44)4.28. SGSGGS || 37.5 50 || 100 || 2.0mm (45)4.29. SGSGGS || 37.5 50 || 100 || 2.0mm (46)4.30. SGSGGS || 37.5 50 || 100 || 2.0mm (47)第五章八层板设计 (48)5.0. 八层板叠层设计方案 (48)5.1. 八层板常见阻抗设计与叠层结构 (49)5.10. SGSSGSGS || 50 55 || 90 100 || 1.0mm (49)5.11. SGSGGSGS || 50 55 || 90 100 || 1.0mm (50)5.12. SGSGGSGS || 55 || 90 100 || 1.0mm (51)5.13. SGSSGSGS || 55 90 100 || 1.6mm (52)5.14. SGSGGSGS || 50 || 100 || 1.6mm (53)5.15. SGSGGSGS || 55 90 100 || 1.6mm (54)5.16. SGSGGSGS || 50 55 || 100 || 1.6mm (55)5.17. SGSSGSGS || 37.5 50 55 75 || 90 100 || 1.6mm (56)5.18. SSGSSGSS || 50 || 100 || 1.6mm (57)5.19. SGSGSSGS || 50 55 || 90 100 || 1.6mm (58)5.20. GSGSSGSG || 50 60 || 100 || 2.0mm (59)5.21. SGSGGSGS || 37.5 50 55 75 || 90 100 || 2.0mm (60)5.22. SSGSSGSS || 50 55 60 || 100 || 2116 2.0mm (61)5.23. SGSG GSGS || 55 || 90 100 || 2116 2.0mm (62)5.24. SGSGGSGS || 50 65 70 || 50 85 100 110 || 2.0mm (63)5.25. GSGSSGSG || 50 ||100 || 2.0mm (64)5.26. SGSGSSGS || 50 55 60 || 85 90 100 || 2.0mm (65)5.27. SGSSGSGS || 50 55 || 90 100 || 2.0mm (67)第六章十层板设计 (68)6.0 十层板叠层设计方案 (68)6.1. 十层常见阻抗设计与叠层结构 (69)6.10. SGSSGSGSGS || 50 || 100 || 1.6mm (69)6.11. SGSSGSGSGS || 50 || 100 || 1.6mm (70)6.12. SGSSG GSSGS || 50 || 90 100 || 1.6mm (71)6.13. SGSGG SGSGS || 50 || 90 100 || 2.0mm (72)6.14. SGSSGGSSGS || 50 || 100 || 1.8mm (73)6.15. SGSSGGSSGS || 50 || 100 || 2.0mm (74)6.16. SGSSGGSSGS || 50 || 90 100 || 2.0mm (75)6.17. SGSGGSGSGS || 50 || 100 || 2.0mm (76)6.18. SGSSGSGSGS || 50 || 90 100 || 2.0mm (77)6.19. SGSGSGGSGS || 50 || 100 || 2.0mm (78)6.20. SGSGSGGSGS || 50 75 || 150 || 2.4mm (79)6.21. SGGSSGSGGS || 50 75 || 100 || 1.8mm (80)第七章十二层板设计 (81)7.0 十二层板叠层设计方案 (81)7.1 十二层常见阻抗设计与叠层结构 (82)7.10. SGSGSGGSGSGS || 33 37.5 40 50 || 85 90 100 || 1.6mm (82)7.11. SGSSGSSGSSGS || 50 || 100 || 1.6mm (83)7.12. SGSGSGGSGSGS || 50 || 100 || 1.6mm (85)7.13. SGSGSGGSGSGS || 33 37.5 40 50 || 85 90 100 || 1.6mm (86)7.14. SGSGSGGSGSGS || 33 37.5 40 50 || 85 90 100 || 1.6mm (87)7.15. SGSSGGSSGSGS || 45 50 || 100 || 1.6mm (89)7.16. SG SG SG GS GS GS || 50 || 100 || 1.6mm (90)7.17. SGSGSGGSGSGS || 50 60 || 100 || 2.0mm (91)7.18. SGSGSGGSGSGS || 50 55 || 90 100 || 2.0mm (92)7.19. SGSGSGGSGSGS || 50 60 || 100 || 2.2mm (93)前言随着信号传输速度的迅猛提高以及高频电路的广泛应用,对印刷电路板也提出了更高的要求?要得到完整?可靠?精确?无干扰?噪音的传输信号?就必须保证印刷电路板提供的电路性能保证信号在传输过程中不发生反射现象,信号完整,传输损耗低,起到匹配阻抗的作用?为了使信号,低失真﹑低干扰?低串音及消除电磁干扰EMI?阻抗设计在PCB设计中显得越来越重要?对我们而言,除了要保证PCB板的短、断路合格外,还要保证阻抗值在规定的范围内,只有这两方向都合格了印刷板才符合客户的要求。
DFM 设计常用 FR4材料简介 :阻抗控制:表面处理 :叠层设计 :常用 FR4材料简介:由什么组成:不是一种材料名称,而是一种材料等级,目前一般电路板所用的 FR-4等级材料就有非常多的种类,但是多数都是以所谓的四功能 (Tera-Function的环氧树脂加上填充剂 (Filler以及玻璃纤维所做出的复合材料。
板材的种类:如 core , pp 。
各自的厚度参考表我们设置的层叠,工厂是否可以不加改动直接叠压出来,需要结合以下三张表格的数据: 1、常用芯板(即我们常说的 CORE 厚度对照表 (两位小数的代表介质厚度,一位小数的包括铜箔厚度 :芯板 (标称值 mm0.10 0.13 0.21 0.25 0.36 0.51 0.71 英制 (mil 4 5 8 10 14 20 28 芯板 (标称值 mm0.8 1 1.2 1.6 2 2.4 2.5 英制 (mil 31.5 38.98 45.28 61.02 76.77 92.52 96.462、三种常用半固化片 (即我们常说的 PP 在不同条件下的厚度取值 (milcopper 代表 TOP 和 BOTTOM 层 ,gnd 代表电源或地层 ,signal 代表信号层。
0.5Oz介质厚度 Copper/Gnd Gnd/Gnd Copper/Signal GND/signal Signal/Signal 1080 2.8 2.6 2.5 2.4 2.22116 4.6 4.4 4.2 4 3.87628 7.3 7 6.8 6.7 6.61Oz介质厚度 Copper/Gnd Gnd/Gnd Copper/Signal GND/signal Signal/Signal 1080 2.8 2.6 2.5 2.4 2.22116 4.5 4.3 4.1 3.9 3.77628 7.1 6.8 6.6 6.5 6.43、工厂常用的标准铜厚参数对照表:标称基铜规格(um/OZ18/0.5 35/1.0 70/2.0 内层计算铜厚(mil0.6 1.2 2.6 外层计算铜厚(mil1.92.563.94阻抗控制:阻抗受哪些因素影响对于一个 pcb 微带线影响阻抗的主要是线宽、线路的厚度、到参考平面的距离和所使用的材料的介电常数。
pcb阻抗计算及计算叠层PCB阻抗是指信号在PCB上传输时遇到的电阻、电感和电容的综合表现。
阻抗值的大小和信号的传输质量密切相关。
因此,在进行PCB 设计时,阻抗计算是十分重要的。
今天我们来看看如何计算PCB的阻抗,以及如何计算出合适的叠层。
第一步,计算PCB的标准阻抗值。
这个阻抗值取决于PCB板的材料和板厚。
我们可以使用PCB设计软件中的阻抗计算工具,根据板厚和材料来确定标准阻抗值。
例如,FR-4材料的板厚为1.6mm时,标准阻抗值是50欧姆,如果板厚为0.8mm,那么标准阻抗值是100欧姆。
第二步,根据需要确定实际阻抗值。
在PCB的布局设计阶段,需要根据实际信号的频率及其特性来确定实际的阻抗值。
这个值可以是标准阻抗值的倍数,通常在10%-15%之间,要尽量保持一致性。
这样做可以减少信号反射和信号衰减,提高信号传输的质量。
第三步,通过调整线宽、间距和介质厚度来达到要求的阻抗值。
在调整PCB布局设计时,可以通过调整线宽、间距和介质厚度等措施来达到所需要的阻抗值。
在一些特殊情况下,可以使用微带线、同轴线等技术来实现更高的阻抗要求。
在计算阻抗的基础上,还需要考虑如何计算出合适的叠层。
事实上,PCB中不同层之间的阻抗也可能会有影响。
在PCB设计时,需要调整叠层厚度和选用合适的介质材料来保证整个PCB阻抗的稳定性和一致性。
总之,在进行PCB设计时,按照以上步骤进行阻抗和叠层计算是十分重要和必要的。
这有助于提高信号传输质量,避免信号反射和信号衰减,提高整个PCB系统的可靠性。
当然,如果没有相关经验和技能,我们也可以寻求专业的PCB设计公司的帮助来完成这些工作。
PCB线路板常用阻抗设计及叠层结构PCB线路板(Printed Circuit Board)是现代电子设备中常用的一种基础组件,用于支持和连接电子元件,实现电路功能。
在PCB设计过程中,阻抗是一个重要的设计参数,特别是在高频信号传输和高速数字信号传输中。
1.电源和地线:电源和地线通常被设计成具有低阻抗的结构,以确保稳定的电源供应和良好的信号接地。
在PCB布局中,电源和地线一般会采用较宽的铜箔,以降低电阻和电感。
2.信号线:对于高速数字信号和高频信号的传输,常常需要控制信号线的阻抗。
阻抗匹配可以提高信号传输的带宽和抗干扰能力。
常见的阻抗设计包括单端阻抗和差分阻抗。
单端线路一般采用50欧姆的阻抗,而差分线路一般采用90欧姆的阻抗。
