[推荐学习]2018数学高考二轮复习题型练5大题专项统计与概率问题检测
- 格式:doc
- 大小:114.14 KB
- 文档页数:7
【2018高三数学各地优质二模试题分项精品】一、单选题1.【2018湖南衡阳高三二模】“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思是:有一个正方形的池塘,池塘的边长为一丈,有一颗芦苇生长在池塘的正中央.露出水面一尺,若把它引向岸边,正好与岸边齐(如图所示),问水有多深,芦苇有多长?其中一丈为十尺.若从该芦苇上随机取一点,则该点取自水上的概率为( )A 。
1213 B 。
113 C. 314 D 。
213【答案】B2.【2018陕西高三二模】在由不等式组2140,{3,2,x y x y -+≥≤-≥所确定的三角形区域内随机取一点,则该点到此三角形的三个顶点的距离均不小于1的概率是( ) A 。
92π-B. 9π- C 。
19π-D. 118π- 【答案】D【解析】画出关于x y ,的不等式组2140,{3, 2,x y x y -+≥≤-≥所构成的三角形区域,如图所示. ABC 的面积为113692S =⨯⨯=,离三个顶点距离都不大于1的地方的面积为212S π=, ∴其恰在离三个顶点距离都不小于1的地方的概率为121918P ππ-==-. 故选C .3.【2018新疆维吾尔自治区高三二模】参加2018年自治区第一次诊断性测试的10万名理科考生的数学成绩ξ近似地服从正态分布()70,25N ,估计这些考生成绩落在(]75,80的人数为( )(附: ()2,Z N μσ~,则()0.6826P Z μσμσ-<≤+= (22)0.9544P Z μσμσ-<≤+=) A. 311740 B. 27180 C 。
13590 D. 4560 【答案】C4.【2018内蒙古呼和浩特高三一调】如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全.已知该班学生投篮成绩的中位数是5,则根据统计图,无法确定下列哪一选项中的数值( )A. 3球以下(含3球)的人数B. 4球以下(含4球)的人数C. 5球以下(含5球)的人数D. 6球以下(含6球)的人数【答案】C5.【2018四川德阳高三二诊】为弘扬我国优秀的传统文化,市教育局对全市所有中小学生进行了“成语”听写测试,经过大数据分析,发现本次听写测试成绩服从正态分布。
概率统计(文)【考纲解读】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式;会计算一些随机事件所含的基本事件数及事件发生的概率.4.了解随机数的意义,能运用模拟方法估计概率;了解几何概型的意义.5.理解随机抽样的必要性和重要性;会及简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.6.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.7.理解样本数据标准差的意义和作用,会计算数据标准差;能从样本数据中提取基本的数字特征(如平均数、标准差).8.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样体估计总体的思想.9.会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.10.会作两个有关联变量数据的散点图,会利用散点图认识变量间的相关关系;了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.11.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用.【考点预测】本章知识的高考命题热点有以下两个方面:1.概率统计是历年高考的热点内容之一,考查方式多样,选择题、填空题、解答题中都可能出现,数量各1道,难度中等,主要考查古典概型、几何概型、分层抽样、频率分布直方图、茎叶图的求解.2.预计在2018年高考中,概率统计部分的试题仍会以实际问题为背景,概率与统计相结合命题.【要点梳理】1.随机事件的概率:(1)随机事件;(2)频率;(3)概率;(4)互斥事件的概率加法公式:()()()P A B P A P B ⋃=+,若A 与B 为对立事件,则()()1P A P B +=.2.古典概型:求古典概型的概率的基本步骤:算出所有基本事件的个数;求出事件A 包含的基本事件个数;代入公式,求出()P A .3.几何概型:(1)理解几何概型与古典概型的区别;(2)几何概型的概率是几何度量之比,主要使用面积之比与长度之比.4.三种抽样方法:简单随机抽样、系统抽样、分层抽样,正确区分这三种抽样.5.用样本估计总体:(1)在频率分布直方图中,各小矩形的面积表示相应的频率;各个小矩形的面积之和为1;(2)理解众数、中位数及平均数;(3)会求一组数据的平均数、方差、标准差.6.变量间的相关关系,会求回归直线方程. 【考点在线】 考点一 古典概型例1. (2018年高考北京卷文科3)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是( ) (A )45 (B)35 (C )25(D)15【答案】 D【解析】分别从两个集合中各取一个数,共有15种取法,其中满足b a >的有3种,故所求事件的概率为31155P ==. 【名师点睛】本题考查古典概型的概率问题,求解此类问题要求能够准确的确定基本事件空间的基本事件个数,和所求事件所含的基本事件个数.【备考提示】:古典概型是高考考查的重点内容之一,必须熟练掌握.练习1: (2018年高考海南卷文科6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A.13 B.12 C.23 D.34【答案】A【解析】因为每位同学参加各个小组的可能性相等,所以所求概率为13,选A. 考点二 几何概型例2.(2018年高考福建卷文科7)如图,矩形ABCD 中,点E 为边CD 的重点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A .14 B. 13 C. 12 D. 23【答案】C【解析】这是一几何概型,所求概率为1122AB ADAB AD ⋅⋅=⋅,故选C.【名师点睛】本小题考查几何概型的求法。
课时跟踪检测(二十)概率与统计1.(2017·广州二测)某种商品价格与该商品日需求量之间的几组对照数据如下表:价格x (元/kg)1015202530日需求量y (kg)1110865(1)求y 关于x 的线性回归方程;(2)利用(1)中的回归方程,当价格x =40元/kg 时,日需求量y 的预测值为多少?参考公式:线性回归方程y ^=b ^x +a ^,其中b ^=错误!,a ^=y -b ^x .2.(2018届高三·广西五校联考)下图是某市11月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气重度污染的天数,求X 的分布列与数学期望.随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得x =116错误!i =9.97,s =错误!=错误!≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).性别有关,现从该市高三理科生中随机抽取50名学生进行调查,得到如下2×2列联表:(单位:人)报考“经济类”不报考“经济类”总计男62430女14620总计203050(1)据此样本,判断能否在犯错误的概率不超过0.001的前提下认为理科生报考“经济类”专业与性别有关?(2)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X,求随机变量X的概率分布列及数学期望.附:P(K2≥k0)0.10.050.010.001k0 2.706 3.841 6.63510.828K2=n(ad-bc)2,其中n=a+b+c+d.(a+b)(c+d)(a+c)(b+d)天的日营业额y (单位:万元)与该地当日最低气温x (单位:℃)的数据,如下表:x 258911y1.210.80.80.7(1)求y 关于x 的线性回归方程y ^=b ^x +a ^;(2)判断y 与x 之间是正相关还是负相关,若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额;(3)设该地1月份的日最低气温X ~N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2,求P (3.8<X ≤13.4).附:①回归方程y ^=b ^x +a ^中,b ^=错误!,a ^=y -b ^x .②10≈3.2, 3.2≈1.8.若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.6827,P (μ-2σ<X ≤μ+2σ)=0.9545.