平均变化率教案及教案说明
- 格式:doc
- 大小:166.00 KB
- 文档页数:7
《平均变化率》教案及教案说明一、教学目标1. 让学生理解平均变化率的定义及其几何意义。
2. 培养学生运用导数概念理解实际问题中的变化率。
3. 训练学生运用极限思想分析问题,提高解决问题的能力。
二、教学内容1. 平均变化率的定义:引入变化率的概念,解释平均变化率的含义。
2. 平均变化率的计算:讲解如何计算函数在某一区间的平均变化率。
3. 平均变化率与导数的关系:阐述导数的几何意义,引导学生理解导数与平均变化率之间的联系。
三、教学重点与难点1. 教学重点:平均变化率的定义及其计算方法。
2. 教学难点:导数与平均变化率之间的关系。
四、教学方法与手段1. 教学方法:采用问题驱动法、案例分析法、讨论法等,引导学生主动探究、合作学习。
2. 教学手段:利用多媒体课件、板书、图形等辅助教学。
五、教学过程1. 导入新课:通过生活中的实例,引导学生关注变化率的概念。
2. 讲解平均变化率:给出平均变化率的定义,解释其几何意义。
3. 演示计算平均变化率:利用多媒体课件,展示计算过程。
4. 分析导数与平均变化率的关系:引导学生理解导数与平均变化率的联系。
5. 巩固练习:布置相关练习题,让学生巩固所学知识。
7. 布置作业:设计课后作业,巩固所学知识。
教案说明:本教案以学生为主体,注重培养学生的动手操作能力、思考能力和合作精神。
在教学过程中,教师应关注学生的学习情况,及时解答学生的疑问,引导学生运用所学知识解决实际问题。
通过案例分析、讨论等形式,激发学生的学习兴趣,提高课堂参与度。
在教学内容上,重点讲解平均变化率的定义和计算方法,引导学生理解导数与平均变化率之间的关系。
在教学手段上,充分利用多媒体课件和板书,直观展示概念和计算过程,有助于学生更好地理解和掌握知识。
六、教学拓展1. 引导学生思考实际生活中的其他例子,运用平均变化率解释。
2. 探讨平均变化率在物理学、经济学等领域的应用。
七、课堂互动1. 提问环节:在学习过程中,鼓励学生提问,解答学生疑问。
平均变化率一、教学目标✧通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻画变量变化快慢程度的一种数学模型;✧理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率;✧感受数学模型在刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力。
二、教学重点平均变化率概念教学难点平均变化率概念的形成过程三、教学方法与教学手段✧启发式教学与探究式学习相结合。
通过生活中的实例,引导学生分析和归纳,让学生在已有认知结构的基础上建构新知识,教师在教学中尤其要关注“谁在学?为什么要学?怎么学?”利用多媒体辅助教学,突出重点、突破难点,提高教学效率。
四、教学过程✧问题情境,感受概念情境1GDP “猛增”胡锦涛同志在党的十七大报告中提出:“增强发展协调性,努力实现经济又好又快发展。
转变发展方式取得重大进展,在优化结构、提高效益、降低消耗、保护环境的基础上,人均国内生产总值(GDP)到2020年比2000年翻两番”。
(2000年中国人均GDP为856美元,2020年约为3500美元.)尤其令人振奋的是:十六大以来,我国国民经济保持平稳快速发展,2002年我国人均GDP 首次超过1000美元,达到1100美元,在短短的4年内于2006年又超过2000美元,达到2010美元。
我国已经由低收入国家步入了中等收入国家行列,标志着我国在向全面建设小康社会的进程中又迈出了坚实的一步。
问题1 如何从数学角度刻画2002年至2006年这4年我国人均GDP “猛增”?情境2 房价“暴涨”南京龙江小区近十来年的房价变化如下图所示:问题2 如何从数学角度刻画房价“暴涨”?情境3 股指“跳水”2007年9月25日沪市A 股走势图问题3 如何从数学角度刻画股指“跳水”?情境4 气温“陡升”现有某市2004年3月和4月某天日最高气温记载如下列图表所示:问题4 : 如何从数学角度刻画气温“陡升”? ✧ 建立模型,形成概念问题5 用怎样的数学模型刻画函数值变化的快慢程度? 思考1 你能给出函数f (x )在区间[x 1,x 2]上平均变化率的定义吗?定义 函数f (x )在区间[x 1,x 2]上平均变化率为2121()()--f x f x x x 。
《平均变化率》教案及教案说明教案说明:本教案旨在帮助学生理解平均变化率的概念,掌握平均变化率的计算方法,并能应用于实际问题中。
通过本教案的学习,学生将能够:1. 理解平均变化率的定义和意义;2. 掌握平均变化率的计算公式;3. 应用平均变化率解决实际问题。
