全国第八届青年数学教师优质课展示课件与教学设计变化率问题课件
- 格式:ppt
- 大小:982.50 KB
- 文档页数:31
《变化率问题》教学设计教材版本:普通高中数学教材人教A版《选修2-2》“1.1.1变化率问题”,一、教学内容分析导数是微积分的核心概念之一,是研究函数增减、变化快慢、最值问题的最一般、最有效的工具。
教材按照“平均变化率—瞬时变化率—导数的概念—导数的几何意义”的顺序安排,采用“逼近”的方法,从数形结合的角度定义导数,使导数概念的建立形象、直观而又容易理解,突出了导数概念的本质。
平均变化率是导数概念建立的核心,教材通过研究学生熟悉的“气球膨胀率”、“高台跳水”这两个生活实例,归纳出它们的共同特征,总结出一般函数平均变化率概念,使学生理解平均变化率刻画了函数在某一区间上的变化情况,并掌握平均变化率解法的一般步骤。
从知识形成的先后顺序来看,平均变化率是本章内容学习的核心概念,是研究瞬时变化率及其导数概念的基础,在整个导数学习中占有极其重要的地位。
在概念的形成过程中,将进一步渗透从特殊到一般的化归思想,数形结合思想。
基于上述分析,我将本节课的教学重点确定为:理解平均变化率的概念,掌握平均变化率解法的一般步骤,了解平均变化率的几何意义。
二、学生情况分析(一)、学生已有的认知基础1、学生具备了一定的函数知识,可以通过表格、图像、关系式三种不同的函数表现形式,求解函数在某一区间内“因变量的增量与自变量的增量的比值。
并能从图像中看出函数变化的快与慢。
2、学生已在物理中学习了平均速度、瞬时速度、加速度等概念,比较容易理解可以用“平均速度”刻画物体在一段时间内的速度。
(二)可能存在的认知困难1、“吹气球”与“高台跳水”是学生非常熟悉的生活实例,如何从具体实例中抽象出共同的数学本质,能够用“平均变化率”对生活中的变化快慢现象进行合理的数学解释是本节课教学的关键,也是难点所在。
2、利用变化率的有关知识解释生活的中一些现象,需要学生具有一定抽象概括能力和应用数学数学语言表达问题的能力。
对高中生而言,抽象概括能力和应用数学语言的能力还有待进一步的提高。
普通高中课程标准实验教科书数学选修2-21.3。
1单调性江苏省南通中学秦霞【教学内容解析】1.导数这个概念是高等数学的基本概念,又是中学阶段数学学习的一个主干知识,它是进一步学习数学和其他自然科学的基础,更是研究函数相关性质的重要工具之一。
2.单调性作为函数的主要性质之一,主要用来刻画图象的变化趋势,在必修1的学习中定义了单调性,并且在学习幂指对及三角函数时,能够借助于函数图象特征和单调性的定义来研究函数的单调性。
3.这节课我们是在学习了导数的平均变化率、瞬时变化率、导数的定义和几何意义之后,试图通过导数来研究函数的单调性,为研究单调性提供了更一般的方法,是后面学习函数的极值、最值的知识铺垫、能力基础和方法指导。
起到了承上启下、完善建构、拓展提升的作用.4.教学重点:导数与函数单调性的关系的探索和发现;利用导数研究函数的单调性.这节课将结合例题研究二次函数、三次函数以及三角函数的单调性。
【教学目标设置】1.借助几何直观,通过实例归纳函数的单调性与导数的关系;2.理解并掌握利用导数判断函数单调性的方法,会用导数求函数单调区间;3.通过用定义与用导数在研究函数单调性时的两种方法的比较,体会导数方法在研究函数性质中的一般性和有效性,同时感受和感悟数学自身发展的一般规律.【学生学情分析】1。
已有的知识储备:(1)本节课的授课对象是南通中学高二年级的学生,他们在经历了高一一学年的数学学习后,已经基本了解高中数学的基本思想和研究方法,具备了一定的发现问题、探究问题、分析问题和解决问题的能力。
(2)学生已经掌握了基本初等函数的图象特征和基本性质,而且已经掌握了导数的定义、导数的计算以及其几何意义,已经具备了用导数探究函数单调性的知识储备。