3.地平面:在高速数字信号传输中,地平面既可以作为信号的返回路径,同时也可以帮助抑制信号的辐射和干扰。
为了保持地平面的阻抗一致性,通常会在地平面上布满大面积的铜箔,以降低电阻和电感。
5.间距和宽度:阻抗的大小与线路的宽度和间距密切相关。
调整线路的宽度和间距可以实现对阻抗的精确控制。
在设计过程中,可以使用专业的PCB设计工具进行阻抗仿真和优化,以满足设计需求。
对于PCB线路板的叠层结构,常见的设计包括以下几种:1. 单面板(Single Layer PCB):单面板是最简单的PCB结构,只有一层导电层,通常用于简单的电路或低成本的产品中。
2. 双面板(Double Layer PCB):双面板具有两层导电层,信号可以在两层之间进行传输。
双面板可以实现更复杂的电路布局和更高的密度,通常用于中等复杂度的产品。
3. 多层板(Multilayer PCB):多层板由内外多个导电层组成,其中通过绝缘层来隔离。
多层板可以实现更高的集成度和更复杂的布局,用于高速数字信号传输和复杂电路的设计。
4. 刚性-柔性板(Rigid-Flex PCB):刚性-柔性板结合了刚性电路板和柔性电路板的优势。
PCB设计中叠层设计和阻抗计算需要注意的4点在高速PCB设计流程里,叠层设计和阻抗计算是登顶的第一梯。
阻抗计算方法很成熟,不同软件的计算差别不大,相对而言比较繁琐,阻抗计算和工艺制程之间的一些"权衡的艺术",主要是为了达到我们阻抗管控目的的同时,也能保证工艺加工的方便,以及尽量降低加工成本。
下面百能网小编总结了一些设计叠层算阻抗是的注意事项,帮助大家提高计算效率。
1,线宽宁愿宽,不要细。
因为制程里存在细的极限,宽是没有极限的,所以如果后期为了调阻抗把线宽调细而碰到极限时那就麻烦了,要么增加成本,要么放松阻抗管控。
所以在计算时相对宽就意味着目标阻抗稍微偏低,比如单线阻抗50ohm,我们算到49ohm就可以了,尽量不要算到51ohm。
2,整体呈现一个趋势。
我们的设计中可能有多个阻抗管控目标,那么就整体偏大或偏小,不要出现类似100ohm 的偏大,90ohm的偏小这种不同步偏大偏小的情况。
3,考虑残铜率和流胶量。
当半固化片一边或两边是蚀刻线路时,压合过程中胶会去填补蚀刻的空隙处,这样两层间的胶厚度时间会减小,残铜率越小,填的越多,剩下的越少。
所以如果需要的两层间半固化片厚度是5mil,要根据残铜率选择稍厚的半固化片。
4,指定玻布和含胶量。
不同的玻布,不同的含胶量的半固化片或芯板的介电系数是不同的,即使是差不多高度的也可能是3.5和4的差别,这个差别可以引起单线阻抗3ohm左右的变化。
另外玻纤效应和玻布开窗大小密切相关,如果是10Gbps或更高速的设计,而叠层又没有指定材料,板厂用了单张1080的材料,那就可能出现信号完整性问题。
当然残铜率流胶量计算不准,新材料的介电系数有时和标称不一致,有的玻布板厂没有备料等等都会造成设计的叠层实现不了或交期延后。
那么最好的办法就是在设计之初让板厂按我们的要求,加上他们的经验设计叠层,这样最多几个来回就能得到理想又可实现的叠层了。
PCB常用阻抗设计方案及叠层PCB(Printed Circuit Board,印刷电路板)是电子设备中最常见的一种电路板,用于连接和支持电子组件。
在PCB设计中,阻抗是一个重要的考虑因素,特别是在高频电路和信号传输中。
以下是PCB常用阻抗设计方案及叠层的介绍:1.阻抗定义和常见值:阻抗是指电路中电流和电压之间的比率,表示电路对交流信号的阻碍程度。
在PCB设计中,常见的阻抗值包括50Ω,75Ω和100Ω等,其中50Ω应用最为广泛。
2.单层PCB阻抗设计:在单层PCB设计中,通过控制信号线的宽度和距离来实现特定的阻抗值。
一般来说,信号线的宽度越宽,阻抗越低。
在设计过程中,可以使用阻抗计算工具或阻抗计算公式来确定合适的信号线宽度。
3.双层PCB阻抗设计:在双层PCB设计中,可以使用不同的叠层结构来实现特定的阻抗值。
常见的叠层结构包括两层相邻的信号层,两层信号层之间夹一层地层,以及两层信号层之间夹一层电源层等。
4.多层PCB阻抗设计:多层PCB通常包含四层或六层,在更高层数的PCB中,可以使用更复杂的阻抗设计方案。
常见的多层PCB阻抗设计方案包括均匀分布阻抗线和差分阻抗线。
5.均匀分布阻抗线:均匀分布阻抗线是指在PCB内部平面层上均匀分布的阻抗线。
通过控制平面层与信号层之间的距离和信号层上的信号线宽度,可以实现特定的阻抗值。
这种设计方案适用于高频电路和差分信号传输。
6.差分阻抗线:差分阻抗线是指将信号和其反相信号同时传输在两条平行的信号线上。
差分信号传输具有很好的抗干扰能力和信号完整性。
在PCB设计中,通过控制差分信号线和地线之间的距离和信号线宽度,可以实现特定的阻抗值。
总之,PCB阻抗设计是非常重要的一部分,在高频电路和信号传输中尤其关键。
通过合理选择信号线宽度、距离以及叠层结构等设计参数,可以实现所需的阻抗值。
在PCB设计过程中,可以借助专业的设计软件和计算工具,以及参考相关的设计规范和指南来进行阻抗设计。
PCB线路板常用阻抗设计及叠层结构PCB线路板的设计中,阻抗是一个重要的考虑因素。
阻抗设计是为了保证信号传输的质量和可靠性。
阻抗是指电流和电压之间的相对比例。
在PCB线路板设计中,要求电路中的高速和高频信号传输能够保持最佳的传输质量,所以需要对不同的信号进行不同的阻抗设计。
本文主要介绍PCB线路板常用的阻抗设计及叠层结构。
一、阻抗概述阻抗是电路中的一个重要参数,它描述了电路中电流和电压的关系。
在高速传输的PCB设计中,考虑阻抗的阻抗匹配特性,以尽量减少信号的反射和干扰,确保信号传输质量的稳定和可靠。
二、常用的阻抗设计1、单端阻抗设计单端阻抗设计是在单层PCB上完成的,适用于低频和中频的信号传输。
设计单端阻抗的目的是保持信号传输线的特性阻抗在设计范围内。
单端阻抗设计要考虑线宽、线距、板厚等因素,可通过常见的PCB设计软件实现。
2、差分阻抗设计差分阻抗设计是应用于高速传输的场合,旨在提高信号传输质量与带宽。
差分阻抗是指正负极性间的信号传输线阻抗,它相对于地线的阻抗相等。
差分阻抗的设计需要考虑线宽、线距、板层、板厚等因素,同时需要对信号输入端口的匹配进行优化。
三、常用的PCB线路板叠层开发结构1、4层板结构4层板结构是常见的PCB线路板设计中的最简单的叠层结构。
它包括两个内层地面层和两个信号层。
它通常被用于低频和中频电路设计,因为它具有较低的成本和更好的EMI性能。
2、6层板结构6层板结构是在4层的基础上增加信号层和地面层,同时也增加了堆叠方式的选择。
这使得6层板结构适用于更高频的应用程序,因为它具有更好的阻抗控制和EMI性能。
3、8层板结构8层板结构包括4层信号层和4层地面层。
在8层板结构中,可以通过两个内层地面层的特殊排布减少串扰,这使得它成为高速传输PCB线路板设计的理想选择。
此外,在PCB线路板设计中,8层板结构通常用于高密度板级设计,因为它提供更多的丰富选项和更好的EMI性能。
四、总结阻抗设计是PCB线路板设计中的一个重要环节,它要求传输线的特性阻抗能够稳定在设计范围内。
PCB阻抗设计及叠层结构目录前言..................................................................................第一章阻抗计算工具及常用计算模型.....................................................1.0 阻抗计算工具................................................ 错误!未定义书签。
1.1 阻抗计算模型..................................................................1.11. 外层单端阻抗计算模型...................................................1.12. 外层差分阻抗计算模型...................................................1.13. 外层单端阻抗共面计算模型...............................................1.14. 外层差分阻抗共面计算模型...............................................1.15. 内层单端阻抗计算模型...................................................1.16. 内层差分阻抗计算模型...................................................1.17. 内层单端阻抗共面计算模型...............................................1.18. 内层差分阻抗共面计算模型...............................................1.19. 嵌入式单端阻抗计算模型.................................................1.20. 嵌入式单端阻抗共面计算模型.............................................1.21. 嵌入式差分阻抗计算模型.................................................1.22. 嵌入式差分阻抗共面计算模型.............................................第二章双面板设计.....................................................................2.0 双面板常见阻抗设计与叠层结构..................................................2.1. 50 100 || 0.5mm ..........................................................................................................2.2. 50 || 100 || 0.6mm .......................................................................................................2.3. 