氢原子后分子式是什么根据碳原子形成四个价键氢原
- 格式:ppt
- 大小:907.50 KB
- 文档页数:37
一、甲烷的化学式CH4甲烷是一个简单的碳氢化合物,化学式为CH4。
它是最简单的烷烃,也是地球上最丰富的天然气成分之一。
二、甲烷的组成甲烷由一个碳原子和四个氢原子组成。
由于氢原子的电负性较低,它与碳原子之间的共价键是非极性的,并呈现出对称分子结构。
三、甲烷的微观结构1. 碳原子碳原子的核外电子排布为2, 4。
它具有4个价电子,可以形成4个共价键。
2. 氢原子氢原子的核外电子排布为1。
它具有一个价电子,可以形成1个共价键。
3. 共价键形成在甲烷中,碳原子与四个氢原子之间共共享8个电子,形成4个碳-氢共价键。
四、甲烷的稳定性由于碳-氢共价键的形成,甲烷分子呈现出稳定的结构,碳原子周围的电子排布满足了稳定的八个电子规则。
五、甲烷的性质1. 无色、无味、无臭由于甲烷是一种无色、无味、无臭的气体,通常需要特殊的检测方法才能发现它的存在。
2. 燃烧性甲烷是一种易燃气体,可以和空气中的氧气在适当条件下燃烧生成二氧化碳和水。
3. 温室气体虽然甲烷在大气中的浓度较低,但它是一种温室气体,具有较强的吸收和辐射地面长波辐射的能力,对地球平衡系统有一定的影响。
六、甲烷的应用1. 能源作为一种清洁的燃料,甲烷被广泛应用于工业、家庭和交通运输领域。
2. 化工原料甲烷也是一种重要的化工原料,用于合成甲烷酸、氯代甲烷等化合物。
3. 生物医药甲烷在生物医药领域也有一定的应用,如用于制备磺胺类药物的原料之一。
七、甲烷的环境影响1. 温室效应作为一种温室气体,甲烷的释放对全球气候变化产生一定的影响。
2. 环境污染甲烷在地表大气的存在会导致一定的空气污染问题,同时与其他污染物共同形成地面臭氧。
八、结语甲烷作为一种简单的有机化合物,不仅在能源、化工领域具有重要应用,也对环境和气候产生一定的影响。
在使用甲烷的过程中,需要注意减少对环境的影响,寻求更加可持续的能源和化工解决方案。
九、甲烷的提取和储存1. 天然气甲烷主要存在于天然气中,通常需要采用天然气开采的方式,如水平钻井和增压注水等方法,来提取地下的甲烷资源。
甲烷4个c-h键完全
甲烷是一种由碳和氢原子组成的简单化合物,其化学式为CH4。
在甲烷分子中,碳原子与四个氢原子形成共价键,这意味着碳原子
与每个氢原子之间共享一个电子对,形成了四个C-H键。
这些共价
键的形成是通过碳原子的四个价电子与氢原子的单个价电子进行共
享而实现的。
从化学角度来看,这四个C-H键的形成使得甲烷分子具有特定
的空间构型和分子结构,这对于甲烷的化学性质和反应活性具有重
要影响。
由于碳原子与氢原子之间的共价键是非极性的,甲烷分子
是非极性分子,这意味着它在化学反应中表现出特定的性质和行为。
从物理角度来看,甲烷是一种无色、无味、无臭的气体,在常
温常压下呈现为气态。
它具有较低的沸点和燃烧性,因此常被用作
燃料。
甲烷的燃烧反应是通过氧气与甲烷分子中的碳-氢键发生反应,释放出能量和产生二氧化碳和水。
从环境角度来看,甲烷是一种温室气体,对地球的大气层具有
一定的影响。
虽然甲烷在大气中停留的时间比二氧化碳短,但它的
温室效应比二氧化碳强,因此在全球气候变化中起着重要作用。
总的来说,甲烷分子中的四个C-H键的形成不仅涉及化学键的构成和分子结构,还涉及到甲烷的物理性质、化学反应特性以及对环境的影响。
这些方面共同构成了对甲烷这种简单化合物的全面理解。
第二节有机化合物的结构特点一、有机化合物中碳原子的成键特点1、碳原子有4个价电子,能与其他原子形成4个共价键,碳碳之间的结合方式有单键、双键或三键;多个碳原子之间可以相互形成长短不一的碳链和碳环,碳链和碳环也可以相互结合,所以有机物结构复杂,数量庞大。
