经典反激式开关电源设计总结
- 格式:pdf
- 大小:2.76 MB
- 文档页数:82
反激式开关电源设计详解一、工作原理1.开关管控制:反激式开关电源中,开关管起到了关键的作用。
当输入电压施加在开关管上时,开关管处于导通状态,此时电流流经变压器和输出电路,能量存储在变压器核心中。
当输入电压施加在开关管上时,开关管处于截止状态,此时能量释放,通过一对二极管和电容器形成输出脉冲电流。
2.变压器作用:反激式开关电源中的变压器主要用于将输入电压转换为所需的输出电压。
在导通状态下,输入电压施加在变压器的一侧,能量存储在变压器的磁场中。
在截止状态下,变压器的磁场崩溃,能量释放到输出电路中。
3.输出电路过滤:输出电流通过一对二极管和电容器形成脉冲电流。
为了使输出电流更加稳定,需要通过电容器对输出电流进行滤波,降低脉冲幅度,使输出电压更加平稳。
二、基本结构1.输入滤波电路:由于输入电源通常含有较多的噪声和干扰,为了保障开关电源的正常工作,需要在输入端添加一个滤波电路,通过滤波电容和电感将输入电压的尖峰和噪声滤除。
2.开关控制电路:开关控制电路用于对开关管进行控制,使其在合适的时机打开和关闭。
常见的控制方式有定时控制和反馈控制两种。
3.开关管:开关管在反激式开关电源中起到了关键的作用。
常见的开关管有MOS管、IGBT管等,其特性包括导通损耗、截止损耗和开关速度等。
4.变压器:变压器用于将输入电压变换为所需的输出电压。
同时,变压器还能起到隔离输入电源和输出负载的作用,保护负载。
5.输出整流滤波电路:输出整流滤波电路用于对输出电流进行整流和滤波,使输出电压更加稳定。
三、常见设计方法1.脉冲宽度调制(PWM)控制:PWM是一种常用的反激式开关电源控制方法,通过控制开关管的导通时间来调节输出电压和电流。
PWM控制能够实现较高的效率和较低的输出波纹,但需要一定的控制电路。
2.变压器匹配设计:在设计反激式开关电源时,需要合理选择变压器的匝数比,以实现所需的输入输出电压转换。
同时,还需要考虑变压器的大小和功耗。
反激式开关电源设计
原理分析、波形分析、应力计算、回路布局
Flyback 变换器模态分析
ON:开关管导通,变压器原边充电,二极管关断,负载由输出滤波电容供电。
OFF:开关管关断,二极管导通,变压器储存能量通过二极管向负载侧传送。
基本输入输出关系:
理想情况下开关波形
Flyback 变换器关键波形分析
DCM工作模式下MOS DS电压波形分析
CCM工作模式下MOS DS电压波形分析
开关管上电流尖峰的波形分析
开关管上电流尖峰的波形分析(一)
开关管关断后,变压器副边为输出电压Vo钳位,此时寄生电容Cp 两端的电压为nVo,方向是上负下正;当开关管导通时,Cp电容放电,此时Cp与线路寄生电感及输入电压构成谐振回路,从而形成该尖峰电流(谐振电流)。
开关管上电流尖峰的波形分析(二)
开关管上电流尖峰的波形分析(三)RCD无源吸收电路的设计
开关器件的应力分析
主开关管S1电压应力:
整流二极管D1电压应力:
Flyback噪音回路及布板要求
常见的反激式(Flyback)变换器拓扑
反激是变换器中的噪声
单点接地,避免回路间耦合
利用高频电容,减少回路面积
通过布线,进一步减少高频噪声
通过布线,进一步减少接地阻抗。
1、保险丝(FS1):电流过大直接断开。
2、热敏电阻(RT1):温度越高电阻越小。
为了防止上电瞬间电容充电插头处冒火花:由于初次上电温度低电阻大,实现了对开机浪涌电流的抑制。
3、安规电容(CX1):(1)滤波作用;(2)当电容被击穿则电容内部断开,而一般电容则是短路。
4、扼流圈(TF1):抑制高频干扰5、安全电阻(ZNR1):防雷电作用;当输入很高电压时电阻变小,相当于在此处短路,从而保护了后面电路。
6、整流器:进行全波整流,输出220*1.4=308V约300V。
KBP206是600V/2A的整流桥,其内部包含四只二极管,中间两只引脚为交流输入,两边的引脚较长一些的为直流输出的正极,另一个为直流的负极。
注意观察桥堆引脚旁边应该印有符号。
7、EC1电容:滤波使电压输出稳定8、R1与R2:启动电阻;首次上电的时候给SD4870提供微弱电流进行启动。
当芯片首次启动后R1,R2可以不需要,直接用变压器的1,2提供。
9、快速恢复二极管(D5):反向耐压1000V,由于变压器3点信号幅度是整流后电压的2倍多一点,因此D5用于漏感的释放。
10、R3与C5:吸收漏感11、D6:变压器1-2提供正向电压给芯片工作 12、变压器:电源输入端为初级,其他均为次级。
13、肖特基二极管(DD1):具有反向恢复时间极短(可以小到几纳秒);即二极管的导通与断开时间很快。
14、R15与C8:吸收电路辐射15、R9:假负载,可以不要。