教案内容:一、导入1. 引导学生回顾函数的定义,强调函数的输入输出关系;2. 引入“变化率”的概念,引导学生思考函数在某一点处的变化率是什么;3. 提问:如何描述函数在某一段区间内的变化情况?二、平均变化率的定义1. 给出平均变化率的定义:函数在区间[a, b]上的平均变化率定义为(f(b) f(a)) /(b a);2. 解释平均变化率的含义:平均变化率表示函数在区间[a, b]上的平均变化速度;3. 强调平均变化率是对函数变化情况的宏观描述。
三、平均变化率的计算1. 引导学生思考如何计算函数在某一段区间上的平均变化率;2. 给出计算公式:函数在区间[a, b]上的平均变化率= (f(b) f(a)) / (b a);3. 举例说明如何计算具体函数的平均变化率。
四、应用1. 引导学生思考平均变化率在实际问题中的应用;2. 举例说明如何利用平均变化率解决实际问题,如物体运动的速度变化、物价变化的分析等;3. 引导学生尝试自己解决一个实际问题,如计算某商品价格在一段时间内的平均变化率。
五、总结与评价1. 总结本节课的重点内容:平均变化率的定义、计算方法和实际应用;2. 强调平均变化率的概念在实际问题中的重要性;3. 鼓励学生课后思考更多与平均变化率相关的问题,拓展思维。
教学评价:本教案通过导入、讲解、应用和总结等环节,引导学生逐步理解平均变化率的概念,掌握计算方法,并应用于实际问题中。
在教学过程中,教师应关注学生的理解情况,及时解答学生的疑问,并通过举例和练习等方式巩固学生的知识。
通过本教案的实施,学生将能够掌握平均变化率的基本概念和应用方法。
六、案例分析1. 提出案例:分析某商品价格在一段时间内的变化情况;2. 引导学生运用平均变化率的概念和计算公式进行分析;3. 演示如何根据商品价格的变化数据计算平均变化率;4. 解释平均变化率在分析商品价格变化中的作用。
函数的平均变化率教案教学目标:1. 理解函数的平均变化率的定义和意义;2. 学会计算函数的平均变化率;3. 能够应用函数的平均变化率解决实际问题。
教学内容:第一章:函数的平均变化率的概念1.1 引入函数的平均变化率的概念1.2 解释函数的平均变化率的含义1.3 举例说明函数的平均变化率的应用第二章:函数的平均变化率的计算2.1 引入计算函数的平均变化率的方法2.2 讲解如何计算函数的平均变化率2.3 给出计算函数的平均变化率的例题第三章:函数的平均变化率的性质3.1 引入函数的平均变化率的性质3.2 讲解函数的平均变化率的性质3.3 给出函数的平均变化率的性质的证明第四章:应用函数的平均变化率解决实际问题4.1 引入应用函数的平均变化率解决实际问题的方法4.2 讲解如何应用函数的平均变化率解决实际问题4.3 给出应用函数的平均变化率解决实际问题的例题第五章:巩固练习5.1 给出巩固练习的题目5.2 讲解巩固练习的解法5.3 给出巩固练习的答案教学资源:1. 教学PPT;2. 教材或教案;3. 练习题。
教学评估:1. 课堂参与度;2. 练习题的完成情况;3. 学生对函数的平均变化率的理解程度。
教学步骤:Step 1:引入函数的平均变化率的概念(10分钟)1. 讲解函数的平均变化率的定义;2. 举例说明函数的平均变化率的应用。
Step 2:讲解计算函数的平均变化率的方法(15分钟)1. 讲解如何计算函数的平均变化率;2. 给出计算函数的平均变化率的例题。
Step 3:讲解函数的平均变化率的性质(15分钟)1. 讲解函数的平均变化率的性质;2. 给出函数的平均变化率的性质的证明。
Step 4:应用函数的平均变化率解决实际问题(10分钟)1. 讲解如何应用函数的平均变化率解决实际问题;2. 给出应用函数的平均变化率解决实际问题的例题。
Step 5:巩固练习(15分钟)1. 给出巩固练习的题目;2. 讲解巩固练习的解法;3. 给出巩固练习的答案。
平均变化率教案及教案说明
一、概念解释
1、平均变化率:平均变化率是衡量物价、成本和收入水平上涨的标准,它用来分析一段时间内的价格是否发生了变化以及变化是否稳定。
2、计算公式:平均变化率=(末期价格-初期价格)/ 末期价格
二、具体教学内容
1、讲解平均变化率的概念:首先要清楚地讲解平均变化率的概念,特别是物价、成本和收入水平上涨的标准;
2、计算实例分析:然后我们向学生们提出一些实际的问题,让他们自己查找资料,模拟这些问题,然后用公式计算出平均变化率;
3、优点和缺点:针对这个概念,我们可以让学生们讨论其优点和缺点。
例如它可以用来衡量价格变化的速度和程度,以及可以帮助人们观察物价的发展史等;
4、总结评价:最后,我们可以总结这节课的内容,让学生们以自身的经验和认识来评价平均变化率这一金融概念。
三、教学目标
通过学习本节课,使学生们掌握平均变化率的概念,熟练掌握计算公式,对它的优点和缺点有清楚的认识,并能运用在实际的应用中。
四、教学重点