50 || 100 || 0.8mm .......................................................................................................2.4. 50 || 100 || 1.6mm .......................................................................................................2.5. 50 70 || 1.6mm ............................................................................................................2.6. 50 || 0.9mm || Rogers Er=3.5 ......................................................................................2.7. 50 || 0.9mm || Arlon Diclad 880 Er=2.2 .......................................................................第三章四层板设计.....................................................................3.0. 四层板叠层设计方案...........................................................3.1. 四层板常见阻抗设计与叠层结构 ...............................................3.10. SGGS || 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm ........................3.11. SGGS || 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm ........................3.12. SGGS || 50 55 60 || 90 95 100 || 1.6mm ...................................................................3.13. SGGS || 50 55 60 || 85 90 95 100 || 1.0mm 1.6mm ..................................................3.14. SGGS || 50 55 75 || 100 || 1.0mm 2.0mm .................................................................3.15. GSSG || 50 || 100 || 1.0mm .......................................................................................3.16. SGGS || 75 ||100 105 || 1.3mm 1.6mm .....................................................................3.17. SGGS || 50 100 || 1.3mm ..........................................................................................3.18. SGGS || 50 100 || 1.6mm ..........................................................................................3.19. SGGS || 50 || 1.6mm || 混压 ..............................................3.20. SGGS || 50 || 1.6mm || 混压 ..............................................3.21. SGGS || 50 || 100 || 2.0mm .......................................................................................第四章六层板设计.....................................................................4.0. 六层板叠层设计方案...........................................................4.1. 六层板常见阻抗设计与叠层结构 ................................................4.10. SGSSGS || 50 55 || 90 100 || 1.0mm ........................................................................4.11. SGSSGS || 50 || 90 100 || 1.0mm .............................................................................4.12. SGSSGS || 50 || 90 100 || 1.6mm .............................................................................4.13. SGSGGS || 50 || 90 100 || 1.6mm .............................................................................4.14. SGSGGS || 50 || 90 100 || 1.6mm .............................................................................4.15. SGSSGS || 50 75 || 100 || 1.6mm .............................................................................4.16. SGSSGS || 50 || 90 100 || 1.6mm .............................................................................4.17. SGSSGS || 50 || 100 || 1.6mm ..................................................................................4.18. SGSSGS || 50 60 || 90 100 || 1.6mm ........................................................................4.19. SGSSGS || 50 60 || 100 110 || 1.6mm ......................................................................4.20. SGSSGS || 50 || 90 100 || 1.6mm .............................................................................4.21. SGSSGS || 65 75 || 100 || 1.6mm .............................................................................4.22. SGSGGS || 50 55 || 85 90 100 || 1.6mm ...................................................................4.23. SGSSGS || 50 55 || 90 100 || 1.6mm ........................................................................4.24. SGSGGS || 50 55 || 90 100 || 1.6mm ........................................................................4.25. SGSGGS || 50 || 90 100 || 1.6mm .............................................................................4.26. SGGSGS || 50 60 || 90 100 || 1.6mm ........................................................................4.27. SGSGGS || 37.5 50 || 100 || 2.0mm ..........................................................................4.28. SGSGGS || 37.5 50 || 100 || 2.0mm ..........................................................................4.29. SGSGGS || 37.5 50 || 100 || 2.0mm ..........................................................................4.30. SGSGGS || 37.5 50 || 100 || 2.0mm ..........................................................................