16、EC4、L1、EC5:组成π型滤波,使输出纹波减小17、EC3:储能滤波 18、TL431:主要用于做基准源,反馈电压的设定:(R13/(R14+VR1)+1)*2.5=Vo当R13=7.5K的时候,输出最大值(7.5/1.5+1)*2.5=15V输出最小值(7.5/(1.5+1)+1)*2.5=10V19、C6与R12:电路补偿,防止电压立即改变。
如:当电压为12.5V 时不是让光耦立即输出进入7脚反馈,通过补偿电路使得有个缓冲过程。
反激式开关电源电路设计一、反激式开关电源的基本原理1.输入滤波电路:用于对输入电压进行滤波,消除噪声和干扰。
2.整流电路:将输入交流电压转换为直流电压。
3.开关变压器:通过变压器实现电压的升降。
4.开关管:通过快速开关控制电源的输出。
5.输出滤波电路:对输出电压进行滤波,减小纹波。
二、反激式开关电源的设计步骤1.确定需求:首先需要确定设计要求,包括输出电压和电流、负载稳定性要求、效率要求等。
2.选择开关管和变压器:根据需求选择合适的开关管和变压器,考虑其最大工作电流和功率损耗。
3.转换频率的选择:根据应用的具体要求,选择合适的转换频率。
较高的频率可以减小变压器的尺寸,但也会增加开关管的功耗。
4.控制电路设计:设计开关管的控制电路,包括驱动电路和保护电路,确保开关管的正常工作和保护电路的可靠性。
5.输出滤波电路设计:设计输出滤波电路,用于滤除输出电压中的高频噪声和纹波,提高稳定性和负载能力。
6.开关电路设计:设计开关电路,确保开关管的快速开关和可靠性。
7.其他辅助电路设计:如过温保护电路、过流保护电路等。
8.电路板布局和布线:根据电路设计和要求进行电路板布局和布线,提高电路的可靠性和稳定性。
9.电路仿真和调试:使用仿真软件对设计的电路进行仿真分析,并进行实际的电路调试,确保电路的可靠性和稳定性。
三、反激式开关电源设计的注意事项1.高效率设计:选择合适的元件和电路设计,减小功率损耗,提高电源的整体效率。
2.稳定性设计:考虑负载稳定性的要求,选择合适的控制策略和滤波电路,提高电源的稳定性和负载能力。
3.保护设计:考虑过温、过流、短路等保护功能的设计,保护电源和负载器件的安全。
4.电磁兼容设计:反激式开关电源中产生的高频噪声易对其他电子设备产生干扰,需要采取适当的电磁屏蔽和滤波措施。
5.安全性设计:合理设置安全保护电路和安全措施,确保电源在故障情况下能够及时切断电源,保护用户的安全。
通过以上步骤和注意事项,可以设计出一台高效、稳定、安全的反激式开关电源,满足不同应用领域的需求。
反激式开关电源设计资料前言反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。
虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。
单端反激式开关稳压电源的基本工作原理如下:D1ET ON T OFFL P L STI PQ1C O R L图1 反激式开关电源原理图当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。
因单端反激式电源只是在原边开关管到同期间存储能量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。
因此又称单端反激式变换器是一种“电感储能式变换器”。
学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。
开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。
除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。
通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。
第一章电源参数的计算第一步,确定系统的参数。
我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。
先要确定这些相关因素,才能更好的设计出符合标准的电源。
反激式开关电源设计方法1.工作原理反激式开关电源是一种将线性变压器替换为变压器型电感器的开关电源。
它的工作原理是通过开关管周期性的打开和关闭,将直流电源的电能经过变压器转化为需要的输出电压。
当开关管打开时,电流从电源流入变压器进行储能;当开关管关闭时,储存在变压器中的电能会通过二次侧电容器得以释放,并输出到负载上。
2.主要组成部分(1)输入滤波电路:用来消除电源输入端的干扰信号,保证稳定的输入电压。
(2)整流电路:将交流输入电压转化为直流电压,常采用整流桥整流。
(3)激励电路:用来控制开关管的导通和关闭,以实现变压器的能量转移。
(4)变压器:用来完成电能的变换和隔离,将输入端的电能转换为所需的输出电能。
(5)输出电路:包括输出电容和输出滤波电路,用来滤除开关产生的高频脉冲,以得到稳定的输出电压。