定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:年龄[15,25)[25,35)[35,45)[45,55)[55,65]支持“延迟退155152817休”的人数(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;45岁以下45岁以上总计支持不支持总计(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.参考数据:P(K2≥k0)0.1000.0500.0100.001k0 2.706 3.841 6.63510.828K2=n(ad-bc)2,其中n=a+b+c+d.(a+b)(c+d)(a+c)(b+d)课时跟踪检测(二十)概率与统计1.(2017·广州二测)某种商品价格与该商品日需求量之间的几组对照数据如下表:价格x (元/kg)1015202530日需求量y (kg)1110865(1)求y 关于x 的线性回归方程;(2)利用(1)中的回归方程,当价格x =40元/kg 时,日需求量y 的预测值为多少?参考公式:线性回归方程y ^=b ^x +a ^,其中b ^=错误!,a ^=y -b ^x .解:(1)由所给数据计算得x =15×(10+15+20+25+30)=20,y =15×(11+10+8+6+5)=8,错误!(x i -x )2=(-10)2+(-5)2+02+52+102=250,错误!(x i -x )(y i -y )=(-10)×3+(-5)×2+0×0+5×(-2)+10×(-3)=-80.b ^=错误!=-80250=-0.32.a ^=y -b ^x=8+0.32×20=14.4.所求线性回归方程为y ^=-0.32x +14.4.(2)由(1)知当x =40时,y ^=-0.32×40+14.4=1.6.故当价格x =40(元/kg)时,日需求量y 的预测值为1.6kg.2.(2018届高三·广西五校联考)下图是某市11月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气重度污染的天数,求X 的分布列与数学期望.解:设A i 表示事件“此人于11月i 日到达该市”(i =1,2,…,12).依题意知,P (A i )=112,且A i ∩A j =∅(i ≠j ).(1)设B 为事件“此人到达当日空气重度污染”,则B =A 1∪A 2∪A 3∪A 7∪A 12,所以P (B )=P (A 1∪A 2∪A 3∪A 7∪A 12)=P (A 1)+P (A 2)+P (A 3)+P (A 7)+P (A 12)=512.即此人到达当日空气重度污染的概率为512.(2)由题意可知,X 的所有可能取值为0,1,2,3,P (X =0)=P (A 4∪A 8∪A 9)=P (A 4)+P (A 8)+P (A 9)=312=14,P (X =2)=P (A 2∪A 11)=P (A 2)+P (A 11)=212=16,P (X =3)=P (A 1∪A 12)=P (A 1)+P (A 12)=212=16,P (X =1)=1-P (X =0)-P (X =2)-P (X =3)=1-14-16-16=512,或P (X =1)=P (A 3∪A 5∪A 6∪A 7∪A 10)=P (A 3)+P (A 5)+P (A 6)+P (A 7)+P (A 10)=512所以X 的分布列为:X 0123P145121616故X 的数学期望E (X )=0×14+1×512+2×16+3×16=54.3.(2017·全国卷Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得x =116错误!i =9.97,s =错误!=错误!≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.9974.0.997416≈0.9592,0.008≈0.09.解:(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.9974,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.0026,故X ~B (16,0.0026).因此P (X ≥1)=1-P (X =0)=1-0.997416≈0.0408.X 的数学期望为EX =16×0.0026=0.0416.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由x =9.97,s ≈0.212,得μ的估计值为u ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115(16×9.97-9.22)=10.02,因此μ的估计值为10.02.错误!2i =16×0.2122+16×9.972≈1591.134,剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115(1591.134-9.222-2因此σ的估计值为0.008≈0.09.4.(2017·沈阳模拟)为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50名学生进行调查,得到如下2×2列联表:(单位:人)报考“经济类”不报考“经济类”总计男62430女14620总计203050(1)据此样本,判断能否在犯错误的概率不超过0.001的前提下认为理科生报考“经济类”专业与性别有关?(2)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X ,求随机变量X 的概率分布列及数学期望.附:P (K 2≥k 0)0.10.050.010.001k 02.7063.8416.63510.828K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)由表中数据得,K 2的观测值k =50×(6×6-24×14)230×20×20×30=50×300230×20×20×30=12.5>10.828,∴能在犯错误的概率不超过0.001的前提下认为理科生报考“经济类”专业与性别有关.(2)估计该市的全体考生中任一人报考“经济类”专业的概率为P =2050=25,X 的可能取值为0,1,2,3,由题意,得X ~P (X =k )=C -k(k =0,1,2,3),∴P (X =0)=27125,P (X =2)=C 23×35=36125,P (X =3)=8125,故随机变量X 分布列为:X 0123P2712554125361258125∴随机变量X 的数学期望E (X )=3×25=65.5.(2017·昆明模拟)某火锅店为了了解气温对营业额的影响,随机记录了该店1月份其中5天的日营业额y (单位:万元)与该地当日最低气温x (单位:℃)的数据,如下表:x 258911y1.210.80.80.7(1)求y 关于x 的线性回归方程y ^=b ^x +a ^;(2)判断y 与x 之间是正相关还是负相关,若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额;(3)设该地1月份的日最低气温X ~N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2,求P (3.8<X ≤13.4).附:①回归方程y ^=b ^x +a ^中,b ^=错误!,a ^=y -b ^x .②10≈3.2, 3.2≈1.8.若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.6827,P (μ-2σ<X ≤μ+2σ)=0.9545.解:(1)x =15×(2+5+8+9+11)=7,y =15×(1.2+1+0.8+0.8+0.7)=0.9.错误!2i =4+25+64+81+121=295,错误!i y i =2.4+5+6.4+7.2+7.7=28.7,∴b ^=错误!=28.7-5×7×0.9295-5×72=-2.850=-0.056,a ^=y -b ^x=0.9-(-0.056)×7=1.292.∴线性回归方程为y ^=-0.056x +1.292.(2)∵b ^=-0.056<0,∴y 与x 之间是负相关.当x =6时,y ^=-0.056×6+1.292=0.956.∴该店当日的营业额约为9560元.(3)样本方差s 2=15×(25+4+1+4+16)=10,∴最低气温X ~N (7,3.22),∴P (3.8<X ≤10.2)=0.6827,P (0.6<X ≤13.4)=0.9545,∴P (10.2<X ≤13.4)=12×(0.9545-0.6827)=0.1359.