存在问题:将导数与函数单调性联系起来,学生的抽象概括能力还不够;解决方法:需引导学生通过不断探究,数学联想,逐步得出导数研究函数单调性的结论。
2。
教学难点:发现和揭示导数与函数单调性的关系;并利用导数研究函数的单调性.突破策略:课堂中引导学生通过探究、验证、回归逐步得出导数研究函数单调性的结论,再结合例题研究二次函数、三次函数以及三角函数的单调性。
《§1.3.1函数的单调性(第一课时)》教学设计新疆乌鲁木齐八一中学韩昕课型:新授课一、教学内容解析及学情分析首先,从单调性知识本身来讲.学生对于函数单调性的学习共分为三个阶段:第一阶段是学生在初中学习了一次函数、二次函数、反比例函数,对函数的增减性有一个初步的感性认识,知图象的变化趋势;第二阶段是在高一学习函数单调性的严格定义,从数和形两个方面理解单调性的概念;第三阶段则是在高二利用导数为工具研究函数的单调性,并知其变化快慢.高一单调性的学习,既是初中学习的延续和深化,又为高二的学习奠定基础.其次,从函数角度来讲. 函数的单调性是学生学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从观察图象,用自然语言描述函数图象特征,以函数解析式为依据经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.最后,从学科角度来讲.函数的单调性是学习不等式、极限、导数等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材,同时是一节具有奠基意义的数学方法课.二、教学目标按照教学大纲的要求,根据教材和学情,确定如下教学目标:1.知识与技能目标:①使学生从形与数两方面理解函数单调性的概念;②掌握利用函数图象和单调性定义判断函数单调性的方法;③掌握利用函数单调性的定义证明函数在某个区间上的单调性.④隐性目标:让学生体验数学知识的发生发展过程,在体验函数单调性概念的建构过程中掌握数学的认知策略.2.过程与方法目标:①通过对函数单调性定义的探究,渗透数形结合的思想方法;②通过对函数单调性的证明,提高学生的推理论证能力;③在体验函数单调性概念符号化的建构过程中,让学生体会数学知识的发生发展过程:由形象到抽象,从具体到一般,掌握数学概念的本质,培养学生观察、归纳、抽象的概括能力和语言表达能力;④通过课堂练习单及时巩固学习成果,完成学习目标.3.情感、态度与价值观目标:①充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进学生形成研究氛围和合作意识.②重视知识的形成过程教学,培养学生细心观察、认真分析、严谨论证的良好思维习惯让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与收获的乐趣.三、教学重、难点对于函数的单调性,学生的认知困难主要在两个方面:首先,用准确的数学符号语言去刻画图象的上升与下降,把对单调性直观感性的认识上升到理性的高度, 这种由形到数的翻译,从直观到抽象的转变对高一的学生来说比较困难.如何让学生理解这种符号化的、抽象的数学语言,参与函数单调性概念的形成过程是本节课的第一个难点.其次,由于学生第一次接触到代数证明,如何运用函数单调性的定义严格证明函数的单调性并完成规范的书面表达则是本节课的另一难点.根据以上的分析和教学大纲对单调性的教学要求,本节课的教学重难点是:教学重点:增(减)函数概念的形成;教学难点:①形成增(减)函数概念的过程中,如何从图象升降的直观认识过渡到函数增减的数学符号语言表达;②用定义证明函数的单调性.四、教法、学法教法:本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲解和学生探究发现的教学方法.