第五章八层板设计.....................................................................5.0. 八层板叠层设计方案...........................................................5.1. 八层板常见阻抗设计与叠层结构 ................................................5.10. SGSSGSGS || 50 55 || 90 100 || 1.0mm ...................................................................5.11. SGSGGSGS || 50 55 || 90 100 || 1.0mm ..................................................................5.12. SGSGGSGS || 55 || 90 100 || 1.0mm .......................................................................5.13. SGSSGSGS || 55 90 100 || 1.6mm ...........................................................................5.14. SGSGGSGS || 50 || 100 || 1.6mm ............................................................................5.15. SGSGGSGS || 55 90 100 || 1.6mm ..........................................................................5.16. SGSGGSGS || 50 55 || 100 || 1.6mm .......................................................................5.17. SGSSGSGS || 37.5 50 55 75 || 90 100 || 1.6mm ......................................................5.18. SSGSSGSS || 50 || 100 || 1.6mm .............................................................................5.19. SGSGSSGS || 50 55 || 90 100 || 1.6mm ...................................................................5.20. GSGSSGSG || 50 60 || 100 || 2.0mm .......................................................................5.21. SGSGGSGS || 37.5 50 55 75 || 90 100 || 2.0mm ......................................................5.22. SSGSSGSS || 50 55 60 || 100 || 2116 2.0mm ..........................................................5.23. SGSG GSGS || 55 || 90 100 || 2116 2.0mm ..............................................................5.24. SGSGGSGS || 50 65 70 || 50 85 100 110 || 2.0mm ..................................................5.25. GSGSSGSG || 50 ||100 || 2.0mm .............................................................................5.26. SGSGSSGS || 50 55 60 || 85 90 100 || 2.0mm .........................................................5.27. SGSSGSGS || 50 55 || 90 100 || 2.0mm ...................................................................第六章十层板设计.....................................................................6.0 十层板叠层设计方案............................................................6.1. 十层常见阻抗设计与叠层结构 ..................................................6.10. SGSSGSGSGS || 50 || 100 || 1.6mm ........................................................................6.11. SGSSGSGSGS || 50 || 100 || 1.6mm ........................................................................6.12. SGSSG GSSGS || 50 || 90 100 || 1.6mm ..................................................................6.13. SGSGG SGSGS || 50 || 90 100 || 2.0mm .................................................................6.14. SGSSGGSSGS || 50 || 100 || 1.8mm ........................................................................6.15. SGSSGGSSGS || 50 || 100 || 2.0mm ........................................................................6.16. SGSSGGSSGS || 50 || 90 100 || 2.0mm ...................................................................6.17. SGSGGSGSGS || 50 || 100 || 2.0mm .......................................................................6.18. SGSSGSGSGS || 50 || 90 100 || 2.0mm ...................................................................6.19. SGSGSGGSGS || 50 || 100 || 2.0mm .......................................................................6.20. SGSGSGGSGS || 50 75 || 150 || 2.4mm ..................................................................6.21. SGGSSGSGGS || 50 75 || 100 || 1.8mm .................................................................. 