∴P (3.8<X ≤13.4)=P (3.8<X ≤10.2)+P (10.2<X ≤13.4)=0.6827+0.1359=0.8186.6.(2018届高三·张掖摸底)中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:年龄[15,25)[25,35)[35,45)[45,55)[55,65]支持“延迟退休”的人数155152817(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;45岁以下45岁以上总计支持不支持(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.参考数据:P(K2≥k0)0.1000.0500.0100.001k0 2.706 3.841 6.63510.828K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.解:(1)由频率分布直方图知45岁以下与45岁以上各50人,故填充2×2列联表如下:45岁以下45岁以上总计支持354580不支持15520总计5050100因为K2的观测值k=100×(35×5-45×15)250×50×80×20=6.25>3.841,所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.(2)①抽到1人是45岁以下的概率为68=3 4,抽到1人是45岁以下且另一人是45岁以上的概率为C16C12C28=37,故所求概率P=3734=47.②从不支持“延迟退休”的人中抽取8人,则45岁以下的应抽6人,45岁以上的应抽2人.所以X的可能取值为0,1,2.P(X=0)=C26C28=15 28,P(X=1)=C16C12C28=1228=37,P(X=2)=C2C28=1 28 .故随机变量X的分布列为:X012P152837128所以E(X)=1×37+2×128=12.。
2018年高考统计与概率专题(全国卷1文)2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B(全国卷1理)2.如图,正方形ABCD 内的图形来自中国古代的太极图。
正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π4【考点】:几何概型【思路】:几何概型的面积问题,=P 基本事件所包含的面积总面积.【解析】:()21212=82r S P S r ππ==,故而选B 。
(全国卷2理)6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种(全国卷2文)6。
如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90πB 。
63πC 。
42π D.36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B 。
(天津卷)文(3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫。
从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(A)45(B)35(C)25(D)15(全国卷2文)11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C。
2018年高考数学(理)二轮复习讲练测2018年高三二轮复习讲练测之测案【新课标版理科数学】专题12概率与统计相结合问题总分 150分时间 120分钟班级 _______ 学号 _______ 得分_______(一)选择题(12*5=60分)1.已知,,则函数的图象恒在轴上方的概率为()A. B. C. D.【答案】D2.某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为()A.6万元B.8万元C.10万元D.12万元【答案】C【解析】设11时到12时的销售额为x万元,因为组距相等,所以对应的销售额之比等于之比,也可以说是频率之比,解等式即可求得11时到12时的销售额.解:设11时到12时的销售额为x万元,依题意有,故选C.3.我国南宋数学家秦九韶所著《数学九章》中有“米谷粒分”问题:粮仓开仓收粮,粮农送来米1512石,验得米内夹谷,抽样取米一把,数得216粒内夹谷27粒,则这批米内夹谷约()A.164石 B.178石 C.189石 D.196石【答案】C【解析】由已知,抽得样本中含谷27粒,占样本的比例为,则由此估计总体中谷的含量约为石. 故选C.4.不透明的袋子内装有相同的五个小球,分别标有1-5五个编号,现有放回的随机摸取三次,则摸出的三个小球的编号乘积能被10整除的概率为()A. B. C. D.【答案】A【解析】由题意5号,2号或4号至少摸出一次,即三种情况:一是5号摸出两次,2号或4号摸出一次;二是5号摸出一次,2号或4号摸出两次;三是5号摸出一次,2号或4号摸出一次,1号或3号摸出一次;,总共有,所求概率为,选A.5.一个不透明的袋子装有4个完全相同的小球,球上分别标有数字为0,1,2,2,现甲从中摸出一个球后便放回,乙再从中摸出一个球,若摸出的球上数字大即获胜(若数字相同则为平局),则在甲获胜的条件下,乙摸1号球的概率为()A. B. C. D.【答案】D【解析】甲摸的球数字在前,乙摸的球数字在后,则甲胜的情况有10,20,21,20,21共5种,其中乙摸1号球的有2种,因此概率为.6.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为,众数为,平均值为,则()A.B.C.D.【答案】【解析】由图可知,30名学生的得分情况依次为:2个人得3分,3个人得4分,10个人得5分,6个人得6分,3个人得7分,2个人得8分,2个人得9分,2个人得10分.中位数为第15,16个数(分别为5,6)的平均数,即=5.5,5出现的次数最多,故=5,≈5.97于是得.7.已知随机变量服从正态分布,若,则()(A)(B)(C)(D)【答案】C【解析】因为已知随机变量服从正态分布,所以正态曲线关于直线对称,又,所以,,故选C.8.根据如下样本数据3 4 5 6 7 84.0 2.5 0.5得到的回归方程为,则()A. ,B. ,C. ,D. ,【答案】B【解析】依题意,画散点图知,两个变量负相关,所以,.选B.9.一个路口的红绿灯,红灯的时间为秒,黄灯的时间为秒,绿灯的时间为秒,当你到达路口时,不需要等待就可以过马路的概率为A. B. C. D.【答案】.【解析】由题意知本题是一个等可能事件的概率,试验发生包含的事件是总的时间长度为30+5+40=75秒,绿灯的时间为40秒,所以当你到达路口时,不需要等待就可以过马路的概率为,故应选.10.某班50名学生中有女生20名,按男女比例用分层抽样的方法,从全班学生中抽取部分学生进行调查,已知抽到的女生有4名,则本次调查抽取的人数是()A.8 B.10 C.12 D.15【答案】B【解析】因为名学生中有女生名,按男女比例用分层抽样的方法,抽到的女生有名,所以本次调查抽取的人数是,故选B.11.某产品的广告费用与销售额的统计数据如下表:广告费用(万元)根据上表可得回归方程的约等于9,据此模型预报广告费用为6万元时,销售额约为()。
2018北京高三二模数学理分类汇编--概率与统计二、解答题1、(2018西城二模)(本小题满分13分)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病.为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得(Ⅰ)求样本中患病者的人数和图中a ,b 的值;(Ⅱ)在该指标检测值为4的样本中随机选取2人,求这2人中有患病者的概率; (III )某研究机构提出,可以选取常数*00.5()X n n =+∈N ,若一名从业者该项身体指标检测值大于0X ,则判断其患有这种职业病;若检测值小于0X ,则判断其未患有这种职业病.从样本中随机选择一名从业者,按照这种方式判断其是否患有职业病.写出使得判断错误的概率最小的0X 的值及相应的概率(只需写出结论).2、(2018海淀二模)(本小题13分)某中学为了解高二年级中华传统文化经典阅读的整体情况,从高二年级随机抽取10名学生进行了两轮测试,并把两轮测试成绩的平均分作为该名学生的考核成绩.记录的数据如下:(Ⅱ)从考核成绩大于90分的学生中再随机抽取两名同学,求这两名同学两轮测试成绩均大于等于90分的概率;(Ⅲ)记抽取的10名学生第一轮测试的平均数和方差分别为1x ,21s ,考核成绩的平均数和方差分别为2x ,22s ,试比较1x 与2x , 21s 与22s 的大小.(只需写出结论)3、(2018东城二模)(本小题13分)某银行的工作人员记录了3月1号到3月15日上午10:00在该银行取号后等待办理业务的人数,如图所示:从这15天中,随机选取一天,随机变量X 表示当天上午10:00在该银行取号后等待办理业务的人数.