教学过程中,根据教材提供的线索,安排适当的教学情境,让学生展示相应的数学思维过程,使学生有机会经历数学概念抽象的各个阶段,引导学生独立自主地开展思维活动,深入探究,从而创造性地解决问题,最终形成概念,获得方法,培养能力.同时使用多媒体辅助教学以及几何画板的使用,增强动感和直观性,充分发挥其快捷、生动、形象的特点,有助于学生对问题的理解和认识,提高教学效果和教学质量;学法:合作实践、学生展示、小组讨论、发现总结等方法.五、教具准备实物展示台、多媒体.六、教学过程:(一)问题情境:在2016年8月10号的里约奥运会上,由陈若琳和刘蕙瑕组成的双人组合获得10米台跳水冠军,展示跳水动图,问题1:跳水运动员的运动轨迹是什么?问题2:从左向右看,图象的变化趋势是什么?函数图象的上升与下降的趋势就反映了函数的单调性.设计意图:把我国运动员获得奥运冠军这件时事作为情境引入,增强学生的民族自豪感,另外根据运动员的运动轨迹曲线很自然地引入函数的单调性这节课,让学生感受数学来自生活.(二)建构定义:1.概念探究阶段第一次认识:(图形语言)观察函数2x y =的图象,思考1:从左向右看函数在区间()∞+,0上的图象有怎样的变化趋势?(上升?下降?)思考2:怎样描述图象的上升呢?第二次认识:(文字语言)教师几何画板展示,点A 在()∞+,0上向上运动时,A 点坐标的变化.让学生观察到,函数2x y =在区间()∞+,0上,随着自变量x 的增大,函数值y 也增大.这是我们从形的角度观察到的,那么怎样用符号和式子描述函数值y 随着自变量x 的增大而增大呢?第三次认识:(符号语言)首先:将两个“增大”符号化,比较才能出大小,在区间()∞+,0上的1x ,2x ,即当12x x <时,)()(21x f x f <.在区间D 上的1x ,2x ,即当12x x <时,)()(21x f x f <.此时一定能保证在区间D 上的图象是上升的吗?图象可能会出现哪些情况?需要添加什么条件使得在区间D 上的图象是上升的?所以,进一步完善表达:对于区间()∞+,0上的任意的两个自变量的值21,x x ,当12x x <时,都有)()(21x f x f <,那么就说函数2)(x x f =在区间()∞+,0上是增函数. 设计意图:通过由图象直观感知 自然语言描述 数学符号语言描述,即从直观到抽象、特殊到一般、感性到理性的认识过程,学生能够更好的感受数学知识的生成过程.通过一系列的问题逐步引导学生发现1x ,2x 的任意性,让学生体会数学的严谨性.2. 本着从特殊到一般的原则,对于一般函数,我们来定义增函数:设函数)(x f 的定义域为I ,I D ⊆,任意D x x ∈21,,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数. 3.对比增函数的定义,由学生归纳出减函数的定义.设函数)(x f 的定义域为I ,I D ⊆,任意D x x ∈21,,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数.即减函数图象在区间D 内呈下降趋势,当x 的值增大时,函数值y 减小.设计意图:得出减函数定义,培养学生的类比能力.4.对定义的理解:(1)21,x x 的任意性;教师几何画板展示,帮助学生从运动变化的观点理解21,x x 的任意性.(2)对21x x <的理解:此时)(1x f 与)(2x f 不等,说明变量不同,函数值不同,所以我们不在一点出讨论函数的单调性,当端点在定义域的范围内,区间可开可闭,当端点不在定义域的范围内,区间是开区间.(3)分析定义中自变量与因变量的变化关系,当21x x ≠时,()()()()02121>--x f x f x x 说明了什么?设计意图:定义是数学的核心,通过教师带领学生理解定义,可以提高学生的认识和理解.5.