1、理解平均变化率的概念;
2、熟练掌握计算公式;
3、了解它的优点和缺点;
4、掌握实用的应用方法。
五、教学方法
1、启发式教学法:要让学生们从具体的实例出发,对平均变化率做出合理的推断;
2、开放式教学法:在给学生教授知识的过程中,要加入开放式的问题,让学生们自主研究解决,从而培养学生的思维能力、分析解决问题的能力;
3、互动式教学法:培养学生对平均变化率这一金融概念的认知,可以创设一些情境,让学生作出选择,进行交流、讨论,使他们更加深入的理解这个概念。
课时 1:均匀变化率教课目的:(一)知识目标1 .感觉均匀变化率宽泛存在于平时生活之中,经历运用数学描绘和刻画现实世界的过程,领会数学的广博精湛以及学习数学的意义。
2 .理解均匀变化率的意义,为后续成立刹时变化率和导数的数学模型供给丰富的背景。
(二)能力目标领会均匀变化率的思想及内涵(三)感情态度与价值观使学生拥有豪迈的科学态度,相互合作的风格,勇于研究,踊跃思虑的学习精神教课要点:均匀变化率的实质意义与数学意义教课难点:对生活现象作出数学解说教课过程:一.问题情境( 1)情境某人走路的第 1 秒到第 34 秒的位移时间图象如下图:( 2)问题 1:“从 A 到 B 的位移是多少?从 B 到 C 的位移是多少?”问题 2:“ AB 段与 BC 段哪一段速度较快?”二.师生活动(1)速度快慢是生活用语,如何将它数学化?(2)曲线上 BC 之间一段几乎成了直线,由此联想到如何量化直线的倾斜程度?( 3)由点 B 上涨到 C 点一定观察y C y B的大小,但仅注意到y C y B的大小可否精确量化 BC 段峻峭的程度?为何?( 4)在观察y C y B的同时一定观察x C x B,函数的实质在于一个量的改变自己就隐含着这类改变必然相关于另一个量的改变而言。
三.建构数学( 1)经过比较位移在区间1,32 上的均匀变化率0.5 与位移在区间32,34上的均匀变化率 7.4 ,感知曲线峻峭程度的量化。
( 2)一般地,给出函数f x2f x1 f x 在区间 x1 , x2上的均匀变化率x2x1( 3)回到位移曲线图中,从数和形双方面对均匀变化率进行意义建构( 4)用均匀变化率来量化一段曲线的峻峭程度是“粗拙不精准的”,但应注意当 x2 x1很小时,这类量化便由“粗拙”强迫“精准”。
四.讲堂练习学生议论 P57 练习 1,发布看法。
教师补例:甲、乙两汽车,速度从判两车的性能?0km / h 分别加快到100k / h 和 80k / h ,如何评五.数学应用例 1. P56 页例 1、例 2,并注意小结(1)如何解说例 1 中从出生到第 3 个月,婴儿体重均匀变化率为1(kg /月)?(2)例 1 中两个不一样的均匀变化率的实质意义是什么?(3)例 2 中V t5e 0.1t是一个随时间变化而变化的量,0.316(cm3/ s )是否表示 10 秒内每一时辰容器甲中水的体积V 减少的速度?例 2. P57 页例 3、例 4,并注意小结(1)例3、例4均为数学内部的例子,是例1、例 2 的深入(2)例 3 中四个区间的变化致使均匀变化率有如何的变化?这类变化的实质意义和数学意义分别是什么?(3)例 4 讲完后应让学生当堂回答课本中的思虑。
《平均变化率》教案及教案说明一、教学目标:1. 让学生理解平均变化率的定义及其几何意义。
2. 让学生掌握平均变化率的计算方法。
3. 让学生能够应用平均变化率解决实际问题。
二、教学内容:1. 平均变化率的定义2. 平均变化率的计算方法3. 平均变化率的应用三、教学重点与难点:1. 教学重点:平均变化率的定义、计算方法及应用。
2. 教学难点:平均变化率的计算方法及应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究平均变化率的定义、计算方法及应用。
2. 利用多媒体课件,直观展示平均变化率的图形,增强学生对概念的理解。
3. 开展小组讨论,让学生在合作中思考、交流,提高解决问题的能力。
五、教学过程:1. 导入新课:通过生活中的实例,引出平均变化率的概念。
2. 讲解与演示:讲解平均变化率的定义,展示相关图形,让学生直观理解。
3. 自主学习:学生自主探究平均变化率的计算方法。
4. 小组讨论:学生分组讨论,分享各自的方法,互相学习。
5. 练习与应用:布置练习题,让学生巩固所学知识,并应用到实际问题中。
6. 总结与反思:对本节课的内容进行总结,引导学生思考如何更好地运用平均变化率解决实际问题。
7. 作业布置:布置适量作业,巩固所学知识。
教案说明:本教案以学生为主体,注重培养学生的自主学习能力、合作意识及解决问题的能力。
在教学过程中,充分利用多媒体课件,直观展示平均变化率的图形,有助于学生更好地理解概念。
通过生活中的实例,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