3.设计要点在进行反激式开关电源设计时(1)确定输出电压和电流需求:根据实际应用需求,确定所需的输出电压和电流,并根据负载特性选择合适的功率等级。
(2)选择合适的开关管和变压器:根据负载需求和电路参数,选择合适的开关管和变压器,以保证输出电压和效率的要求。
(3)控制开关频率和占空比:根据负载要求和电路特性,选择合适的开关频率和占空比,以保证输出电压的稳定性和整体效果。
(4)进行热设计和保护措施:由于开关管会产生较高的温度,需要进行合理的热设计,同时添加保护电路,如过流保护、过温保护等,以保证电路的安全性和可靠性。
(5)进行EMC设计和测试:由于开关电源会产生较大的电磁干扰,需要进行EMC设计和测试,以满足相关的国际标准要求。
总结:反激式开关电源是一种常用的电源设计方案,其设计方法包括确定输出需求、选择合适的器件、控制开关频率和占空比、进行热设计和保护措施,以及进行EMC设计和测试。
通过合理的设计和选择,可以实现高效率、小型化的电源方案,满足各种电子设备的需求。
反激式开关电源的设计思路开关电源的思路:要实现输出的稳定的电压,先获取输出端的电压,然后反馈给输出端调控输出功率(电压低则增大输出功率,反之则减小),终达到一个动态平衡,稳定电压是一个不断反馈的结果。
一、整体概括
下图是一个反激式开关电源的原理图。
输入电压范围在AC100V~144V,输出DC12V的电压。
二、瞬变滤波电路解析
市电接入开关电源之后,首先进入瞬变滤波电路(Transient Filtering),也就是我们常说的EMI电路。
下图描述的是本次举例说明的瞬变滤波电路的电路图。
各个器件说明:
F1-->保险管:当电流过大时,断开保险管,保护电路。
CNR1-->压敏电阻:抑制市电瞬变中的尖峰。
R31、R32-->普通贴片电阻:给这部分滤波放电,使用多个电阻的原因是分散各个电阻承受的功率。
C1-->X电容:对差模干扰起滤波作用。
T2-->共模电感:衰减共模电流。
R2-->热敏电阻:在电路的输入端串联一个负温度系数热敏电阻增加线路的阻抗,这样就可以有效的抑制开机时产生的浪涌电压形成的
浪涌电流。
当电路进入稳态工作时,由于线路中持续工作电流引起的NTC发热,使得电阻器的电阻值变得很小,对线路造成的影响可以完全忽略。
三、整流部分
各个器件说明:
BD1->整流桥
L1、EC1、EC2->π型LC滤波电路,主要起的就是滤波,使输出的电流更平滑。
四、开关电源主体部分
开关电源的主题部分如下图:五、输出端滤波电路
下图是输出端滤波电路:。
最新反激式开关电源设计总结前言对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。
另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。
励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。
在整个抽水过程中,水泵中保持的水量又是不变的。
这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。
正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。
而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。
反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来;第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。
可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。
初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。
磁芯饱和时,很短的时间内极易使开关管损坏。
因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。
由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。
反激式开关电源学习笔记基本原理与设计步骤:一、变压器:1、电压比与匝数比相同,与负载电流无关(以下电路不是)。
2、初级和次级同时导通(以下电路不是)。
3、电流从初级绕组的正极性流入,则同时从次级绕组的正极性流出。
二、以上原理图总结:1、当Q1导通时,次级整流二极管反向截止,输出电容给负载供电。
T1为纯电感特性,流过Np的电流线性上升达到峰值Ip。
2/1LIp传到次2、当Q1关断时,所有绕组电压反向,次级二极管导通,初级储存的能量2级,提供负载电流和输出电容充电,在下一周期开始之前电流下降为零,则电流工作在DCM (断续)模式。