(Ⅰ)请把X 的分布列补充完整;(Ⅱ)令m 为X 的数学期望,若()0.5,P n Xn m m -#+>求正整数n 的最小值;(Ⅲ)由图判断,从哪天开始的连续五天上午10:00在该银行取号后等待办理业务的人数的均值最大?(结论不要求证明)4、(2018朝阳二模)(本小题满分13分)某市旅游管理部门为提升该市26个旅游景点的服务质量,对该市26个旅游景点的交通、安全、环保、卫生、管理五项指标进行评分.每项评分最低分0分,最高分100分.每个景点总分为这五项得分之和,根据考核评分结果,绘制交通得分与安全得分散点图、交通得分与景点总分散点图如下:请根据图中所提供的信息,完成下列问题:(Ⅰ)若从交通得分排名前5名的景点中任取1个,求其安全得分大于90分的概率; (Ⅱ)若从景点总分排名前6名的景点中任取3个,记安全得分不大于90分的景点个数为ξ,求随机变量ξ的分布列和数学期望;(Ⅲ)记该市26个景点的交通平均得分为1x ,安全平均得分为2x ,写出1x 与2x 的大小关系.(只写出结果)5、(2018丰台二模)(本小题共13分)某汽车生产厂家为了解某型号电动汽车的“实际平均续航里程数”,收集了使用该型号电动汽车1年以上的部分客户的相关数据,得到他们的电动汽车的“实际平均续航里程数”.从年龄在40岁以下的客户中抽取10位归为A 组,从年龄在40岁(含40岁)以上的客户中抽取10位归为B 组,将他们的电动汽车的“实际平均续航里程数”整理成下图,其中“+”表示A 组的客户,“⊙”表示B 组的客户.注:“实际平均续航里程数”是指电动汽车的行驶总里程与充电次数的比值. (Ⅰ)记A ,B 两组客户的电动汽车的“实际平均续航里程数”的平均值分别为m ,n ,根据图中数据,试比较m ,n 的大小(结论不要求证明); (Ⅱ)从A ,B 两组客户中随机抽取2位,求其中至少有一位是A 组的客户的概率;年龄(岁)70605040302010(III)如果客户的电动汽车的“实际平均续航里程数”不小于350,那么称该客户为“驾驶达人”.从A,B两组客户中,各随机抽取1位,记“驾驶达人”的人数为ξ,求随机变量ξ的分布列及其数学期望Eξ.(16)(本小题共13分)6、(2018昌平二模)(本小题13分)为评估大气污染防治效果,调查区域空气质量状况,某调研机构从A,B两地区一年的数据中随机抽取了相同20天的观测数据,得到A,B两地区的空气质量指数(AQI)如下图所示:根据空气质量指数,将空气质量状况分为以下三个等级:(Ⅰ)试估计A地区当年(365天)的空气质量状况“优良”的天数;(Ⅱ)假设两地区空气质量状况相互独立,记事件C:“A地区空气质量等级优于B地区空气质量等级”. 根据所给数据,以事件发生的频率作为相应事件发生的概率,求事件C的概率.(Ⅲ)若从空气质量角度选择生活地区居住,你建议选择A,B两地区哪个地区.(只需写出结论)7、(2018顺义二模)(本小题满分13分)2018年2月25日第23届冬季奥运会在韩国平昌闭幕,中国以1金6银2铜的成绩结束本次冬奥会的征程.某校体育爱好者协会在高三年级某班进行了“本届冬奥会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),按分层抽样从被调查的学生中随机抽取了11人,具体的调查结果如下表:(Ⅱ)在该班全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;(Ⅲ)若从该班调查对象中随机选取2人进行追踪调查,记选中的2人中对“本届冬奥会中国队表现”满意的人数为ξ,求随机变量ξ的分布列及其数学期望.8、(2018房山二模)(本小题13分)1995年联合国教科文组织宣布每年的4月23日为世界读书日,主旨宣言为“希望散居在全球各地的人们,都能享受阅读带来的乐趣,都能尊重和感谢为人类文明作出巨大贡献的文学、文化、科学思想的大师们,都能保护知识产权。
《计数原理与概率》高考复习指导一、考试说明:1.考试内容(1)分类计数原理与分步计数原理,排列与组合.(2)等可能性事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率.2.考试要求(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列与组合的意义,掌握排列数与组合数的计算公式,掌握组合数的两个性质,并能用它们解决一些简单的应用问题.(3)了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.(4)了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.(5)了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.二、高考试题分析排列与组合、概率与统计是高中数学的重要内容.一方面,这部分内容占用教学时数多达36课时,另一方面,这部分内容是进一步学习高等数学的基础知识,因此,它是高考数学命题的重要内容.从近三年全国高考数学(新材)试题来看,主要是考查排列与组合、概率与统计的基本概念、公式及基本技能、方法,以及分析问题和解决问题的能力.试题特点是基础和全面.题目类型有选择题、填空题、解答题,一般是两小(9分~10分)一大(12分),解答题通常是概率问题.试题难度多为低中档.为了支持高中数学课程的改革,高考数学命题对这部分将进一步重视,但题目数量、难度、题型将会保持稳定.例1.(1999年全国)在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄,为有利于作物生长,要求A、B两种作物间的间隔不小于6垄,则不同的选垄方法共有_______种(用数字作答).[解析]A种植在左边第一垄时,B有3种不同的种植方法;A种植在左边第二垄时,B有两种不同的种植方法;A种植在左边第三垄时,B只有一种种植方法.B在左边种植的情形与上述情形相同.故共有2(3+2+1)=12种不同的选垄方法.∴应填12.例2.(2018年新教材)将3种作物种植在如图所示的5块试验田里,每一块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有______种(以数字作答).[解析]将5块试验田从左到右依次看作甲、乙、丙、丁、戊,3种作物依次看作A、B、C,则3种作物都可以种植在甲试验田里,由于相邻的试验田不能种植同一种作物,从而可知在乙试验田里只能有两种作物.同理,在丙、丁、戊试验田里也只能有两种作物可以种植.由分步计数原理,不同的种植方法共有3×2×2×2=48种.∴应填:48例3.(2018年全国高考题)某城市中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种1种且相邻部分不能栽种同样颜色的花,不同的栽法有_______种.[解析]由于第1、2、3块两两相邻,我们先安排这三块,给第1、2、3块种花时分别有4、3、2种种法,所以共有4×3×2=24种不同种法.下面给第4块种花,若第4块与第6块同色,只有一种种植方法,则第5块只有2种种法,若第4块与第2块同色时,共有2×1=2种种法.若第4块与第6块不同色,但第4块与第2块同色,则第6块有2种种植的方案,而第5块只有1种种法,共有2种不同的种植方法.若第4块与第6块不同色,但第4块与第2块不同色,则第6块有1种种法,则第5块也有一种不同种法,所以第4块与第6块不同色时,有1种种法.综上共有24×(2+2+1)=120种不同的种植方法.例4.(2018年春季考试题)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为A 、42B 、30C 、20D 、12[解析]将两个新节目插入5个固定顺序节目单有两种情况:(1)两个新节目相邻的插法种数为226A ;(2)两个节目不相邻的插法种数为26A ;由分类计数原理共有2226642A A +=种方法,选A.例5.(2018重庆)(本小题满分12分)设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。