在练习与应用环节,注重让学生将所学知识运用到实际问题中,提高学生的数学素养。
本教案旨在让学生掌握平均变化率的知识,培养学生的数学思维能力。
六、教学评估:1. 课堂问答:通过提问,了解学生对平均变化率定义的理解程度。
2. 练习题:收集学生的练习作业,评估学生对平均变化率计算方法的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,评估学生的合作能力和问题解决能力。
高中数学选修2—2
1.1.1 平均变化率(教案)
高中数学选修2—2 1.1.1 平均变化率(教学设计)
一、教学目标
知识与技能:
1、理解平均变化率的概念;
2、通过具体事例,感受平均变化率广泛存在于日常生活之中,经历运用数学
描述刻画现实世界的过程。
过程与方法:
1、通过动手计算培养学生观察、分析、比较和归纳能力;
2、通过对实际问题的探究使学生体会类比、从特殊到一般的数学思想。
情感、态度与价值观:
感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程。
体会数学的博大精深以及学习数学的意义。
二、教学重点、难点
重点:平均变化率的概念的归纳得出;求函数在某个区间的平均变化率。
难点:从实际例子归纳出函数的平均变化率的过程。
三、教学方法
引导学生通过由特殊到一般的思想方法得到平均变化率的概念;引导学生通过积极探究、讨论,逐步理解如何求函数的平均变化率。
四、教学基本流程
创设情境,引导探索分析归纳,建立概念
例题讲解,尝试应用回顾反思,感悟升华
五、教学过程(具体如下表)
面的高度
的平均速度
示为体积
板书设计:
Welcome !!! 欢迎您的下载,资料仅供参考!。
《平均变化率》教案及教案说明教案说明:本教案旨在帮助学生理解平均变化率的概念,掌握平均变化率的计算方法,并能应用于实际问题中。
通过本教案的学习,学生将能够:1. 理解平均变化率的定义和意义;2. 掌握平均变化率的计算公式;3. 应用平均变化率解决实际问题。
教案内容:一、引言1. 引入话题:讨论物体速度的变化,引导学生思考如何描述速度的变化。
2. 引入平均变化率的概念:速度的变化可以用平均变化率来描述,平均变化率的定义是速度的变化量与时间的比值。
二、平均变化率的定义与计算1. 讲解平均变化率的定义:平均变化率是变化量与变化时间的比值,表示变化的快慢。
2. 给出平均变化率的计算公式:平均变化率= 变化量/ 变化时间。
3. 举例说明:假设一个物体在时间t1时的速度为v1,在时间t2时的速度为v2,速度的平均变化率为(v2 v1) / (t2 t1)。
三、平均变化率的应用1. 问题情境:给出一个物体在不间点的速度,要求学生计算平均变化率。
2. 学生分组讨论:学生分组讨论并计算给定情境下的平均变化率。
3. 集体讨论:各组汇报计算结果,集体讨论并解释结果的意义。
四、巩固练习1. 给出一些实际问题,要求学生计算平均变化率。
2. 学生独立完成练习,教师进行解答和讲解。
五、总结与反思1. 总结平均变化率的定义、计算方法和应用。
2. 学生反思学习过程中的困难和问题,提出疑问并进行解答。
教学资源:1. 教学PPT:用于展示平均变化率的定义、计算公式和应用实例。
2. 练习题:用于巩固学生对平均变化率的理解和应用能力。
教学评估:1. 课堂参与度:观察学生在课堂上的积极参与程度和提问回答情况。
2. 练习题完成情况:检查学生完成练习题的正确性和解题思路。
3. 学生反馈:收集学生对教学内容的反馈和建议,以便进行教学改进。
六、实际情境分析1. 引入实际情境:讨论商品价格的变化,引导学生思考如何描述价格的变化。
2. 应用平均变化率的概念:商品价格的变化可以用平均变化率来描述,平均变化率的定义是价格的变化量与时间的比值。
1.1.平均变化率-苏教版选修2-2教案课型设计教学目标1.掌握平均变化率的概念和计算方法;2.知道平均变化率在实际生活中的应用;3.学会利用平均变化率解决问题。
教学重点1.平均变化率的概念和计算方法;2.平均变化率在实际生活中的应用。
教学难点1.利用平均变化率解决问题。
教学方法1.讲授法;2.举例法;3.导入法;4.案例分析法。
教学过程一、导入(5分钟)1.通过一个生活案例,让学生感受到物体的变化是随着时间而变化的。
二、讲授(20分钟)1.引入平均变化率的概念;2.讲解平均变化率的计算方法;3.通过例题演示平均变化率的计算过程;4.讲解平均变化率的三种情况:增加、减少、变化量为0。
三、举例(15分钟)1.通过一些日常生活中的例子,让学生更好地理解平均变化率的应用。
四、案例分析(20分钟)1.提供一些实际问题,让学生运用平均变化率求解答案。
五、总结(5分钟)1.对平均变化率进行总结,并强调其在实际生活中的应用。