第七章十二层板设计.. (65)7.0 十二层板叠层设计方案..........................................................7.1 十二层常见阻抗设计与叠层结构..................................................7.10. SGSGSGGSGSGS || 33 37.5 40 50 || 85 90 100 || 1.6mm ......................................7.11. SGSSGSSGSSGS || 50 || 100 || 1.6mm ...................................................................7.12. SGSGSGGSGSGS || 50 || 100 || 1.6mm ..................................................................7.13. SGSGSGGSGSGS || 33 37.5 40 50 || 85 90 100 || 1.6mm ......................................7.14. SGSGSGGSGSGS || 33 37.5 40 50 || 85 90 100 || 1.6mm ......................................7.15. SGSSGGSSGSGS || 45 50 || 100 || 1.6mm ..............................................................7.16. SG SG SG GS GS GS || 50 || 100 || 1.6mm .............................................................7.17. SGSGSGGSGSGS || 50 60 || 100 || 2.0mm .............................................................7.18. SGSGSGGSGSGS || 50 55 || 90 100 || 2.0mm ........................................................7.19. SGSGSGGSGSGS || 50 60 || 100 || 2.2mm (94)、八、-前言随着信号传输速度的迅猛提高以及高频电路的广泛应用,对印刷电路板也提出了更高的要求?要得到完整?可靠?精确?无干扰?噪音的传输信号?就必须保证印刷电路板提供的电路性能保证信号在传输过程中不发生反射现象,信号完整,传输损耗低,起到匹配阻抗的作用?为了使信号,低失真、低干扰?低串音及消除电磁干扰EMI?阻抗设计在PCB设计中显得越来越重要?对我们而言,除了要保证PCB板的短、断路合格外,还要保证阻抗值在规定的范围内,只有这两方向都合格了印刷板才符合客户的要求牧泰莱电路技术有限公司作为快速响应市场的PCB制造服务商,在建厂以来我们就对阻抗进行了大量的研究和开发?并且该类产品已成为公司的特色产品,在pcb 业界留下很好的口碑?随着阻抗”的进一步扩展和延伸,我们作为专业的PCB制造服务商,为能向客户提供优质的产品和高质的服务,对该类PCB勺合作方面做如下建议:对于PCB 的阻抗控制而言,其所涉及的面是比较广泛的,但在具体的加工和设计时我们一般控制主要四个因素:Er-- 介电常数H--- 介质厚度W--- 走线宽度T--- 走线厚度Er(介电常数)大多数板料选用FR-4,该种材料的Er特性为随着加载频率的不同而变化,一般情况下Er的分水岭默认为1GHZ高频)?目前材料厂商能够承诺的指标<5.4(1MHz)根据实际加工的经验,在使用频率为1GHZ以下的其Er认为4.2左右1.5 —2.0GHZ的使用频率其仍有下降的空间?故设计时如有阻抗的要求则须考虑该产品的当时的使用频率? 我们在长期的加工和研发的过程中针对不同的厂商已经摸索出一定的规律和计算公式?我们全部采用行业内最好的生益板料,其各项参数都比较稳定。
常用阻抗设计及叠层1. 引言在电路板设计中,阻抗设计及叠层是非常重要的方面之一。
通过正确设计阻抗,可以确保信号传输的质量和稳定性。
本文将介绍一些常用的阻抗设计方法和叠层技术,帮助读者更好地理解和应用于自己的电路板设计中。
2. 阻抗设计基础2.1 什么是阻抗?在电路中,阻抗是指电流与电压之间的比值。
它是一个复数,由实部和虚部组成,表示电流和电压之间的相位差。
阻抗的大小和相位差对信号传输非常重要。
在高速信号传输和高频率电路中,正确设计阻抗可以降低信号反射、串扰和功耗等问题,提高信号品质。
2.2 常见的阻抗值常见的阻抗值有50欧姆(Ω)和75欧姆(Ω)两种,分别用于不同的应用场景。
在高速数字和模拟电路中,通常使用50欧姆阻抗。
而在视频和音频设备中,通常使用75欧姆阻抗。
2.3 随频率变化的阻抗阻抗是一个与频率有关的值。
在高频率下,阻抗的值可能会有所变化,这就需要设计合适的叠层来平衡阻抗。
3. 阻抗设计方法3.1 单终端阻抗设计单终端阻抗设计是指信号线的阻抗与周围环境的阻抗相等。
这可以通过调整信号线的宽度、间距和高度来实现。
在PCB设计中,常见的实现方式有微带线和同轴线两种。
微带线是将信号引线和地线放置在同一层上,通过调整线的宽度来控制阻抗。
同轴线则是在信号线周围包裹一层金属屏蔽层,通过调整屏蔽层和内导体之间的间距来控制阻抗。
3.2 差分阻抗设计差分阻抗设计是指两个信号引线的阻抗相等且相等。
差分信号传输常用于高速信号传输和抗干扰能力较强的应用中。
差分阻抗设计需要考虑两个信号引线之间的间距、宽度和相对位置等因素。
这样可以确保两个信号引线之间的阻抗相等,从而减少串扰和噪声。
3.3 多层板阻抗设计在复杂的电路板设计中,可能需要多层板结构来满足设计要求。
多层板阻抗设计较为复杂,需要考虑信号层、地层和电源层的相互影响。
在多层板设计中,可以通过增加地层的分布来改善阻抗。
同时,还可以选择合适的层间距和层间电介质常数,以满足设计要求。
PCB阻抗设计及叠层结构设计前言随着信号传输速度的迅猛提高以及高频电路的广泛应用,对印刷电路板也提出了更高的要求。要得到完整、可靠、精确、无干扰、噪音的传输信号。就必须保证印刷电路板提供的电路性能保证信号在传输过程中不发生反射现象,信号完整,传输损耗低,起到匹配阻抗的作用。为了使信号,低失真﹑低干扰、低串音及消除电磁干扰EMI。阻抗设计在PCB设计中显得越来越重要。对我们而言,除了要保证PCB板的短、断路合格外,还要保证阻抗值在规定的范围内,只有这两方向都合格了印刷板才符合客户的要求。
牧泰莱电路技术有限公司作为快速响应市场的PCB制造服务商,在建厂以来我们就对阻抗进行了大量的研究和开发。并且该类产品已成为公司的特色产品,在pcb业界留下很好的口碑。随着“阻抗”的进一步扩展和延伸,我们作为专业的PCB制造服务商,为能向客户提供优质的产品和高质的服务,对该类PCB的合作方面做如下建议:对于PCB 的阻抗控制而言,其所涉及的面是比较广泛的,但在具体的加工和设计时我们一般控制主要四个因素:Er--介电常数H---介质厚度W---走线宽度T---走线厚度Er(介电常数)大多数板料选用FR-4,该种材料的Er特性为随着加载频率的不同而变化,一般情况下Er的分水岭默认为1GHZ(高频)。目前材料厂商能够承诺的指标<5.4(1MHz)根据实际加工的经验,在使用频率为1GHZ以下的其Er认为4.2左右1.5—2.0GHZ的使用频率其仍有下降的空间。故设计时如有阻抗的要求则须考虑该产品的当时的使用频率。我们在长期的加工和研发的过程中针对不同的厂商已经摸索出一定的规律和计算公式。我们全部采用行业内最好的生益板料,其各项参数都比较稳定。
7628----4.5(全部为1GHz状态下)2116----4.21080----3.8H(介质层厚度)该因素对阻抗控制的影响最大,如对阻抗的精确度要求很高,则该部分的设计应力求精准 ,FR-4的H的组成是由各种半固化片组合而成的(包括内层芯板),常用的半固化片为:1080 厚度 0.075MM、3313厚度 0.09MM、2116 厚度 0.115MM、2116H厚度 0.12MM、7628 厚度 0.175MM、7628H厚度 0.18MM。在多层PCB中H一般有两类:A、内层芯板中H的厚度:虽然材料供应商所提供的板材中H的厚度也是由以上几种半固化片组合而成,但其在组合的过程中必然会考虑材料的特性,而绝非无条件的任意组合,因此板材的厚度就有了一定的约束,形成了一个相应的板料清单,同时H也有了一定的限制。如 0.18mm 1/1 OZ的芯板为: 2116如 0.5mm 1/1 OZ的芯板为:7628*2+1080……B、多层板中压合部分的H的厚度:其方法基本上与A相同但需注意层压中由于填胶的损失。举例:如GROUND~GROUND 或POWER~POWER之间用半固化片进行填充,因GROUND、POWER在制作内层的过程中铜箔被蚀刻掉的部分很少,则半固化片中树脂对该区的填充会很少,则半固化片的厚度损失会很少。反之如SIGNAL~SIGNAL之间用半固化片进行填充SIGNAL在制作内层的过程中铜箔被蚀刻掉的部分较多,则半固化片的厚度损失会很大。因此理论上的计算厚度与实际操作过程所形成的实际厚度会有差异。故建议设计时对该因素应予以充分的考虑。同时我们在市场部资料审核的岗位也有专人对此通过工具进行计算和校正。W(设计线宽)该因素一般情况下是由客户决定的。但在设计时应充分考虑线宽对该阻抗值的匹配,即为达到该阻抗值在一定的介质厚度H、介电常数Er和使用频率等条件下线宽的使用是有一定的限制的,并且还需考虑厂商可制造性。当然阻抗控制不仅仅是上述这些因素,上面所提的只是比较而言影响度较大的几个因素,也只是局限于从PCB的制造厂商的角度来看待该问题的。以下是我们公司在PCB实际生产加工过程中,总结出来的一些PCB板的结构示例。
PCB叠层及阻抗计算PCB叠层是指在电路板上将多个铜箔层堆叠在一起,形成不同信号层和电源层的设计。
通过合理的叠层设计,可以有效地减小电路板的尺寸、提高电路板的性能和可靠性。
在PCB设计中,阻抗计算也是非常重要的一部分,可以帮助设计师保证信号传输的质量和稳定性。
一、PCB叠层设计1.信号层:用于传输信号的层,可以分为内层信号层和外层信号层。
内层信号层主要用于传输高速信号,外层信号层主要用于低速信号或者电源信号。
2.电源层:用于提供电源给电路的层。
在PCB设计中,通常会将电源设计为分层的结构,以避免相互干扰。
一般情况下,会有一个或者多个地平面层和一个或者多个电源层。
3.地层:用于提供整个电路板的通用地参考。
在PCB设计中,通常会分为多个地平面层,并通过通过并联电容等方式实现地的连接。
在进行PCB叠层设计时,需要考虑以下几个方面:1.信号层的选择:根据电路的布局需求和导引层的情况选择信号层的数量和位置。
一般而言,高速信号应尽量使用内层信号层传输,以减少信号的辐射和串扰。
2.电源层和地层的设计:根据电源和地的需求,合理设置电源层和地层的数量和分布。
一般情况下,电源和地应尽量平衡分布,避免在其中一区域集中。