2018全国高考真题数学统计与概率专题(附答案解析)1.(全国卷I,文数、理数第3题.5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案:A2.(全国卷I,文数19题.12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,[)0.60.7,频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数 1 5 13 10 16 5 (1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案解析】解:(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=. 3.(全国卷I ,理数20题12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为()01p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ; (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案解析】(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-.因此 2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =.当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)YB ,=+.X Y=⨯+,即402520225X Y所以(4025)4025490=+=+=.EX E Y EY(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于400EX>,故应该对余下的产品作检验.4.(全国卷Ⅱ,文数5题.5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6 B.0.5C.0.4D.0.3【答案】D5.(全国卷Ⅱ,文数、理数18题.12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5y t=-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案解析】解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.6.(全国卷Ⅱ,理数5题.5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.3【答案】A7.(全国卷Ⅲ,文数5题.5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.7【答案】B8.(全国卷Ⅲ,文数、理数18题.12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++,2()0.0500.0100.0013.8416.63510.828P K kk≥.【答案解析】解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科%网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)由于2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.9.(北京卷,文数17题,13分)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;学科*网(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案解析】(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000. 第四类电影中获得好评的电影部数是200×0.25=50, 故所求概率为500.0252000=. (Ⅱ)方法一:由题意知,样本中获得好评的电影部数是 140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51=372.故所求概率估计为37210.8142000-=. 方法二:设“随机选取1部电影,这部电影没有获得好评”为事件B .没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得16280.8142)00(0P B ==. (Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率. 10.(北京卷,理数17题,12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【答案解析】解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为500.0252000=. (Ⅱ)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为P (AB AB +)=P (AB )+P (AB )=P (A )(1–P (B ))+(1–P (A ))P (B ). 由题意知:P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (Ⅲ)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ. 11.(天津卷,文数,15题,13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.【答案解析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.满分13分. (Ⅰ)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )解:从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.(ii )解:由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 12.(天津卷,理数,16题,13分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【答案解析】本小题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.学.科网(Ⅰ)解:由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)解:随机变量X的所有可能取值为0,1,2,3.P(X=k)=34337C CCk k-⋅(k=0,1,2,3).所以,随机变量X的分布列为随机变量X的数学期望11218412 ()0123353535357E X=⨯+⨯+⨯+⨯=.(ii)解:设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=67.所以,事件A发生的概率为67.13.(江苏卷,3题,5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为__________.【答案解析】答案:90解析:8989909191905++++=14.(浙江卷,7题,4分)设0<p<1,随机变量ξ的分布列是ξ0 1 2P12p-122p 则当p在(0,1)内增大时,A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小【答案】D第11 页共11 页。
2018年高考数学(理)二轮复习讲练测专题八概率与统计考向一古典概型与几何概型【高考改编☆回顾基础】1.【古典概型】【2017天津,改编】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为.【答案】2 52.【几何概型】【2016高考新课标2改编】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 .【答案】5 8【解析】因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为40155 408-=.【命题预测☆看准方向】概率考点是近几年高考的热点之一,主要考查随机事件的概率、古典概型、几何概型等知识,近几年高考对概率的考查由单一型向知识交汇型转化,多与统计、函数、方程、数列、平面向量、不等式(线性规划)等知识交汇命题.【典例分析☆提升能力】【例1】【2017山东,改编】从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 .【答案】5 9【趁热打铁】已知{}0 1 2a ∈,,,{}1 1 3 5b ∈-,,,,则函数()22f x ax bx =-在区间()1 +∞,上为增函数的概率是( ) A.512 B.13C.14D.16 【答案】B 【解析】①当0a =时,()2f x bx =-,情况为 1 1 3 5b =-,,,符合要求的只有一种1b =-; ②当0a ≠时,则讨论二次函数的对称轴22b b x a a -=-=要满足题意则1ba≤产生的情况() a b ,表示: ()()()1 1 1 1 1 3-,,,,,,()()()()()1 5 2 1 2 1 2 3 2 5-,,,,,,,,,9种情况满足的只有三种:综上所述得:使得函数()22f x ax bx =-在区间()1 +∞,为增函数的概率为:41123P ==.