教学评价1.学生能够正确理解平均变化率的概念和计算方法;2.学生能够灵活运用平均变化率解决实际问题;3.学生能够在日常生活中发现和分析变化率的存在。
课堂练习练习1甲、乙两人购买了同一品牌手机,甲8月20日以980元购买,9月20日以820元卖出;乙8月28日以980元购买,9月20日以880元卖出。
比较两人的获利情况。
练习2某厂家建筑面积为1200平方米,今年销售额为300万元,去年销售额为200万元,请计算该厂家今年销售额的平均增长率。
练习3某学生的成绩如下表所示,请计算他的平均分数和日常学习进步情况。
科目语文数学英语政治历史分数(分)90 80 75 85 78参考资料苏教版高中数学选修2-2《平均变化率》。
函数的平均变化率教案教案:函数的平均变化率一、教学目标1.了解函数的平均变化率的概念和意义。
2.掌握计算函数在给定区间内的平均变化率的方法。
3.掌握函数的平均变化率在实际问题中的应用。
二、教学准备1.准备一些能够让学生实际体验函数的平均变化率的例子。
2.准备一些函数图像,以帮助学生理解平均变化率的概念。
3.检查计算函数平均变化率的方法和公式。
三、教学过程第一部分:引入概念1.导入问题:首先,向学生提出以下问题:如果我们关注一些物体的运动,我们如何描述它的平均速度?请学生回答。
引导学生思考速度的概念:速度是距离关于时间的变化率,即速度等于位移与时间的比值。
3.定义平均变化率:引导学生思考平均变化率的定义:若函数f(x)在区间[a,b]上连续,则函数在这个区间的平均变化率为:平均变化率=(f(b)-f(a))/(b-a)解释上述定义的含义。
引导学生通过举例来解释平均变化率的意义和计算方法。
第二部分:计算平均变化率1.案例讲解:通过一个实际问题来计算平均变化率。
例如,一辆汽车在段时间内的行驶距离。
假设汽车在0到5秒之间的行驶距离由函数f(t)=2t^2表示。
按照平均变化率的定义,可以计算出从0到5秒的平均变化率为:平均变化率=(f(5)-f(0))/(5-0)2.练习训练:让学生计算以下函数在给定区间内的平均变化率:a)f(x)=3x-1,在区间[1,5]上的平均变化率。
b)g(t)=t^2+2,在区间[-2,3]上的平均变化率。
第三部分:平均变化率的应用1.实际问题应用:给学生提供一些实际问题的例子,并要求他们计算相应的平均变化率。
例如:一个婴儿的身高和年龄的关系由函数h(t)=0.05t^2+0.5t表示(其中t表示年龄,单位为岁,h(t)表示身高,单位为米)。
学生需要计算出从1到5岁之间身高的平均变化率。
2.探究问题:让学生思考平均变化率的物理和经济含义,并展示一些相关问题的实际应用。
例如,学生可以考虑一张成绩单上各门功课的平均变化率,或者市场上其中一种商品的价格随时间的变化率。
§1.1.1 平均变化率一、教学目标:1、通过实例的分析,感受平均变化率广泛存在于日常生活之中,理解平均变化率的意义及其几何意义,能够解释生活中的现象并会求函数的平均变化率,为后续建立瞬时变化率和导数的数学模型提供丰富的背景。
2、体会平均变化率的思想及内涵,培养学生观察、分析、比较和归纳能力;通过问题的探究体会类比、以已知探求未知、从特殊到一般的数学思想方法。
3、经历运用数学描述和刻画现实世界的过程,使学生掌握导数的概念不再困难,从而激发学生学.二、重点难点:1、教学重点:平均变化率的模型建立与对平均变化率的实际意义和数学意义的理解。
2、教学难点:平均变化率的概念与生活现象中模型的形成过程并对此作出数学解释。
三、教学方法:自主、合作、探究四、教具准备:多媒体辅助五、教学过程:(教案中所涉及图形与图示见配套课件)(一)新课引入[情境1]如图是一段登山路线。
[问题1] 同样是登山,但是从A处到B处会感觉比较轻松,而从B处到C 处会感觉比较吃力。
想想看,为什么?(陡峭是对图形特征的一种概括,是一种粗略的估计,你能不能从数量关系角度准确地刻画出其陡峭程度呢?想到了斜率,意味着建立平面直角坐标系,测算点的坐标,利用斜率公式求值,通过比值的大小来验证判断的正确性,即BC段高度的平均变化率比AB段高度的平均变化率大。
试想一下,如果是曲线段你又该如何处理?)[情境2] 某市2004年3月18日到4月20日期间的日最高气温记载. (我们看到两个时间段内的温差不大,但人们却会在第二个时间段内不由自主地发出“天气热得真快啊!”的感慨,你能解释其中的原因吗?)[问题2] 你能用数学语言来解释BC段曲线的陡峭程度吗?(联想情境1,我们不妨用直线段来近似地表示对应曲线段的平均变化率,请试着计算两个时段内的气温的平均变化率,你有什么发现?(0.487≈0.5,7.4)在解决该问题的过程中,我们运用了什么样的思想方法?化曲为直)(去除该问题中的应用背景,在数学中,这段曲线就可以看成是函数的图象,问题也就可以转化为求函数的平均变化率了)(二)进行新课[问题3]如果将上述气温曲线看成是函数y = f(x) 的图象, 则函数y = f(x)在区间[1,34]上的平均变化率为__________在区间[1,x2]上的平均变化率为__________。