3.引脚的布局:根据IC引脚和外部组件的布局要求,合理选择信号层和电源层的位置。
一般而言,IC引脚应尽量直接连接到内层信号层,以减小信号传输的电磁干扰。
4.路径的规划:根据电路布局和信号传输的要求,设计信号层之间的路径规划。
一般而言,高速信号应尽量选择较短的路径和宽的层间距,以减小信号的传输损耗和串扰。
二、阻抗计算阻抗是指信号在PCB设计中传输时所遇到的电阻和电感。
对于高速信号传输来说,阻抗的控制是非常关键的,可以有效地减小信号的反射和串扰,提高信号的传输质量。
在PCB设计中,常用的阻抗控制方法有以下几种:1.板厚控制:通过调节电路板的厚度,可以调节信号的传输速度。
一般而言,板厚越小,信号的传输速度越快,板厚越大,信号的传输速度越慢。
pcb层叠结构与阻抗计算PCB(Printed Circuit Board,印刷电路板)是现代电子产品中常见的基础组件之一,用于连接和支持电子元器件。
PCB层叠结构是PCB设计中的重要概念之一,而阻抗计算则是在PCB设计中必不可少的一项任务。
PCB层叠结构是指在PCB板上,通过将多层电路板堆叠在一起形成的一种结构。
通过层叠的方式,可以在有限的空间内实现更多的电路功能。
具体而言,PCB层叠结构由多个层次组成,其中包括信号层、电源层和地层等。
信号层用于传输信号,电源层用于提供电源,地层则用于接地。
通过合理设计和安排这些层次,可以降低电磁干扰、提高信号完整性和保证电源稳定性。
在进行PCB设计时,阻抗计算是必不可少的一项任务。
阻抗是指电流在电路中流动时所遇到的阻力,是电路中信号传输的重要参数之一。
在设计过程中,需要根据设计要求和电路参数来计算并控制PCB上的阻抗。
阻抗的计算需要考虑PCB的层叠结构、导线的长度和宽度、介质材料等因素。
通过合理的设计和计算,可以确保信号在PCB上的传输质量,并提高电路的性能和稳定性。
PCB层叠结构和阻抗计算之间存在一定的关系。
首先,PCB的层叠结构会影响阻抗的计算结果。
不同的层叠结构会导致不同的电磁场分布和信号传输特性,从而影响阻抗的数值。
其次,阻抗计算需要考虑PCB的层叠结构。
在计算过程中,需要考虑信号层和地层之间的距离、导线的宽度和厚度等因素,这些因素都与PCB的层叠结构密切相关。
最后,通过合理设计PCB的层叠结构,可以优化阻抗的计算结果。
通过调整层叠结构中各层的厚度和材料,可以实现对阻抗数值的精确控制,从而满足设计要求。
在PCB设计中,层叠结构和阻抗计算是两个重要的概念和任务。
通过合理设计PCB的层叠结构,可以提高电路的性能和稳定性;而通过准确计算和控制阻抗,可以保证信号的传输质量。
因此,在进行PCB设计时,需要充分考虑这两个因素,并进行相应的设计和计算。
同时,还需要注意其他因素的影响,如温度、湿度等,以确保PCB 的可靠性和稳定性。
PCB设计中的层叠阻抗匹配技术PCB设计中的层叠阻抗匹配技术是一种在多层PCB中实现信号传输时需考虑的重要技术。
在高频信号传输中,为了确保信号在PCB中能够稳定传输且不受干扰,需要进行阻抗匹配以保证信号的传输质量。
层叠PCB通常由内层和外层构成,不同层之间通过介质层隔离。
在设计过程中,我们需要考虑每一层的阻抗匹配,以确保信号在传输过程中不会出现反射、损耗等问题。
层叠阻抗匹配技术主要包括以下几个方面:1. 层间阻抗匹配:在层叠PCB中,内层和外层之间的阻抗匹配是非常关键的。
通过调整不同层之间的介质厚度和介电常数,可以实现目标阻抗值的匹配。
同时,还需要考虑不同层之间的引线长度,以避免信号传输过程中的干扰。
2. 差分信号阻抗匹配:差分信号在高速传输中具有较好的抗干扰性能,但在设计过程中需要确保差分信号对的阻抗匹配。
通过调整差分线的宽度、间距等参数,可以实现差分信号对的阻抗匹配,提高信号传输的质量。
3. 端口阻抗匹配:在PCB设计中,信号源和负载的阻抗匹配也是非常重要的。
通过设计匹配网络或使用阻抗变换器等方法,可以实现信号源和负载的阻抗匹配,减小信号反射和损耗。
在实际的PCB设计中,可采用仿真软件进行阻抗匹配的设计和分析。
通过仿真模拟不同参数的调整,可以找到最佳的阻抗匹配方案,提高PCB设计的成功率。
总的来说,PCB设计中的层叠阻抗匹配技术是实现高速信号传输和抗干扰的关键技术之一。
设计人员需要充分了解不同阻抗匹配技术的原理和方法,灵活运用在实际的项目中,以确保PCB设计的性能和稳定性。
通过不断的实践和优化,可以提高PCB设计的质量和效率,满足不同应用场景的需求。
PCB叠层及阻抗计算多层板的结构:为了很好地对PCB进行阻抗控制,首先要了解PCB的结构:通常我们所说的多层板是由芯板和半固化片互相层叠压合而成的,芯板是一种硬质的、有特定厚度的、两面包铜的板材,是构成印制板的基础材料。
而半固化片构成所谓的浸润层,起到粘合芯板的作用,虽然也有一定的初始厚度,但是在压制过程中其厚度会发生一些变化。
通常多层板最外面的两个介质层都是浸润层,在这两层的外面使用单独的铜箔层作为外层铜箔。
外层铜箔和内层铜箔的原始厚度规格,一般有0.5OZ、1OZ、2OZ(1OZ约为35um或1.4mil)三种,但经过一系列表面处理后,外层铜箔的最终厚度一般会增加将近1OZ左右。
内层铜箔即为芯板两面的包铜,其最终厚度与原始厚度相差很小,但由于蚀刻的原因,一般会减少几个um。
多层板的最外层是阻焊层,就是我们常说的“绿油”,当然它也可以是黄色或者其它颜色。
阻焊层的厚度一般不太容易准确确定,在表面无铜箔的区域比有铜箔的区域要稍厚一些,但因为缺少了铜箔的厚度,所以铜箔还是显得更突出,当我们用手指触摸印制板表面时就能感觉到。
当制作某一特定厚度的印制板时,一方面要求合理地选择各种材料的参数,另一方面,半固化片最终成型厚度也会比初始厚度小一些。
下面是一个典型的6层板叠层结构:PCB的参数:不同的印制板厂,PCB的参数会有细微的差异。
表层铜箔:可以使用的表层铜箔材料厚度有三种:12um、18um和35um。
加工完成后的最终厚度大约是44um、50um和67um。
芯板:我们常用的板材是S1141A,标准的FR-4,两面包铜半固化片:规格(原始厚度)有7628(0.185mm),2116(0.105mm),1080(0.075mm),3313(0. 095mm ),实际压制完成后的厚度通常会比原始值小10-15um左右。
同一个浸润层最多可以使用3个半固化片,而且3个半固化片的厚度不能都相同,最少可以只用一个半固化片,但有的厂家要求必须至少使用两个。
关于PCB叠层及阻抗计算PCB叠层及阻抗计算是电路板设计中非常重要的一部分,可以影响电路板性能和信号传输的质量。
在本文中,我们将详细讨论PCB的叠层设计和阻抗计算的相关原理和方法。
一、PCB叠层设计在设计PCB时,叠层设计是非常关键的,它可以影响到信号传输的速率、干扰、噪音等因素。
在设计PCB的时候,一般会选择多层板,其中内层层板主要用于信号传输和地平面,而外层层板则用于连接器和组件布局。
为了保证信号传输的质量,一般需要在PCB设计软件中进行叠层设计。
在进行PCB叠层设计时,需要考虑以下几个因素:1.信号传输速率:随着信号传输速率的增加,对PCB的叠层设计要求也越高。
一般来说,高速信号线(如DDR总线、PCIe总线等)需要采用较低的介电常数和较薄的介质层从而保证信号的传输质量。
2.信号干扰和噪音:为了避免信号之间的相互干扰和噪音的产生,一般会采用电磁屏蔽层作为内层层板。
3.电源和地平面的设计:为了保证电源和地平面的稳定性,一般会采用多个内层层板来布局电源和地平面。
同时,为了减小电源和地平面之间的电磁耦合,可以在它们之间设置分布电容或平面间隔。
在进行PCB叠层设计时,需要注意以下几点:1.信号线和地平面的布局:为了避免信号线和地平面之间的电磁耦合,一般应尽量使信号线和地平面之间的距离保持一致,并且尽量使信号线和地平面垂直布局。
2.边界规划:为了减小信号线的边界不平行引起的电磁泄漏和干扰,一般要求信号线的边界保持平行。
3.电源和地平面的分布:为了保证电源和地平面的稳定性,一般应采用分布式布局,即在整个PCB上均匀分布电源和地平面。
二、阻抗计算阻抗是电路板设计中非常重要的一个参数,它决定了信号传输的速率和质量。
为了保证信号传输的质量,一般需要进行阻抗计算,并根据计算结果进行相关调整。
在进行阻抗计算时,需要考虑以下几个因素:1.特性阻抗:特性阻抗是指在无穷长的传输线上,单位长度的阻抗。
它与电路板的几何参数(如导线宽度、导线间距等)、介电常数等因素有关。
PCB常用阻抗设计及叠层引言在PCB(Printed Circuit Board)设计中,阻抗是一个非常重要的参数。
合理的阻抗设计可以确保信号传输的稳定性和可靠性,降低系统的干扰和噪声。
同时,选择合适的叠层(Layer Stackup)方案也可以对阻抗有所调整和优化。
本文将介绍PCB常用的阻抗设计方法和叠层方案。
PCB阻抗设计1. 阻抗概念阻抗(Impedance)是指电路中对交流信号阻碍流动的大小。
在PCB设计中,阻抗通常由板层结构、线宽、线距、介质常数等因素决定。
2. 阻抗计算通常,可以使用PCB设计软件或在线计算工具来计算PCB线路的阻抗。
这些工具提供了预设好的阻抗公式和参数,通过输入线路几何尺寸和介质参数即可得到阻抗值。
3. 阻抗控制在PCB设计中,常用的阻抗控制方法有以下几种:A. 线宽/线距控制通过调整线宽和线距可以改变PCB线路的阻抗。
通常,增加线宽和减小线距可以降低阻抗值,反之亦然。
B. 铜箔厚度控制铜箔厚度也是影响PCB线路阻抗的一个重要因素。
增加铜箔厚度可以降低阻抗值,但也会增加制造成本。
C. 介质常数控制PCB板层中的介质常数(Permittivity)也会对线路的阻抗产生影响。
通常,较高的介质常数会导致较低的阻抗值。
D. 叠层设计通过合理设计PCB板层的叠层结构,可以实现对阻抗的控制和优化。
不同的叠层方案可以改变电磁场分布,从而影响阻抗。
4. 阻抗匹配与调试在PCB设计中,除了阻抗的计算和控制,还需要进行阻抗匹配与调试。
通常,在信号源和负载之间不匹配的阻抗会导致信号的反射和损耗。
通过在信号路径中添加阻抗匹配电路,可以有效降低信号的反射损耗。
1. 叠层概念PCB的叠层(Layer Stackup)是指PCB板层的堆叠顺序和结构。
叠层设计直接影响到PCB的信号传输特性、阻抗控制和EMI (Electromagnetic Interference)性能。
2. 叠层结构优化合理的叠层结构可以实现对PCB阻抗的优化和控制。