【例2】在区间()0,4上任取一数x ,则1224x -<<的概率是( )A .12B .13 C.14 D .34【答案】C 【解析】由题设可得211<-<x ,即32<<x ;所以4,1==D d ,则由几何概型的概率公式41=P .故应选C. 【趁热打铁】记集合(){}()221,1,,0x y A x y x y B x y x y ⎧+≤⎧⎫⎪⎪⎪=+≤=≥⎨⎨⎬⎪⎪⎪≥⎩⎭⎩构成的平面区域分别为,M N ,现随机地向M 中抛一粒豆子(大小忽略不计),则该豆子落入N 中的概率为_________. 【答案】π21. 【解析】因为集合(){}22,1A x y x y =+≤,()1,0x y B x y x y ⎧+≤⎧⎫⎪⎪⎪=≥⎨⎨⎬⎪⎪⎪≥⎩⎭⎩构成的平面区域,M N ,分别为圆与直角三角形,其面积分别为1,2π,随机地向M 中抛一粒豆子(大小忽略不计),则该豆子落入N 中的概率为1122P ππ==.故应填π21.(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)该公司要从这100位里至少消费两次的顾客中按消费次数用分层抽样方法抽出8人,再从这8人中抽出2人发放纪念品,求抽出的2人中恰有1人消费两次的概率. 【答案】60种【趁热打铁】【2016高考山东文数】某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下: ①若3xy ≤,则奖励玩具一个; ②若8xy ≥,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (I )求小亮获得玩具的概率;(II )请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】(I )516.(∏)小亮获得水杯的概率大于获得饮料的概率. 【解析】试题分析:用数对(),x y 表示儿童参加活动先后记录的数,写出基本事件空间Ω与点集(){},|,,14,14S x y x N y N x y =∈∈≤≤≤≤一一对应.得到基本事件总数.(I )利用列举法,确定事件A 包含的基本事件,计算即得. (∏)记“8xy ≥”为事件B ,“38xy <<”为事件C . 确定事件B 包含的基本事件共有6个,事件C 包含的基本事件共有5个,计算得到()P B 、()P C ,比较即知.(I )记“3xy ≤”为事件A .则事件A 包含的基本事件共有5个,即()()()()()1,1,1,2,1,3,2,1,3,1, 所以,()5,16P A =即小亮获得玩具的概率为516. (∏)记“8xy ≥”为事件B ,“38xy <<”为事件C .则事件B 包含的基本事件共有6个,即()()()()()()2,4,3,3,3,44,2,4,3,4,4, 所以,()63.168P B == 则事件C 包含的基本事件共有5个,即()()()()()1,4,2,2,2,3,3,2,4,1, 所以,()5.16P C = 因为35,816> 所以,小亮获得水杯的概率大于获得饮料的概率.【方法总结☆全面提升】1. 求复杂互斥事件概率的方法一是直接法,将所求事件的概率分解为一些彼此互斥事件概率的和,运用互斥事件的求和公式计算;二是间接法,先求此事件的对立事件的概率,再用公式()()1P A P A =-,即运用逆向思维的方法(正难则反)求解,应用此公式时,一定要分清事件的对立事件到底是什么事件,不能重复或遗漏.特别是对于含“至多”“至少”等字眼的题目,用第二种方法往往显得比较简便.2.求古典概型的概率的基本步骤:算出所有基本事件的个数;求出事件A 包含的基本事件个数;代入公式,求出()P A ;几何概型的概率是几何度量之比,主要使用面积、体积之比与长度之比.【规范示例☆避免陷阱】【典例】市政府为调查市民对本市某项调控措施的态度,随机抽取了100名市民,统计了他们的月收入频率分布和对该项措施的赞成人数,统计结果如下表所示:(1)用样本估计总体的思想比较该市月收入低于20(百元)和不低于30(百元)的两类人群在该项措施的态度上有何不同;(2)现从样本中月收入在[10,20)和[60,70)的市民中各随机抽取一个人进行跟踪调查,求抽取的两个人恰好对该措施一个赞成一个不赞成的概率.【规范解答】(1)由表知,样本中月收入低于20(百元)的共有5人, 其中持赞成态度的共有2人,故赞成人数的频率为25,月收入不低于30(百元)的共有75人,其中持赞成态度的共有64人, 故赞成人数的频率为6475,∵6475>25,∴根据样本估计总体的思想可知月收入不低于30(百元)的人群对该措施持赞成态度的比月收入低于20(百元)的人群持赞成态度的比例要高.(2)将月收入在[10,20)内,不赞成的3人记为a 1,a 2,a 3, 赞成的2人记为a 4,a 5,将月收入在[60,70)内,不赞成的1人记为b 1,赞成的3人记为b 2,b 3,b 4, 从月收入在[10,20)和[60,70)内的人中各随机抽取1人, 基本事件总数n =20,其中事件“抽取的两个人恰好对该措施一个赞成一个不赞成”包含的基本事件有(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 2),(a 2,b 3),(a 2,b 4),(a 3,b 2),(a 3,b 3),(a 3,b 4),(a 4,b 1),(a 5,b 1),共11个,∴抽取的两个人恰好对该措施一个赞成一个不赞成的概率P =1120.【反思提高】解答概率与统计综合题的2个注意点(1)明确频率与概率的关系,频率可近似替代概率.(2)此类问题中的概率模型多是古典概型,在求解时,要明确基本事件的构成.【误区警示】求解古典概型问题的关键:先求出基本事件的总数,再确定所求目标事件包含基本事件的个数,结合古典概型概率公式求解.一般涉及“至多”“至少”等事件的概率计算问题时,可以考虑其对立事件的概率,从而简化运算.考向二 统计与统计案例【高考改编☆回顾基础】1.【分层抽样】【2017·江苏卷】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件. 【答案】182.【系统抽样】【2014·广东卷改编】为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为________. 【答案】25【解析】由题意得,分段间隔是100040=25.3.【茎叶图、中位数、平均数】【2017·山东卷改编】如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为________.【答案】3,5.4.【对标准差、平均数、中位数的理解】【2017·全国卷Ⅰ改编] 为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg)分别为x 1,x 2,…,x n ,给出下列指标:①x 1,x 2,…,x n 的平均数;②x 1,x 2,…,x n 的标准差;③x 1,x 2,…,x n 的最大值;④x 1,x 2,…,x n 的中位数.其中所给出的指标中可以用来评估这种农作物亩产量稳定程度的是________.(填序号) 【答案】②【解析】根据标准差的概念,可知标准差是刻画一组数据波动与稳定程度的一个量,所以选②.5.【回归直线方程及其应用】【2017·山东卷改编】为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y ^=b ^x +a ^.已知∑10i =1x i =255,∑10i =1y i =1600,b ^=4.该班某学生的脚长为24,据此估计其身高为________. 【答案】166【解析】易知x =22510=22.5,y =160010=160.因为b ^=4,所以160=4×22.5+a ^,解得a ^=70,所以回归直线方程为y^=4x +70,当x =24时,y ^=96+70=166.6.【对频率分布直方图的认识】【2017·北京卷改编】某大学艺术专业400名学生参加某次测评,从中随机抽取了100名学生,记录他们的分数,整理得到如图所示的频率分布直方图,已知样本中分数小于40的学生有5人,估计总体中分数在区间[40,50)内的人数为________.【答案】207.【2×2列联表及独立性检验公式】【2017·全国卷Ⅱ改编】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,得到如下列联表:箱产量<50 kg 箱产量≥50 kg 旧养殖法 62 38 新养殖法3466根据列联表判断________(填“有”或“没有”)99%的把握认为箱产量与养殖方法有关.【答案】有【解析】k =200×(62×66-38×34)2100×100×104×96≈15.705>6.635,∴有99%的把握认为箱产量与养殖方法有关.