高中数学平均变化率教案一、教学目标:1. 掌握平均变化率的概念;2. 能够计算函数在两点之间的平均变化率;3. 能够应用平均变化率解决实际问题。
二、教学重点和难点:1. 平均变化率的概念和计算方法;2. 能够准确应用平均变化率解决实际问题。
三、教学过程:1. 导入新知识(5分钟):通过一个生活中的例子引入平均变化率的概念,让学生了解平均变化率的重要性和应用场景。
2. 讲解平均变化率的概念和计算方法(10分钟):通过具体的数学例题讲解平均变化率的定义和计算公式,并让学生掌握平均变化率的计算方法。
3. 练习题讲解(15分钟):通过一些实例题和应用题,引导学生熟练掌握平均变化率的计算方法和解题技巧。
4. 小组讨论(10分钟):分成小组,让学生根据所学知识讨论解决实际问题的方法,并在小组中相互讨论和交流。
5. 整合巩固(10分钟):让学生根据所学知识,解决一些复杂的实际问题,巩固平均变化率的应用能力。
6. 课堂小结(5分钟):对本节课学习内容进行总结,强调平均变化率的重要性和应用意义。
四、板书设计:1. 平均变化率的概念和计算方法;2. 函数在两点之间的平均变化率公式;3. 应用平均变化率解决实际问题的步骤。
五、课后作业:1. 完成课堂练习题;2. 练习书上相关练习题目;3. 总结平均变化率的概念和应用方法,写一份小结。
六、教学反思:通过本节课的教学,学生掌握了平均变化率的概念和应用方法,并能够熟练解决相关问题。
同时,也发现了学生在计算过程中容易犯的错误和不足之处,需要加强课后练习和巩固。
通过不断总结和反思,提高自己的教学水平,更好地引导学生学习。
函数的平均变化率教案一、教学目标:1. 让学生理解函数的平均变化率的定义及意义。
2. 让学生掌握计算函数的平均变化率的方法。
3. 培养学生运用函数的平均变化率解决实际问题的能力。
二、教学内容:1. 函数的平均变化率的定义2. 函数的平均变化率的计算方法3. 函数的平均变化率在实际问题中的应用三、教学重点与难点:1. 教学重点:函数的平均变化率的定义及计算方法。
2. 教学难点:函数的平均变化率在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解函数的平均变化率的定义及计算方法。
2. 采用案例分析法,分析函数的平均变化率在实际问题中的应用。
3. 采用互动教学法,引导学生积极参与讨论,提高学生的思维能力。
五、教学过程:1. 导入新课:通过生活中的实例,引出函数的平均变化率的概念。
2. 讲解函数的平均变化率的定义:解释函数的平均变化率的含义,让学生理解其本质。
3. 讲解函数的平均变化率的计算方法:详细讲解如何计算函数的平均变化率,并通过示例进行演示。
4. 案例分析:给出实际问题,让学生运用函数的平均变化率进行解答,巩固所学知识。
5. 课堂小结:回顾本节课所学内容,让学生总结函数的平均变化率的定义、计算方法及其应用。
6. 布置作业:设计适量作业,让学生巩固所学知识,提高解题能力。
六、教学评价:1. 评价学生对函数的平均变化率的定义和计算方法的掌握程度。
2. 评价学生运用函数的平均变化率解决实际问题的能力。
3. 评价学生在课堂讨论中的参与度和思维能力的发展。
七、教学反馈:1. 通过课堂提问,了解学生对函数的平均变化率的定义和计算方法的掌握情况。
2. 收集学生提交的作业,评估学生运用函数的平均变化率解决实际问题的能力。
3. 听取学生的课堂反馈,了解学生在讨论中的表现和思维能力的发展。
八、教学拓展:1. 引导学生进一步研究函数的瞬时变化率,探讨其与平均变化率的关系。
2. 引入实际应用案例,让学生了解函数的平均变化率在其他领域的应用。
平均变化率江苏省南京外国语学校严青一、教材:苏教版《普通高中课程标准实验教科书(选修2—2)·数学》第1章。
二、地位和作用:《导数及其应用》在整个高中教材中的地位和作用是非常重要的,它既是对函数知识的补充和完善,也为今后进一步学习微积分奠定基础。
通过本章的学习,使学生对变量数学的思想方法有新的感悟,促进学生全面认识数学的价值(应用价值、科学价值、文化价值),从而进一步发展学生的数学思维能力。
新课标对“导数及其应用”内容的处理有了较大的变化,它不介绍极限的形式化定义及相关知识,也有别于以往教材将导数仅仅作为一种特殊的极限、一种“规则”来学习的处理方式,而是按照:平均变化率—瞬时变化率—导数的概念—导数的几何意义这样的顺序来安排,用“逼近”的方法定义导数,这种概念建立的方式形象、直观、生动又容易理解,突出了导数概念的本质。