(PCB印制电路板)PCB常用阻抗设计及叠层最全版(PCB印制电路板)PCB 常用阻抗设计及叠层PCB阻抗设计及叠层目录前言5第一章阻抗计算工具及常用计算模型81.0阻抗计算工具81.1阻抗计算模型81.11.外层单端阻抗计算模型81.12.外层差分阻抗计算模型91.13.外层单端阻抗共面计算模型91.14.外层差分阻抗共面计算模型101.15.内层单端阻抗计算模型101.16.内层差分阻抗计算模型111.17.内层单端阻抗共面计算模型111.18.内层差分阻抗共面计算模型121.19.嵌入式单端阻抗计算模型121.20.嵌入式单端阻抗共面计算模型131.21.嵌入式差分阻抗计算模型131.22.嵌入式差分阻抗共面计算模型14第二章双面板设计152.0双面板常见阻抗设计与叠层结构152.1.50100||0.5mm152.2.50||100||0.6mm152.3.50||100||0.8mm162.4.50||100||1.6mm162.5.5070||1.6mm162.6.50||0.9mm||RogersEr=3.5172.7.50||0.9mm||ArlonDiclad880Er=2.217第三章四层板设计183.0.四层板叠层设计方案183.1.四层板常见阻抗设计与叠层结构193.10.SGGS||505560||90100||0.8mm1.0mm1.2mm1.6mm2.0m m193.11.SGGS||505560||90100||0.8mm1.0mm1.2mm1.6mm2.0m m203.12.SGGS||505560||9095100||1.6mm213.13.SGGS||505560||859095100||1.0mm1.6mm223.14.SGGS||505575||100||1.0mm2.0mm233.15.GSSG||50||100||1.0mm233.16.SGGS||75||100105||1.3mm1.6mm243.17.SGGS||50100||1.3mm243.18.SGGS||50100||1.6mm253.19.SGGS||50||1.6mm||混压253.20.SGGS||50||1.6mm||混压263.21.SGGS||50||100||2.0mm26第四章六层板设计274.0.六层板叠层设计方案274.1.六层板常见阻抗设计与叠层结构284.10.SGSSGS||5055||90100||1.0mm284.11.SGSSGS||50||90100||1.0mm294.12.SGSSGS||50||90100||1.6mm304.13.SGSGGS||50||90100||1.6mm314.14.SGSGGS||50||90100||1.6mm324.15.SGSSGS||5075||100||1.6mm334.16.SGSSGS||50||90100||1.6mm344.17.SGSSGS||50||100||1.6mm354.18.SGSSGS||5060||90100||1.6mm364.19.SGSSGS||5060||100110||1.6mm374.20.SGSSGS||50||90100||1.6mm384.21.SGSSGS||6575||100||1.6mm394.22.SGSGGS||5055||8590100||1.6mm404.23.SGSSGS||5055||90100||1.6mm414.24.SGSGGS||5055||90100||1.6mm424.25.SGSGGS||50||90100||1.6mm434.26.SGGSGS||5060||90100||1.6mm444.27.SGSGGS||37.550||100||2.0mm454.28.SGSGGS||37.550||100||2.0mm464.29.SGSGGS||37.550||100||2.0mm474.30.SGSGGS||37.550||100||2.0mm48第五章八层板设计495.0.八层板叠层设计方案495.1.八层板常见阻抗设计与叠层结构505.10.SGSSGSGS||5055||90100||1.0mm505.11.SGSGGSGS||5055||90100||1.0mm515.12.SGSGGSGS||55||90100||1.0mm525.13.SGSSGSGS||5590100||1.6mm535.14.SGSGGSGS||50||100||1.6mm545.15.SGSGGSGS||5590100||1.6mm555.16.SGSGGSGS||5055||100||1.6mm565.17.SGSSGSGS||37.5505575||90100||1.6mm57 5.18.SSGSSGSS||50||100||1.6mm585.20.GSGSSGSG||5060||100||2.0mm605.21.SGSGGSGS||37.5505575||90100||2.0mm615.22.SSGSSGSS||505560||100||21162.0mm625.23.SGSGGSGS||55||90100||21162.0mm635.24.SGSGGSGS||506570||5085100110||2.0mm645.25.GSGSSGSG||50||100||2.0mm655.26.SGSGSSGS||505560||8590100||2.0mm665.27.SGSSGSGS||5055||90100||2.0mm68第六章十层板设计696.0十层板叠层设计方案696.1.十层常见阻抗设计与叠层结构706.10.SGSSGSGSGS||50||100||1.6mm706.11.SGSSGSGSGS||50||100||1.6mm716.12.SGSSGGSSGS||50||90100||1.6mm726.13.SGSGGSGSGS||50||90100||2.0mm736.14.SGSSGGSSGS||50||100||1.8mm746.15.SGSSGGSSGS||50||100||2.0mm756.16.SGSSGGSSGS||50||90100||2.0mm766.17.SGSGGSGSGS||50||100||2.0mm776.18.SGSSGSGSGS||50||90100||2.0mm786.19.SGSGSGGSGS||50||100||2.0mm796.20.SGSGSGGSGS||5075||150||2.4mm806.21.SGGSSGSGGS||5075||100||1.8mm81第七章十二层板设计827.0十二层板叠层设计方案827.1十二层常见阻抗设计与叠层结构837.10.SGSGSGGSGSGS||3337.54050||8590100||1.6mm837.12.SGSGSGGSGSGS||50||100||1.6mm867.13.SGSGSGGSGSGS||3337.54050||8590100||1.6mm877.14.SGSGSGGSGSGS||3337.54050||8590100||1.6mm887.15.SGSSGGSSGSGS||4550||100||1.6mm907.16.SGSGSGGSGSGS||50||100||1.6mm917.17.SGSGSGGSGSGS||5060||100||2.0mm927.18.SGSGSGGSGSGS||5055||90100||2.0mm937.19.SGSGSGGSGSGS||5060||100||2.2mm94前言随着信号传输速度的迅猛提高以及高频电路的广泛应用,对印刷电路板也提出了更高的要求?要得到完整?可靠?精确?无干扰?噪音的传输信号?就必须保证印刷电路板提供的电路性能保证信号在传输过程中不发生反射现象,信号完整,传输损耗低,起到匹配阻抗的作用?为了使信号,低失真﹑低干扰?低串音及消除电磁干扰EMI?阻抗设计在PCB设计中显得越来越重要?对我们而言,除了要保证PCB板的短、断路合格外,还要保证阻抗值在规定的范围内,只有这两方向都合格了印刷板才符合客户的要求。
PCB阻抗设计及叠层目录前言 (4)第一章阻抗计算工具及经常使用计算模型 (7)1.0 阻抗计算工具 (7)1.1 阻抗计算模型 (7)1.11. 外层单端阻抗计算模型 (7)1.12. 外层差分阻抗计算模型 (8)1.13. 外层单端阻抗共面计算模型 (8)1.14. 外层差分阻抗共面计算模型 (9)1.15. 内层单端阻抗计算模型 (9)1.16. 内层差分阻抗计算模型 (9)1.17. 内层单端阻抗共面计算模型 (10)1.18. 内层差分阻抗共面计算模型 (11)1.19. 嵌入式单端阻抗计算模型 (11)1.20. 嵌入式单端阻抗共面计算模型 (11)1.21. 嵌入式差分阻抗计算模型 (12)1.22. 嵌入式差分阻抗共面计算模型 (12)第二章双面板设计 (13)2.0 双面板常见阻抗设计与叠层结构 (13)2.1. 50 100 || 0.5mm (13)2.2. 50 || 100 || 0.6mm (14)2.3. 50 || 100 || 0.8mm (14)2.4. 50 || 100 || 1.6mm (14)2.5. 50 70 || 1.6mm (15)2.6. 50 || 0.9mm || Rogers Er=3.5 (15)2.7. 50 || 0.9mm || Arlon Diclad 880 Er=2.2 (15)第三章四层板设计 (16)3.0. 四层板叠层设计方案 (16)3.1. 四层板常见阻抗设计与叠层结构 (17)3.10. SGGS || 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm (17)3.11. SGGS || 50 55 60 || 90 100 || 0.8mm 1.0mm 1.2mm 1.6mm 2.0mm (18)3.12. SGGS || 50 55 60 || 90 95 100 || 1.6mm (19)3.13. SGGS || 50 55 60 || 85 90 95 100 || 1.0mm 1.6mm (19)3.14. SGGS || 50 55 75 || 100 || 1.0mm 2.0mm (20)3.15. GSSG || 50 || 100 || 1.0mm (21)3.16. SGGS || 75 ||100 105 || 1.3mm 1.6mm (21)3.17. SGGS || 50 100 || 1.3mm (22)3.18. SGGS || 50 100 || 1.6mm (22)3.19. SGGS || 50 || 1.6mm || 混压 (23)3.20. SGGS || 50 || 1.6mm || 混压 (23)3.21. SGGS || 50 || 100 || 2.0mm (24)第四章六层板设计 (24)4.0. 