【命题预测☆看准方向】从近五年高考试题来看,高考对概率的考查重点是基本概念和基本公式,如互斥事件的概率、古典概型、几何概型等;高考对统计与统计案例的考查密度小,有增强的趋势,考查的重点有用样本估计总体、回归分析和独立性检验等. 概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题,这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神.备考重点是互斥事件的概率、古典概型、几何概型、用样本估计总体、回归分析、独立性检验等.【典例分析☆提升能力】【例1】已知关于x 的二次函数()24 1.f x ax bx =-+(Ⅰ)设集合{}1,1,2A =-和{}2,1,1B =--,分别从集合,A B 中随机取一个数作为a 和b , ()y f x =在区间[)1+∞,上是增函数的概率. (Ⅱ)设点(),a b 是区域80,{0, 0,x y x y +-≤>>内的随机点,求函数()f x 在区间[)1,+∞上是增函数的概率. 【答案】(Ⅰ)59p =.(Ⅱ) 13p =. 试题解析:要使函数()y f x =在区间[)1,+∞上是增函数,需0a >且412ba--≤,即0a >且2b a ≤. (Ⅰ)所有(),a b 的取法总数为339⨯=个.满足条件的(),a b 有()1,2-, ()1,1-, ()2,2-, ()2,1-, ()2,1共5个,所以所求概率59p =. (Ⅱ)如图,求得区域80{0 0x y x y +-≤>>的面积为188322⨯⨯=.由80{20x y x y +-=-=,求得168,33P ⎛⎫⎪⎝⎭.所以区域内满足0a >且2b a ≤的面积为18328233⨯⨯=. 所以所求概率3213323p ==.【趁热打铁】为迎接校运动会的到来,某校团委在高一年级招募了12名男志愿者和18名女志愿者(18名女志愿者中有6人喜欢运动).(1)如果用分层抽样的方法从男、女志愿者中共抽取10人组成服务队,求女志愿者被抽到的人数;(2)如果从喜欢运动的6名女志愿者中(其中恰有4人懂得医疗救护),任意抽取2名志愿者负责医疗救护工作,则抽出的志愿者中2人都能胜任医疗救护工作的概率是多少? 【答案】(1)6(人).(2)25.【例2】【2018届北京市石景山区高三第一学期期末】某学校高三年级共有1000名学生,其中男生650人,女生350人,为了调查学生周末的休闲方式,用分层抽样的方法抽查了200名学生. (Ⅰ)完成下面的22⨯列联表;(Ⅱ)在抽取的样本中,调查喜欢运动女生的运动时间,发现她们的运动时间介于30分钟到90分钟之间,右图是测量结果的频率分布直方图,若从区间段[)40,50和[)60,70的所有女生中随机抽取两名女生,求她们的运动时间在同一区间段的概率. 【答案】(Ⅰ)见解析(Ⅱ)715试题解析:(Ⅰ)根据分层抽样的定义,可知抽取男生130人,女生70人, 200(Ⅱ)由直方图可知在[)40,50内的人数为2人,设为,m n , 在[)60,70内的人数为4人,设为,,,a b c d . 设“两人的运动时间在同一区间段”的事件为A .从中抽取两名女生的可能情况有:()()()()()()(),,,,,,,,,,,,,m n m a m b m c m d n a n b , ()()()()()()()(),,,,,,,,,,,,,,,n c n d a b a c a d b c b d c d两人的运动时间恰好在同一区间段的可能情况有7种.()715P A =. 【趁热打铁】【2018届重庆市九校联盟高三上第一次联考】某社区为了解辖区住户中离退休老人每天的平均户外“活动时间”,从辖区住户的离退休老人中随机抽取了100位老人进行调查,获得了每人每天的平均户外“活动时间”(单位:小时),活动时间按照[)0,0.5、[)0.5,1、…、[]4,4.5从少到多分成9组,制成样本的频率分布直方图如图所示.(1)求图中a 的值;(2)估计该社区住户中离退休老人每天的平均户外“活动时间”的中位数;(3)在[)1,1.5、[)1.5,2这两组中采用分层抽样抽取7人,再从这7人中随机抽取2人,求抽取的两人恰好都在同一个组的概率.【答案】(1) 0.30a = (2) 2.06m =(3)37P =试题解析:(Ⅰ)由频率分布直方图,可知,平均户外“活动时间”在[)00.5,的频率为0.080.50.04⨯=.同理,在[)0.51,, [)1.52,, [)22.5,, [)33.5,, [)3.54,, [)44.5,等组的频率分别为0.08,0.20,0.25,0.07,0.04,0.02,由()10.040.080.200.250.070.040.020.50.5a a -++++++=⨯+⨯. 解得0.30a =.(Ⅱ)设中位数为m 小时.因为前5组的频率之和为0.040.080.150.200.250.720.5++++=>,而前4组的频率之和为0.040.080.150.200.470.5+++=<,所以2 2.5m ≤<. 由()0.5020.50.47m ⨯-=-,解得 2.06m =.故可估计该社区住户中离退休老人每天的平均户外“活动时间”的中位数为2.06小时.【例3】【2018届湖南师大附中高三上月考(五)】在“新零售”模式的背景下,某大型零售公司为推广线下分店,计划在S 市的A 区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x 表示在各区开设分店的个数, y 表示这x 个分店的年收入之和.(Ⅰ)该公司已经过初步判断,可用线性回归模型拟合y 与x 的关系,求y 关于x 的线性回归方程;(Ⅱ)假设该公司在A 区获得的总年利润z (单位:百万元)与,x y 之间的关系为20.05 1.4z y x =--,请结合(Ⅰ)中的线性回归方程,估算该公司应在A 区开设多少个分店,才能使A 区平均每个分店的年利润最大? 参考公式:y b x a ∧∧∧=+, 1221ni i i ni i x y nxy b x nx ∧==-==-∑∑()()()121niii n ii x x y y x x ==---∑∑, a y b x ∧∧=-. 【答案】(1)0.850.6y x =+;(2)公司应在A 区开设4个分店,才能使A 区平均每个分店的年利润最大. 【解析】试题分析:(1)根据给定参考公式,代入求出b ∧,再根据回归直线过中心点求出a y b x ∧∧=-,即可写出回归直线方程;(2)根据所给回归直线方程,求出每个店的平均利润zt x=,利用均值不等式求最值即可.(2)20.05 1.4z y x =--= 20.050.850.8x x -+-,A 区平均每个分店的年利润0.80.050.85z t x x x ==--+ 800.0150.85x x ⎛⎫=-++ ⎪⎝⎭,∴4x =时, t 取得最大值,故该公司应在A 区开设4个分店,才能使A 区平均每个分店的年利润最大.【趁热打铁】某商场对A 商品30天的日销售量y(件)与时间t(天)的销售情况进行整理,得到如下数据,经统计分析,日销售量y(件)与时间t(天)之间具有线性相关关系. 时间t(天),2,4,6,8,10 日销售量y(件),38,37,32,33,30(1)请根据表中提供的数据,用最小二乘法求出y 关于t 的线性回归方程y ^=b ^t +a ^.(2)已知A 商品30天内的销售价格z(元)与时间t(天)的关系为z =⎩⎪⎨⎪⎧-t +100(20≤t≤30,t∈N),t +20(0<t<20,t∈N).根据(1)中求出的线性回归方程,预测t 为何值时,A 商品的日销售额最大.参考公式:b ^=,a ^=.【答案】(1)y ^=-t +40.(2)预测当t =20时,A 商品的日销售额最大,最大值为1600元.【解析】(1)根据题意,=15×(2+4+6+8+10)=6, =15×(38+37+32+33+30)=34, ∑5i =1t i y i =2×38+4×37+6×32+8×33+10×30=980, ∑5i =1t 2i =22+42+62+82+102=220,所以回归系数为故所求的线性回归方程为y ^=-t +40.【例4】【2017课标II ,文19】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg ), 其频率分布直方图如下:(1) 记A 表示事件“旧养殖法的箱产量低于50kg”,估计A 的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:旧养殖法 (3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。
题型练5 大题专项(三)统计与概率问题
1.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
(1)求y关于t的回归方程t+;
(2)用所求回归方程预测该地区2018年(t=8)的人民币储蓄存款.