平均变化率是是本章的一个重要的基本概念,本节课是《导数及其应用》的起始课,对导数概念的形成起着奠基作用。
三、教学目标✧通过丰富的实例,让学生经历平均变化率概念的形成过程,体会平均变化率是刻画变量变化快慢程度的一种数学模型;✧理解平均变化率的概念,了解平均变化率的几何意义,会计算函数在某个区间上的平均变化率;✧感受数学模型在刻画客观世界的作用,进一步领会变量数学的思想,提高分析问题、解决问题的能力。
四、教学重点平均变化率概念教学难点平均变化率概念的形成过程五、教学方法与教学手段✧启发式教学与探究式学习相结合。
通过生活中的实例,引导学生分析和归纳,让学生在已有认知结构的基础上建构新知识,从而达到概念的自然形成,进而从数学的外部到数学的内部,启发学生运用概念探究新问题。
这样学生不会感到突兀,并能进一步感受到数学来源于生活,生活中处处蕴含着数学化的知识,同时可以提高他们学习数学的主观能动性。
教师在教学中应遵循五“W”原则(who,what,why,when,how),尤其要关注其中的三个原则,即“谁在学?为什么要学?怎么学?”✧利用多媒体辅助教学,突出重点、突破难点,提高教学效率。
5390539654605510时间相差上证指数180分钟六、教学过程问题情境,感受概念 情境1 GDP “猛增”胡锦涛同志在党的十七大报告中提出:“增强发展协调性,努力实现经济又好又快发展。
转变发展方式取得重大进展,在优化结构、提高效益、降低消耗、保护环境的基础上,人均国内生产总值(GDP )到2020年比2000年翻两番”。
(2000年中国人均GDP 为856美元,2020年约为3500美元.)尤其令人振奋的是:十六大以来,我国国民经济保持平稳快速发展, 2002年我国人均GDP 首次超过1000美元,达到1100美元,在短短的4年内于2006年又超过2000美元,达到2010美元。
我国已经由低收入国家步入了中等收入国家行列,标志着我国在向全面建设小康社会的进程中又迈出了坚实的一步。
时间 x (年) 2000 2002 2006 2020 人均GDPy (美元)856110020103500问题1 如何从数学角度刻画2002年至2006年这4年我国人均GDP “猛增”? 情境2 房价“暴涨”南京龙江小区近十来年的房价变化如下图所示:问题2 如何从数学角度刻画房价“暴涨”?情境3 股指“跳水”2007年9月25日沪市A 股走势图30342 A (1, 3.5) B (32, 18.6)C (34, 33.4)210T (℃)t 问题3 如何从数学角度刻画股指“跳水”?情境4 气温“陡升”现有某市2004年3月和4月某天日最高气温记载如下列图表所示:时间 t (d) 3月18日 4月18日 4月20日 日最高气温 T (℃) 3.5℃18.6℃33.4℃问题4 如何从数学角度刻画气温“陡升”?✧ 建立模型,形成概念问题5 用怎样的数学模型刻画函数值变化的快慢程度?思考1 你能给出函数f (x )在区间[x 1,x 2]上平均变化率的定义吗?定义 函数f (x )在区间[x 1,x 2]上平均变化率为2121()()--f x f x x x 。
思考2 平均变化率有怎样的几何意义?平均变化率的几何意义就是函数f (x )图象上两点(x 1, f (x 1))、(x 2, f (x 2))所在直线的斜率。
✧ 探究活动,感悟概念活动1 (1) 在经营某商品中,甲挣到10万元,乙挣到2万元,据此,你能评价甲、乙两人的经营成果吗?(2) 甲、乙两人投入相同的资金经营某商品,甲用5年时间挣到10万元,乙用5个月时间挣到2万元,你能评价甲、乙两人的经营成果吗?活动2 试举出生活中与平均变化率有关的例子。
✧ 例题讲解,运用概念例1 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率。
例2 已知函数f (x ) = 2x +1, g (x ) =-2x ,分别计算在区间[-3,-1]、[0,5]上f (x )及g (x )的平均变化率。
想一想 一次函数y = kx + b (k ≠0)在区间[m ,n ]上的平均变化率有什么特点? 例3 求函数1y x=在区间 00[,]x x x +∆ 0(0)x ≠上的平均变化率。
✧ 反馈练习,巩固概念一运动质点的位移S 与时间t 满足S (t )=t 2,分别计算S (t )在下列区间上的平均变化率。
(位移单位为m,时间单位为s)(1) [1,3]; (2) [1,2]; (3) [1,1.1]; (4) [1,1.001]; (5) [1,1.0001]; (6) [0.999,1]; (7) [0.99,1]; (8) [0.9,1]。
思考3 如何刻画t =1这一时刻质点运动的快慢程度呢?✧ 回顾反思,理解概念定义:函数()f x 在区间[x 1,x 2]上的平均变化率为2121()()f x f x x x --。