2、单键——甲烷的分子结构CH4分子中1个碳原子与4个氢原子形成4个共价键,构成以碳原子为中心、4个氢原子位于四个顶点的正四面体结构甲烷的电子式甲烷的结构式甲烷分子结构示意图在甲烷分子中,4个碳氢键是等同的,碳原子的4个价键之间的夹角(键角)彼此相等,都是109°28′。
4个碳氢键的键长都是1.09×10-10 m。
经测定,C—H键的键能是413.4 kJ·mol-13、不饱和键1)不饱和键:未与其他原子形成共价键的电子对,常见有双键、三键2)不饱和度:与烷烃相比,碳原子缺少碳氢单键的程度也可理解为缺氢程度3)不饱和度(Ω)计算*a 、烃CxHy 的不饱和度的计算2y 2x 2-+=Ω 与碳原子以单键直连的卤族原子或无碳基视为氢原子b 、根据结构计算一个双键或环相当于一个不饱和度一个三键相当于两个不饱和度一个碳氧双键相当于一个不饱和度二 、有机化合物的同分异构现象1、同分异构化合物具有相同的分子式,但具有不同的结构的现象叫做同分异构。
具有同分异构现象的化合物互称为同分异构体。
它是有机物种类繁多的重要原因之一。
同分异构体之间的转化是化学变化。
同分异构体的特点是分子式相同,结构不同,性质不同2.同分异构的种类(1)碳链异构:由于碳链骨架不同,产生的异构现象称为碳链异构。
烷烃中的同分异构体均为碳链异构。
如有三种同分异构体,即正戊烷,异戊烷,新戊烷。
(2)位置异构:指官能团或取代基在碳链上的位置不同而造成的异构。
如1-丁烯与2-丁烯、1-丙醇与2-丙醇。
(3)官能团异构:指官能团不同而造成的异构,如乙醇和二甲醚,葡萄糖和果糖。
【考点定位】本考点考查有关有机物分子式确定的计算,主要是根据质量守恒定律或分子组成中元素的质量比来确定,常见方法有燃烧法、最简式法及不饱和度法。
【精确解读】一、实验式的定义表示化合物分子所含各元素的原子数目最简单整数比的式子,实验式又叫最简式.(1)实验式C n H m中,n、m间没有1以外的公约数.(2)不同的有机物,可以有相同的实验式.如苯和乙炔的实验式,都是CH,乙烯等烯烃的实验式都是CH2,等等.二、有机物实验式、分子式的确定方法有机物实验式、分子式的确定方法分两步完成.(1)进行定性分析,测定有机物的组成元素.(2)进行定量分析:①测定有机物中各元素的质量分数,可确定有机物的实验式;②测定有机物的式量(或式量范围),可确定有机物的分子式.三、有机物结构式的确定方法根据物质的分子式,利用物质的特殊性质,通过定性或定量分析,可确定物质的结构式.常见方法归类:1.摩尔质量法(相对分子质量法)直接计算出1mol气体中各元素原子的物质的量,即可推出分子式.如给出一定条件下的密度(或相对密度)及各元素的质量比(或质量分数比),求算分子式的途径为:密度(或相对密度)--摩尔质量1mol--气体中各元素原子物质的量-—分子式2.商余法(只适用于烃的分子式的求法)(1)用烃的相对分子质量除以12,商为碳数和余数为氢数.如:C x H y,可用相对分子质量M除以12,看商和余数.即余y,分子式为C x H y.(2)增减法:由一种烃的分子式,求另一种烃可能的分子式可采用增减法推断.即减少一个碳原子必增加12个氢原子;反之,增加一个碳原子要减少12个氢原子.3.最简式法根据分子式为最简式的整数倍,因此利用相对分子质量及求得的最简式可确定其分子式.如烃的最简式的求法为C:H=(碳的质量分数/12):(氢的质量分数/1)=a:b(最简整数比)最简式为C a H b,则分子式为(C a H b)n,n=M/(12a+b),其中M为烃的式量.4.燃烧通式法(1)两混合气态烃,充分燃烧后,生成CO2气体的体积小于2倍原混合烃的体积,则原混合烃中必有CH4;若生成水的物质的量小于2倍原混合烃的物质的量,则原混合烃中必有C2H2.