函数的单调性定义如果函数)(x f y =在区间D 上是增函数或者减函数,那么就说函数)(x f y =在区间D 上具有单调性,函数的单调性也叫函数的增减性;增函数与减函数也分别叫做单调递增函数,单调递减函数;区间D 叫做函数)(x f y =的单调区间.所以,函数的单调性是定义域内的某个区间上的性质,是函数的局部性质.探究:函数xy 1=在定义域上的单调性是怎样的? 设计意图:再次让学生体会和理解函数单调性的定义,多个单调增(减)区间用“,”“和”连接,不用“∪”.类型一:根据函数图象写出函数的单调区间例 1.下图是定义在[-5,5]上的函数)(x f y =的图象,根据图象说出函数)(x f y =的单调区间,以及在每一单调区间上,)(x f y =是增函数还是减函数。
高中数学《变化率问题》公开课优秀教学设计2、理解导数的概念及其几何意义,能够求解导数,并能应用导数解决实际问题。
3、培养学生抽象概括能力和应用数学语言表达问题的能力,提高学生的数学思维能力和创新意识。
基于以上课程标准,本节课的教学目标设计如下:1、理解平均变化率的概念,掌握平均变化率解法的一般步骤,了解平均变化率的几何意义。
2、理解导数的概念及其几何意义,能够求解导数,并能应用导数解决实际问题。
3、通过具体生活实例,概括出平均变化率的定义,并能够运用“平均变化率”解释生活中变化快慢的生活实例。
4、培养学生抽象概括能力和应用数学语言表达问题的能力,提高学生的数学思维能力和创新意识。
四、教学过程设计1、导入环节通过“气球膨胀率”、“高台跳水”等生活实例,引导学生思考变化率的概念,并通过图像、表格等方式,让学生感受变化率的变化趋势。
2、知识讲解1)平均变化率的概念和计算方法,以及平均变化率的几何意义。
2)瞬时变化率的概念和计算方法,以及导数的定义和几何意义。
3)导数的求解方法和应用。
3、案例分析通过一些典型例题,让学生掌握导数的计算方法和应用,培养学生的解决实际问题的能力。
4、练与巩固通过一些练题,让学生巩固所学知识,提高解题能力。
5、拓展与应用通过一些拓展性的问题,让学生进一步理解导数的概念和应用,培养学生的创新思维能力。
6、总结与评价对本节课所学知识进行总结,并对学生的表现进行评价和反馈。
五、教学方法通过引导学生思考、案例分析、练巩固、拓展应用等多种教学方法,培养学生的数学思维能力和创新意识。
六、教学手段通过黑板、投影仪、实物模型等多种教学手段,让学生更加直观地理解所学知识。
本节课的教学目标需要更具体、可操作和可检测性。
通过解读《课程标准》,我们将课堂教学目标确定为:1.理解平均变化率的概念,了解其几何意义;2.通过具体实例,归纳、抽象出平均变化率的定义;3.体会数形结合的思想方法。
为了有效地突破教学难点,我们将引用苏教版《变化率问题》中的“气温变化”问题,通过数学角度解释生活中的变化快慢现象,为后面探究“气球膨胀率”、“高台跳水”问题奠定基础,为归纳“平均变化率”的概念提供具体背景。
《131单调性与最大(小)值第1课时》教学设计课型:新授课一、教学内容解析《函数的单调性》是《高中数学人教A版》(必修1)第一章1.3.1节的内容,本节课的主要内容是从形与数两方面理解函数单调性的概念,依据图象判断函数的单调性和应用定义证明一些简单函数在给定区间上的单调性.函数的单调性是学生在了解函数概念之后学习的第一个函数性质,也是函数学习中第一个用数学符号语言刻画的性质. 函数单调性的研究体现了对函数研究的一般方法•这就是:加强数形的结合,由直观到抽象,由特殊到一般•即借助对函数图象的观察、分析、归纳,发现函数增、减变化的直观特征,进一步量化,发现增、减变化的数字特征,从而加以解析研究,用准确的数学语言刻画•函数的单调性为研究函数的其他性质起到了示范作用,提供了方法依据.函数的单调性有着承前启后的作用.