七、分层作业 ✧ 必做作业 第7页2,3题✧选做作业 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?✧ 思考作业 一运动质点的位移S 与时间t 满足S (t )=t 2, 如何刻画t =1这一时刻质点运动的快慢程度呢?(位移单位为m, 时间单位为s)八、板书设计关注概念生成过程,促进学生主动建构江苏省南京外国语学校严青一、创设情境,引导探索【教学安排】四个情境提出问题:如何刻画变量变化的快慢程度?情境1:师生合作,共同计算出平均每年增长的GDP;师生探究,得出“比值”反映了在某一时间段内我国人均GDP变化的快慢程度。
情境2:师生合作,共同计算出平均每年增长的房价;师生探究,得出“比值”反映了在某一时间段内房价变化的快慢程度。
情境3:师生合作,共同计算出平均每分钟股指下跌的点数;师生探究,得出“比值”反映了在某一时间段内股指变化的快慢程度。
情境4:师生合作,共同计算出平均每天气温升高的度数;师生探究,得出“比值”反映了在某一时间段内气温变化的快慢程度。
【设计意图】通过GDP“猛增”、房价“暴涨”、股指“跳水”、气温“陡升”等贴近学生的实例,让学生感知客观世界存在着变化快慢不同的现象,而这种快慢程度可以用某种比值来刻画。
通过生活中的实例分析从而达到概念的自然形成,学生不会感到突兀,并能体会数学来源于生活,生活中处处蕴含着数学化的知识,有利于提高他们学习数学的主观能动性。
紧密联系实际,创设丰富情境,通过启发诱导,激发学生的求知欲,形成“认知冲突”,让学生尝试学习,并经历数学化的过程,体现数学素材与学生已有的知识和生活经验之间的密切联系,对发展学生从数学角度认识问题的能力,以及认识数学的应用价值和文化价值都十分重要。
二、分析归纳,建立概念【教学安排】通过图表分析形式概念【设计意图】通过生活中的实例,引导学生分析和归纳,让学生在已有认知结构的基础上建构新知识,从而达到概念的自然形成,并建立数学概念,进而从数学的外部到数学的内部,启发学生运用概念探究新问题。
在讨论和研究中引导学生寻找一种数学模型来刻画函数值的“变化快慢程度”,即由特殊到一般得出函数f (x)的平均变化率的定义,解决原先提出的问题,并了解它的几何意义。
目的是充分发挥学生的学习主动性,经历和体验概念的建立过程。
三、辨析讨论,领会内涵【教学安排】交流讨论,突出知识的理解过程【设计意图】通过这些活动,让学生用“平均变化率”模型解释生活中的数学问题,丰富了对“平均变化率”模型的认识,同时启发学生运用“平均变化率”概念探究新问题,提高了学生学习数学的主观能动性.使学生加深了对“平均变化率”的理解.再通过模仿举例,使学生进一步理解平均变化率概念在生活中的应用价值。
在得出“平均变化率”概念后,为了加深学生对概念内涵的理解和掌握.教师又安排了以下的交流讨论活动,从而使学生进一步理解“平均变化率”的概念,这其中活动1和活动2是由教材中的练习1改编而成。
四、例题讲解,尝试应用【教学安排】讲解例题1,2,3【设计意图】数学概念形成之后,通过具体例子,说明概念的内涵,认识概念的“原型”,引导学生利用概念解决数学问题和发现概念在解决问题中的作用,是数学概念教学的一个重要环节,此环节操作的成功与否,将直接影响学生的对数学概念的巩固,以及解题能力的形成。
例题1问题尽管简单,但需要规范地表达,以培养学生好的解答习惯,同时师生合作,共同感悟平均变化率这个数学模型的实际意义。
例题2可以运用概念计算得出结论,从“数”的角度理解“平均变化率”概念;同时也可从“形”的角度通过平均变化率的几何意义得出解答,两者殊路同归。
启发学生运用概念探究新问题,提高学习数学的主观能动性。
例题教学的过程加深了学生对平均变化率概念的认识,提高了学生运用概念解决问题的能力.例3是概念的代数形式的应用。
五、反馈练习,巩固提炼【教学安排】学生练习【设计意图】利用几何画板进行数与形相结合教学,感悟瞬时变化率可以刻画质点在某一时刻运动的快慢程度.由区间长度的缩小,通过计算从数的角度观察相应的平均变化率变化的趋势,通过几何画板的演示,从形的角度进一步感悟变量数学的思想,通过逼近的思想方法为瞬时变化率的学习作好铺垫,也达到承上启下的作用。
在师生共同完成例题教学后,教师提供思维拓展材料和变式训练,目的是为了提高学生的认知水平以及及时进行知识的反馈矫正,使学生始终面对适度的挑战,并进一步巩固所学的知识。
【教学安排】作业1,2,3【设计意图】设置必做题、选做题和拓展题目的是为了实施因材施教,选择不同层次的练习,有利于不同层次的学生巩固知识,提升思维能力.教师通过这些练习和作业,及时回授评定的结果,以期有针对性地进行答疑和讲解,突出了知识的巩固过程,在此基础上,可以帮助学生克服思维障碍。