六层板叠层设计方案 (24)4.1. 六层板常见阻抗设计与叠层结构 (25)4.10. SGSSGS || 50 55 || 90 100 || 1.0mm (25)4.11. SGSSGS || 50 || 90 100 || 1.0mm (26)4.12. SGSSGS || 50 || 90 100 || 1.6mm (27)4.13. SGSGGS || 50 || 90 100 || 1.6mm (28)4.14. SGSGGS || 50 || 90 100 || 1.6mm (29)4.15. SGSSGS || 50 75 || 100 || 1.6mm (30)4.16. SGSSGS || 50 || 90 100 || 1.6mm (31)4.17. SGSSGS || 50 || 100 || 1.6mm (32)4.18. SGSSGS || 50 60 || 90 100 || 1.6mm (33)4.19. SGSSGS || 50 60 || 100 110 || 1.6mm (34)4.20. SGSSGS || 50 || 90 100 || 1.6mm (35)4.21. SGSSGS || 65 75 || 100 || 1.6mm (36)4.22. SGSGGS || 50 55 || 85 90 100 || 1.6mm (37)4.23. SGSSGS || 50 55 || 90 100 || 1.6mm (38)4.24. SGSGGS || 50 55 || 90 100 || 1.6mm (39)4.25. SGSGGS || 50 || 90 100 || 1.6mm (40)4.26. SGGSGS || 50 60 || 90 100 || 1.6mm (41)4.27. SGSGGS || 37.5 50 || 100 || 2.0mm (42)4.28. SGSGGS || 37.5 50 || 100 || 2.0mm (43)4.29. SGSGGS || 37.5 50 || 100 || 2.0mm (44)4.30. SGSGGS || 37.5 50 || 100 || 2.0mm (45)第五章八层板设计 (46)5.0. 八层板叠层设计方案 (46)5.1. 八层板常见阻抗设计与叠层结构 (47)5.10. SGSSGSGS || 50 55 || 90 100 || 1.0mm (47)5.11. SGSGGSGS || 50 55 || 90 100 || 1.0mm (48)5.12. SGSGGSGS || 55 || 90 100 || 1.0mm (49)5.13. SGSSGSGS || 55 90 100 || 1.6mm (50)5.14. SGSGGSGS || 50 || 100 || 1.6mm (51)5.15. SGSGGSGS || 55 90 100 || 1.6mm (52)5.16. SGSGGSGS || 50 55 || 100 || 1.6mm (53)5.17. SGSSGSGS || 37.5 50 55 75 || 90 100 || 1.6mm (54)5.18. SSGSSGSS || 50 || 100 || 1.6mm (55)5.19. SGSGSSGS || 50 55 || 90 100 || 1.6mm (56)5.20. GSGSSGSG || 50 60 || 100 || 2.0mm (57)5.21. SGSGGSGS || 37.5 50 55 75 || 90 100 || 2.0mm (58)5.22. SSGSSGSS || 50 55 60 || 100 || 2116 2.0mm (59)5.23. SGSG GSGS || 55 || 90 100 || 2116 2.0mm (60)5.24. SGSGGSGS || 50 65 70 || 50 85 100 110 || 2.0mm (61)5.25. GSGSSGSG || 50 ||100 || 2.0mm (62)5.26. SGSGSSGS || 50 55 60 || 85 90 100 || 2.0mm (63)5.27. SGSSGSGS || 50 55 || 90 100 || 2.0mm (65)第六章十层板设计 (66)6.0 十层板叠层设计方案 (66)6.1. 十层常见阻抗设计与叠层结构 (67)6.10. SGSSGSGSGS || 50 || 100 || 1.6mm (67)6.11. SGSSGSGSGS || 50 || 100 || 1.6mm (68)6.12. SGSSG GSSGS || 50 || 90 100 || 1.6mm (69)6.13. SGSGG SGSGS || 50 || 90 100 || 2.0mm (70)6.14. SGSSGGSSGS || 50 || 100 || 1.8mm (71)6.15. SGSSGGSSGS || 50 || 100 || 2.0mm (72)6.16. SGSSGGSSGS || 50 || 90 100 || 2.0mm (73)6.17. SGSGGSGSGS || 50 || 100 || 2.0mm (74)6.18. SGSSGSGSGS || 50 || 90 100 || 2.0mm (75)6.19. SGSGSGGSGS || 50 || 100 || 2.0mm (76)6.20. SGSGSGGSGS || 50 75 || 150 || 2.4mm (77)6.21. SGGSSGSGGS || 50 75 || 100 || 1.8mm (78)第七章十二层板设计 (79)7.0 十二层板叠层设计方案 (79)7.1 十二层常见阻抗设计与叠层结构 (80)7.10. SGSGSGGSGSGS || 33 37.5 40 50 || 85 90 100 || 1.6mm (80)7.11. SGSSGSSGSSGS || 50 || 100 || 1.6mm (82)7.12. SGSGSGGSGSGS || 50 || 100 || 1.6mm (83)7.13. SGSGSGGSGSGS || 33 37.5 40 50 || 85 90 100 || 1.6mm (84)7.14. SGSGSGGSGSGS || 33 37.5 40 50 || 85 90 100 || 1.6mm (86)7.15. SGSSGGSSGSGS || 45 50 || 100 || 1.6mm (87)7.16. SG SG SG GS GS GS || 50 || 100 || 1.6mm (88)7.17. SGSGSGGSGSGS || 50 60 || 100 || 2.0mm (89)7.18. SGSGSGGSGSGS || 50 55 || 90 100 || 2.0mm (90)7.19. SGSGSGGSGSGS || 50 60 || 100 || 2.2mm (91)前言随着信号传输速度的迅猛提高和高频电路的普遍应用,对印刷电路板也提出了更高的要求。要取得完整、靠得住、精准、无干扰、噪音的传输信号。就必需保证印刷电路板提供的电路性能保证信号在传输进程中不发生反射现象,信号完整,传输损耗低,起到匹配阻抗的作用。为了使信号,低失真﹑低干扰、低串音及排除电磁干扰EMI。阻抗设计在PCB设计中显得愈来愈重要。对咱们而言,除要保证PCB板的短、断路合额外,还要保证阻抗值在规定的范围内,只有这两方向都合格了印刷板才符合客户的要求。
PCB阻抗叠构设计
在电子产品的设计中,印制电路板(Printed Circuit Board,PCB)
是不可或缺的组成部分之一、而在PCB设计中,阻抗控制是一个重要的技
术考量点。
本文将介绍PCB阻抗叠构的原理与设计方法。
【1.PCB阻抗叠构的原理】
阻抗值取决于导线的几何形状、尺寸和介电常数等因素。
根据电磁场
理论,导线的阻抗与其几何形状成正比,与导线宽度和厚度的比值成反比。
因此,在PCB设计中,可以通过调整导线的几何形状来实现特定的阻抗数值。
【2.PCB阻抗叠构的设计方法】
(1)选择合适的材料:PCB板材的介电常数是影响阻抗值的关键因素。
不同的材料具有不同的介电常数值,在设计过程中需要根据阻抗要求
来选择合适的材料。
(2)确定设计参数:根据电路板的阻抗要求,可以通过计算或仿真
来确定合适的导线宽度、高度以及堆叠层数等设计参数。
(3)考虑微带线结构:在设计中,常用的导线结构有微带线、贴片
线以及埋入式微带线等。
其中,微带线是较为常用的一种结构,其阻抗值
可以通过调整导线宽度、导线高度以及介电常数来实现。
(4)调整导线宽度:在实际设计中,可以通过调整导线宽度来控制
阻抗值。
增加导线宽度将减小阻抗值,而减小导线宽度将增加阻抗值。
(5)考虑层间堆叠:在多层PCB设计中,使用不同的层间堆叠方式也可以实现特定的阻抗值。
例如,使用叠金属层或者通过添加厚度不同的介质层来实现不同的阻抗值。
(6)仿真与调整:在设计完成后,可以进行电磁场仿真以验证设计的阻抗数值是否满足要求。
如果仿真结果与要求不符,可以根据实际情况进行相应的调整。
【3.PCB阻抗叠构的应用与优势】
(1)提供可重复性:通过合理的设计和制造过程,PCB阻抗叠构可以实现高精度和稳定的阻抗值。
这对于高频和高速信号传输非常关键。
(2)节省空间:通过控制PCB阻抗,可以实现更紧凑的布局设计。
这对于小型电子设备尤为重要,可以使物理空间得到更有效的利用。
(3)提高信号质量:阻抗匹配可以减少信号传输中的反射和干扰,提高信号完整性和质量。
【4.结语】
PCB阻抗叠构是电子产品设计中非常关键的一部分,它可以帮助实现特定的阻抗数值,提高系统性能和可靠性。
在设计过程中,选择合适的材料、确定设计参数、考虑微带线结构、调整导线宽度以及层间堆叠等都是PCB阻抗叠构的重要考虑因素。
通过合理的设计和制造,可以实现高精度和稳定的阻抗值,提高信号质量和系统性能。