一方面,函数的单调性是前一节内容函数的概念与图象知识的延续与扩展,同时函数的单调性又是后续研究指数函数、对数函数、幕函数及其他函数单调性的理论基础,在解决函数定义域、值域、不等式、比较两数大小等具体问题中均有着广泛的应用;此外,从方法论的角度分析,本节教学过程当中,还渗透了数形结合、归纳类比、转化与化归等数学思想.利用定义证明函数单调性的过程中,算法的思想提前渗透,在强调对单调性概念中的任意”理解的同时,为后面逻辑用语中的全称量词和存在性量词的深入理解提前做了铺垫.本节课的教学重点:形成增(减)函数的形式化定义.二、教学目标设置根据新课标的要求和教学内容的结构特征,依据学生学习认知的心理规律和素质教育的要求,并结合本校学生的实际水平,确定本节课教学目标如下:1.从形与数两方面理解函数单调性的概念,会根据函数图象判断函数的单调性,指出函数的单调区间;2.能够根据函数单调性的定义证明函数在指定区间上的单调性;3.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力;在经历观察发现、抽象概括,自主建构单调性概念的过程中,让学生体会从具体到抽象,从特殊到一般,从感性到理性的认知过程.目标解析:1 •在探究函数单调性定义时,领悟到数形结合思想、归纳类比思想、转化与化归思想,并能运用这些数学思想观察、分析函数的图象,探究、归纳、概括出函数单调性的概念.2.能够以具体的例子说明函数在某区间上是增函数还是减函数;能够举例,并通过绘制图象说明函数在定义域的某区间上具有单调性,而在整个定义域上未必具有单调性,说明函数的单调性是函数的局部性质. 对于一个简单函数能够用单调性的定义证明它在指定区间上是增函数还是减函数.三、学生学情分析从学生的知识上看,学生已经学过一次函数、二次函数及反比例函数、函数的概念及表示,能画出一些简单函数的图象,从图象的直观变化,学生能粗略的领会函数增减性的概念,从而引入函数单调性的定义也就水到渠成.从学生现有的学习能力来看,通过初中对函数的认识和实验,学生已具备一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力.从学生的学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为概念”的水平,如何定性”定量”的描述函数性质是学生关注的问题,也是学习的重难点问题.函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生渴望进一步学习,这种积极心态是学生学好本节课的情感基础•但是如何运用数学符号将自然语言的描述转化为形式化的定义,学生接受起来还比较困难•在教学中要多引导,让学生真正的理解函数单调性的定义.教学难点:在形成增(减)函数概念的过程中,如何从图象升降的直观认识过渡到函数增减的数学符号语言表述;基于第一次接触代数证明,如何用定义严格证明函数的单调性,也是本节课教学的一个难点.四、教学策略分析为实现本节课的教学目标,突出重点,突破难点,教学上我主要采取了以下的策略:1创设情境.通过观察上楼梯的动态图片及分析上楼梯时人的位置随台阶的变化情况,自然联系函数的单调性,同时激发学生的学习兴趣,轻松引入课题.2•提炼概念.①以学生熟悉的函数f(x)=x2为例,让学生从图象上获得上升”下降”的整体认识,初步认识函数单调性;②通过几何画板的动态演示和数据分析,让学生直观了解图象的升降与x、f(x)对应值之间的关系,能用自然语言“f x随着x的增大而增大”来描述函数f x i;= x2的图象在0,=是上升的”,进一步认识函数单调性;③经历观察、分析、归纳的认知过程,能将图象在0「:上升”这一特征用该区间上任意的x,:必,都有f(xj ::: f(X2)”的符号语言进行刻画,从而产生增函数的概念•最后通过类比,得出减函数的概念.3•辨析概念.