(2)气体混合烃与足量的氧气充分燃烧后,若总体积保持不变,则原混合烃中的氢原子平均数为4;若体积扩大,则原混合烃中的氢原子平均数大于4;若体积缩小,则原混合烃中氢原子平均数小于4,必有C2H2.(温度在100℃以上)5.讨论法当条件不足时,可利用已知条件列方程,进而解不定方程,结合烃C x H y中的x、y为正整数,烃的三态与碳原子数相关规律(特别是烃为气态时,x≤4)及烃的通式和性质,运用讨论法,可简捷地确定烃的分子式.6.平均分子式法平均分子式法求判断混合烃的组成(分子式)和物质的量之比.使用条件:由两种或两种以上的烃组成的混合气,欲确定各烃的分子式时,可采用此法.使用方法:一般视混合物为纯净物,设其平均分子式为C x H y根据其他条件求出x或y由平均值规律先确定混合物的成分或其可能性,再利用十字交叉法求出他们物质的量之比.注:两混合烃,若平均分子量小于或等于26,则该烃中必含甲烷.7.键线式法根据键线式写出分子式,知道碳有四个价键,数氢原子个数的时候,要细心.8.分子组成通式法:根据有机物原子的组成通式来确定有机物分子式:烷烃:C n H2n+2;单烯烃或环烷烃:C n H2n;单炔烃或二烯烃:C n H2n—2;苯的同系物C n H2n-6;烃C x H y;饱和一元醇C n H2n+2O;饱和一元醛C n H2n O;饱和一元酸C n H2n O29.官能团法:由特殊反应确定官能团的种类和数目例如:能发生加成反应的有机物分子中存在:能与银氨溶液或新制Cu(OH)2反应的:能与活泼金属反应产生氢气的:能与Na2CO3或NaHCO3反应放出气体的等10.不饱和度法:(1)不饱和度的含义:完全由碳氢两种元素形成的分子,若分子内全部是单键结合,并且没有环状结构存在,这种烃为烷烃,通式为C n H2n+2,我们说这种烃不饱和度(Ω)为零.当分子中有一个双键或有一个碳环存在时,在原分子的基础上减去2个氢原子,这称为分子中有一个不饱和度.同理,依次增加不饱和度.有了不饱和度,看到一个烃分子的结构,仅知道其中碳原子或氢原子就可以很迅速地求出另外一种原子;更重要的是,仅知道某分子的分子式,可先求不饱和度,从而反推其分子结构的可能性是一个极有力的推断工具;【精细剖析】1.常见有机物不饱和度的求法:①对于烃:C x H yΩ=2x+2−y2②对于卤代烃:C x H y X z可以等效与C x H y+z Ω=2x+2−(y+z)③烃的含氧衍生物:C x H y O z,O元素个数对不饱和度没有影,当含氧衍生物为醛或羧酸等含“C=O”结构的有机响,Ω=2x+2−y2物时,一个“C=O”贡献一个不饱和度。
一、化合物类名无机酸酯:醇与含氧无机酸反应失去一分子水后的生成物称为无机酸酯。
双烯烃:碳碳双键数目最少的多烯烃是二烯烃或称双烯烃。
可分为三类:两个双键连在同一个碳原子上的二烯烃称为累积二烯烃,两个双键被两个或两个以上单键隔开的二烯烃称为孤立二烯烃,两个双键被一个单键隔开的二烯烃称为共轭二烯烃。
内酯:分子内的羧基和羟基失水形成的产物称为内酯。
内酰胺:分子内的羧基和胺(氨)基失水的产物称为内酰胺。
四级铵碱:四级铵盐在强碱(KOH,NaOH)作用下生成的产物称为四级铵碱。
生物碱:从动植物体内得到的一类有强烈生理效能的含氮有机化合物。
游离生物碱绝大多数是固体,难溶于水,易溶于乙醇等有机溶剂。
天然的生物碱多半是有左旋光的手性化合物。
半缩醛或半缩酮:醇具有亲核性,在酸性催化剂如对甲苯磺酸、氯化氢的作用下,很容易和醛酮发生亲核加成,一分子醛或酮和一分子醇加成的生成物称为半缩醛或半缩酮。
有机化合物:除一氧化碳、二氧化碳、碳酸盐等少数简单含碳化合物以外的含碳化合物。
多肽:一个氨基酸的羧基与另一分子氨基酸的氨基通过失水反应,形成一个酰氨键,新生成的化合物称为肽,肽分子中的酰氨键叫做肽键。