附:回归方程t+中,.
2.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;
②若xy≥8,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(1)求小亮获得玩具的概率;
(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
3.以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(1)如果X=8,求乙组同学植树棵数的平均数和方差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.[(x1-)2+(x2-)2+…+(x n-)2],其中为x1,x2,…,x n的平均数
4.4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:min)的频率分布直方图,若将日均课外阅读时间不低于60 min的学生称为“读书迷”,低于60 min的学生称为“非读书迷”,
(1)求x的值并估计全校3 000名学生中“读书迷”大概有多少?(将频率视为概率)
(2)根据已知条件完成下面2×2的列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“读书迷”与性别有关:
附K2=,其中n=a+b+c+d.
5.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2 000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于60分到140分之间(满分150分),将统计结果按如下方式分成八组:第一组[60,70),第二组[70,80),……,第八组:[130,140],如图是按上述分组方法得到的频率分布直方图的一部分.
(1)求第七组的频率,并完成频率分布直方图;
(2)估计该校的2 000名学生这次考试成绩的平均分(可用中值代替各组数据平均值);
(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差大于10分的概率.
6.为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如下图,记成绩不低于70分者为“成绩优良”.
(1)分别计算甲、乙两班20个样本中化学分数前十的平均分,并据此判断哪种教学方式的教学效果更佳;
(2)甲、乙两班40个样本中,成绩在60分以下(不含60分)的学生中任意选取2人,求这2人来自不同班级的概率;
(3)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
附:K2=(n=a+b+c+d).
独立性检验临界值表:
##
题型练5大题专项(三)
统计与概率问题
1.解 (1)列表计算如下:
这里n=5,t i==3,y i==7.2.
又l tt=-n=55-5×32=10,l ty=t i y i-n=120-5×3×7.2=12,从而=1.2,=7.2-1.2×3=3.6,故所求回归方程为=1.2t+3.6.
(2)将t=8代入回归方程可预测该地区2018年的人民币储蓄存款为=1.2×8+3.6=13.2(千亿元).
2.解用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x ∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.
因为S中元素的个数是4×4=16,
所以基本事件总数n=16.
(1)记“xy≤3”为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).
所以P(A)=,即小亮获得玩具的概率为.
(2)记“xy≥8”为事件B,“3<xy<8”为事件C.
则事件B包含的基本事件数共6个,
即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).
所以P(B)=.
事件C包含的基本事件数共5个,
即(1,4),(2,2),(2,3),(3,2),(4,1).
所以P(C)=.因为,
所以小亮获得水杯的概率大于获得饮料的概率.
3.解 (1)当X=8时,由茎叶图可知,乙组同学的植树棵数是8,8,9,10,所以平均数为.
方差为s2=.
(2)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:
(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(A3,B1),(A3,B2),(A3,B 3),(A3,B4),(A4,B1),(A4,B2),(A4,B3),(A4,B4),
用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率为P(C)=.
4.解 (1)由已知可得:(0.01+0.02+0.03+x+0.015)×10=1,可得x=0.02
5.
因为(0.025+0.015)×10=0.4,将频率视为概率,由此可以估算出全校 3 000名学生中“读书迷”大概有1 200人.
(2)完成下面的2×2
K2=≈8.249.
由8.249>6.635,故在犯错误的概率不超过0.01的前提下认为“读书迷”与性别有关.
5.解(1)由频率分布直方图知第七组的频率f7=1-(0.004+0.012+0.016+0.03+0.02+0.006+0.004)×10=0.08.频率分布直方图如图.
(2)估计该校的 2 000名学生这次考试的平均成绩为65×0.04+75×0.12+85×0.16+95×0.3+105×0.2+115×0.06+125×0.08+135×0.04=97(分).
(3)第六组有学生3人,分别记作A1,A2,A3,第八组有学生2人,分别记作B1,B2,则从中任取2人的所有基本事件为(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A1,A2),(A1,A3),(A2,A3),(B1,B2),共10个.分差大于10分表示所选2人来自不同组,其基本事件有6个:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),所以从中任意抽取2人,分差大于10分
的概率P=.
6.解 (1)甲班样本化学成绩前十的平均分为
×(72+74+74+79+79+80+81+85+89+96)=80.9;
乙班样本化学成绩前十的平均分为
×(78+80+81+85+86+93+96+97+99+99)=89.4;
甲班样本化学成绩前十的平均分远低于乙班样本化学成绩前十的平均分,大致可以判断“高效课堂”教学方式的教学效果更佳.
(2)样本中成绩60分以下的学生中甲班有4人,记为a,b,c,d,乙班有2人,记为1,2.
则从a,b,c,d,1,2六个元素中任意选2个的所有基本事件如下:ab,ac,ad,a1,a2,bc,bd,b1,b2,cd,c1,c2,d1,d2,12,一共有15个基本事件,设A表示“这2人来自不同班级”有如下:a1,a2,b1,b2,c1,c2,d1,d2,一共有8个基本事件,所以P(A)=.
(3)
根据2×2列联表中的数据,得K2的观测值为
k=≈3.956>3.841,
∴能在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”.。