一方面是函数单调性概念内涵的挖掘,结合函数单调性定义中的关键词任意”以及单调性是函数的局部性质等内容设置辨析,加深对概念的理解;另一方面是概念的外延拓展,从单调区间没有可加性、单调性概念的正逆互推这两个方面和学生互动交流,提升对单调性概念的整体认知.4•应用概念.一方面通过观察图象判断函数的单调性,指出函数的单调区间;另一方面,让学生掌握根据定义证明函数在给定区间上的单调性的方法和规范步骤.五、教学过程(一)创设情境,弓I入新知函数是研究事物运动变化规律的数学模型,而生活中许多运动变化现象都具有规律性•让学生观察“上楼梯”的动态图片,提出问题:在上楼梯时,人的位置是如何随台阶的变化而变化的?预设:随着台阶数的增加,人的位置会逐渐升高.“上楼梯”的这种变化规律,体现的就是人的位置与台阶级数这两个量之间的变化规律,从函数的角度看,即一个量随另一个量变化而变化的规律.【设计意图】由生活情境引入新课,激发兴趣.(二)提炼概念,形成新知教师:这种规律,反映了函数的一个重要性质,这就是我们今天要研究的内容:函数的单调性•本节课我们的任务首先就是建立函数单调性的严格定义.问题1:观察函数f(x) =x • 1与f(x) =「2x 2的图象,解决如下问题:(1)从左往右看,图象有什么样的升” 降”规律?(2)图像的这种升” 降”规律反映了随着自变量的变化,函数值是如何变化的?①第一个图象从左至右是上升的,在整个定义域内f(x)随着x的增大而增大; ②第二个图象从左至右是下降的,在整个定义域内f(x)随着x的增大而减小•然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.教师:二次函数f(x)=x2在整个定义域内是增函数还是减函数?通过师生互动,引导学生认识增、减函数和区间的关系,强调单调性是针对定义域的某个区间而言的,是函数的一种局部性质.【设计意图】从图象直观感知函数的单调性,并从图形的刻画过渡到数量关系,即从图形语言的表述过渡到自然语言的表述,完成对单调性的第一次认识.教师:通过观察图象的升、降趋势,我们用自然语言描述了增、减函数,但数学中的概念表述要求严谨规范,所以还需用准确的符号语言来刻画增、减函数的定义.问题2:以二次函数f(x)=x2为例,如何用准确的符号语言描述“f(x)在0, •::上是增函数,即在0, •::上f (x)随x的增大而增大”?第一步:将x增大”符号化,类比x增大”得到f'(x)的增大”教师:x增大”,就是x由小变大,这说明增大”意味着大小比较,而比较至少要在两个数之间进行.不妨设其中一数为X i,另一数为X2,将&看作较小数、X2看作较大数,自然得到X增大”用符号语言描述就是:Xi:X2 .第二步:将随”字符号化;预设:学生不难得出,当X i :::X2时,有f X i ::: f X2 .第三步:再将隐含语言区间”符号化;教师:X i、X2在哪里取?该区间与定义域有何关系?强调单调性是函数的局部性质,逐步引导学生得出单调性定义.说明:学生对“任意性”的认识可能会有欠缺,但可通过后续的概念辨析等学习活动加深对单调性概念的理解,逐步深化认知.【设计意图】通过一系列提问和引导,让学生突破思维的瓶颈,初步学会用符号语言在区间0「:上任取两个数X i,X2,当X^::X2时,都有f(xj :::f(x2) ” 来描述在(0,址)上f(x )随着X的增大而增大”把对单调性的认识由感性上升到理性认知高度,完成对概念的第二次认识.师生共同探究,得出增函数的严格定义(板书定义):一般地,设函数f x的定义域为I :如果对于定义域I内的某个区间D上的任意两个自变量的值x1,x2,当Xi:x2时,都有f(xj ::: g,那么就说函数f(x)在区间D上是增函数.用图象刻画增函数.【设计意图】体现了对函数研究的一般方法:由特殊到一般的思想方法.问题3:类比增函数的定义,对于一般的函数y = f x,我们又该如何给减函数下定义?