二分子氨基酸失水形成的肽叫二肽,多个氨基酸失水形成的肽叫多肽。
杂环化合物:在有机化学中,将非碳原子统称为杂原子,最常见的杂原子是氮原子、硫原子和氧原子。
环上含有杂原子的有机物称为杂环化合物。
分为两类,具有脂肪族性质特征的称为脂杂环化合物,具有芳香特性的称为芳杂环化合物。
因为前者常常与脂肪族化合物合在一起学习,所以平时说的杂环化合物实际指的是芳杂环化合物。
杂环化合物是数目最庞大的一类有机物。
多环烷烃:含有两个或多个环的环烷烃称为多环烷烃。
有机化学基础复习——键线式 分类、命名 空间结构一、 有机物结构的表示方法1、结构简式书写:不能用碳干结构表示,碳原子连接的氢原子个数要正确,官能团不能略写,要注意官能团中各原子的结合顺序不能随意颠倒。
2、键线式:将碳、氢元素符号省略,只表示分子中键的连接情况,每个拐点或终点均表示有一个碳原子,称为键线式。
每个交点、端点代表一个碳原子,每一条线段代表一个共价键,每个碳原子有四条线段,用四减去线段数既是氢原子个数。
注意事项: (1)一般表示3个以上碳原子的有机物; (2)只忽略C-H 键,其余的化学键不能忽略; (3)必须表示出C =C 、C ≡C 键等官能团;(4)碳氢原子不标注,其余原子必须标注(含羟基、醛基和羧基中氢原子)。
(5)计算分子式时不能忘记顶端的碳原子。
【拓展视野】:有机化合物结构的表示方法电子式结构式 结构简式键线式【基础训练】1、请写出下列有机化合物的结构式、结构简式和键线式。
2、请写出下列有机化合物的结构简式和键线式。
C CC C HHHHH H、C C C CH BrH BrHHH H、略去碳氢元素符号短线替换 共用电子对省略短线 双键叁键保留CH 3CH 2CH 2CH3CH 3CHCH 2CH 3CH3CH 3CH CHCH3C C C C HH HH HH H H 、3、有机化合物的结构简式可进一步简化,如:请写出下列有机物分子的分子式:⑪ ; ⑫ ;⑬Cl;⑭ ;(5)OO; (6)OOH。
二、 有机物命名1、系统命名法命名含官能团的简单有机物的基本步骤是: (1) __________________。
A 、选择官能团中没有碳原子数,则母体的必须_________的碳链作主链。
B 、官能团中俼碳原子,则母体的必须尽可能多地 。
氢气分子结构式
氢气分子是由两个氢原子组成的,化学式为H2。
氢气分子的结构式可用Lewis结构式和分子轨道理论进行描述。
在Lewis结构中,每个氢原子都有一个价电子,共用电子对分别与另一个氢原子的价电子对形成核心部分。
这种结构形成了一个共价键,将两个氢原子紧密连接在一起。
每个氢原子上的剩余一个非共用电子形成一个孤对电子,这是由于氢原子只有一个价电子壳。
在氢气分子的分子轨道理论中,两个氢原子的价电子轨道组合形成分子轨道。
具体来说,两个氢原子的1s轨道会相互叠加,形成一个σ(sigma)分子轨道。
分子轨道的能量低于原子轨道,因此形成的结果是氢气分子是稳定的,并且有低能级的σ结合轨道。
在氢气分子中,两个氢原子之间的共价键是σ键。
这意味着两个原子上的价电子以一个非对称的方式分布,一个原子的电子更靠近另一个原子。
由于氢原子只有一个价电子,氢气分子的σ键是单键。
此外,氢气分子还具有一个反键轨道,该轨道是由两个氢原子的非共用电子形成的。
反键轨道的能量高于σ键的能量,这意味着在分
子中,电子更稳定地存在于σ键轨道而不是反键轨道。
这也是氢气分子稳定性的原因之一。
氢气分子的结构是线性的,两个氢原子通过共价键连接在一起,形成一个直线。
这是由于氢原子都是1s轨道组成的,没有杂化轨道的混成存在,因此分子形状为线性。
总结起来,氢气分子的结构式为H-H,其中两个氢原子通过一个σ键连接在一起,形成一个线性分子。
这种结构使得氢气分子稳定存在,并具有特定的化学和物理性质。