学生通过类比、观察、交流后,得出减函数定义,并用图象刻画减函数.师生活动:小组交流讨论,代表发言.【设计意图】得出减函数定义,培养学生的类比推理能力.(三)辨析概念,深化新知辨析题:判断下列说法是否正确,若不正确,请举例说明理由.⑴定义在R上的函数f(x)满足f(- 1)< f(2),则函数f(x)在R上是增函数.(交流讨论,借助幻灯片以图象形式给出反例)⑵f(x)=x2-3在-::上是增函数.(%1 1⑶反比例函数f(x)^1在-::,0,0,= 上是减函数,则f(x)^1在x x(-甲0 2(0,咼上也是减函数.(% (小组合作探究,学生展示反例)⑷函数y = f x在[0/ ::)上为增函数,任取x i、X2 •,如果f X i ::: f X2 ,那么X i ::: X2 . (V)(几何画板作动态演示)师生交流,代表发言,通过辨析题让学生认识到以下五点:(1)在定义域R上有两个或无数个自变量满足当X i :::X2时,有f Xi ::: f X2 都不能反映函数值f(X)随自变量X的增大而增大”的本质.必须强调X i、X2是任意”的,才符合增函数的特征;(2)有些函数只在定义域的某些区间上具有单调性,而在整个定义域上不一定单调,强调单调性是函数的局部性质;(3)以反比例函数为突破口,强调单调区间没有可加性;通过本题也可让学生思考:如何说明一个函数在给定区间上不是单调函数?(4)函数单调性的概念可以正逆互推,了解这点有利于后续解决运用单调性求解不等式的相关问题.【设计意图】通过对概念的辨析,一方面挖掘函数单调性概念的内涵,另一方面拓展其外延,加深对单调性的理解,完成对概念的第三次认识.(四)应用概念,掌握新知例1下图是定义在区间1-5,51上的函数y二f x,根据函数图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?【设计意图】学生能通过观察图象说出函数的单调区间,完善和加深对函数单调性概念的理解.例2试用单调性的定义证明f(x)=x2在[0,;)上是增函数.师生活动:教师分析,学生思考,教师按定义严格板书示范,指出本例证明的关键是对作差结果进行合理变形和符号判断,让学生提炼用定义法证明函数单调性的基本步骤:①任取;②判断;③根据定义下结论,并强调为必2的三个特征:同范围、任意性、有大小.2练习:证明函数f(x)=- 1在-::,0上是减函数.x师生活动:学生上台展示,教师讲评.【设计意图】让学生掌握用定义证明函数单调性的方法和书写的规范步骤.(五)课堂小结通过本节课的学习,我们来体会一下都有哪些收获?师生活动:学生谈本节课的感受,教师梳理、总结本节课主要的学习内容,并揭示蕴涵的数学思想方法.【设计意图】使学生深切体会到本节课的主要内容和思想方法.思考:如果对任意的x-\,x2E i a, b,当x^2 x2时,有捲「x2〔f (为)「f (x2)丨• 0,那么函数y=f(x)在a,b上是增函数吗?(六)布置作业1 .基础达标:①教材中练习的第2、3题;②求证:函数f x =x2在区间」:,0上是减函数;、x2 +1, x > 02.能力提升:研究函数f(x) =」2的单调性;-x —X, x£03.思考探究:在一碗水中加入一定量的糖,糖加的越多糖水越甜(糖水不饱和状态下).你能用本堂课所学知识解释这一生活现象吗?【设计意图】有梯度的设计作业,满足不同层次学生的不同要求•同时,探究题有意识的将数学与生活结合,让学生学以致用,既巩固了基本知识,又提升了分析问题和解决问题的能力.(六)板书设计(七)教学反思本节课通过给出具体的函数实例和函数单调性的图形语言,调动学生参与的意识,又运用多媒体演示、提问、分析定义等方法,加深对抽象的数学概念的理解,渗透了数形结合的数学思想方法. 后面通过概念辨析,使学生的认识得到深化,思维得到发展.。