3、上面变压器‘2’中提到的变压器初级和次级同时导通不适用在以上电路,上面电路可以理解为:初级绕组导通,次级绕组截止(电容供负载);初级绕组截止,次级绕组导通(初级将能量传递给次级)。
4、“反激变换器”工作可以理解为:Q1导通,对初级绕组(可理解为电感)充电;Q1关断时,次级绕组(可理解为电感)放电。
5、初级与次级的安匝比守恒(不是真正的变压器的电压守恒),即初级与次级的安匝的乘积相等。
三、反激变压器设计注意:1、 我们不是在设计变压器,而是在设计有多个绕组的扼流圈。
2、 初级绕组匝数要满足AC 电压应力(伏秒数)和磁芯饱和特性:eBA VT Np = 其中,Np 是最小初级匝数,V 是最大初级直流电压(V ),T 是开关管Q1的最大导通时间(us ),B 是AC 磁通密度变化的峰—峰值(特斯拉),铁氧体典型值为200mT ,Ae 为磁芯中心柱的有效面积(2m m )。
3、 次级绕组可以灵活选择。
如果次级绕组每匝电压值与初级相同,则开关管Q1上的反激电压为输入电压的两倍。
4、 在使用有磁隙的铁氧体磁芯时,最小的磁隙长度必须保证在流过交流和直流励磁电流和时,磁芯不能饱和。
更多情况下,磁隙长度为了满足能量转换的要求而导致磁隙长度超过其需求的最小长度。
初级绕组储存的能量为:E (焦耳)=22/1LIp (从公式看减小电感值L 可以减小E ,但是电感值的减小,导致电流值I 的同比例增大,而E 和I 的平方值成正比,这样导致初级储存能量E 的增加)。
经典反激式开关电源设计总结前言对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。
另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。
励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。
在整个抽水过程中,水泵中保持的水量又是不变的。
这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。
正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。
而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。
反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来;第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。
可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。
初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。
磁芯饱和时,很短的时间内极易使开关管损坏。
因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。
由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。
如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论。
反激式开关电源设计的思考二---气隙的作用“反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?由全电流定律可知:由上例可知,同一个磁芯在电流不变的条件下,仅增加1mm气隙,加气隙的磁感强度仅为不加气隙的磁感应强度的 4.8%,看来效果相当明显。
加了气隙后,是否会影响输出功率呢?换句话说,加了气隙变压器还能否储原来那些能量呀?看一下下面的例子就知道了:在“思考一”一文中已讨论过,当开关管导通时,次级绕组均不构成回路,此时,变压器象是仅有一个初级绕组带磁芯的电感器一样,母线将次级需要的全部能量都存在这个电感器里。
如下图1就是一个有气隙的电感器:图1表示一个磁芯长为lm,气隙长为lg,截面积为Ae的磁芯,在其上绕N匝线圈,当输入电压为Ui时,输入功率为Wi:6式右边的积分为图2中阴影部分面积A,即就是说:磁场能量的大小等于磁化曲线b和纵轴所围成的面积大小。
图1中,假定磁路各部分的面积相等,磁芯各部分的磁场强度为Hm,气隙部分的磁场强度为Hg,由全电流定律得:11式右边第一项是磁芯中的磁场能量,第二项是气隙部分的磁场能量,分别用Wi和Wg表示;那么:图3中,曲线m表示图1电感器无气隙时的磁化曲线,曲线g表示有气隙时的磁化曲线。
图中,面积Am表示储存在磁芯部分的磁场能量;面积Ag表示储存在气隙部分的磁场能量。
上面讲了气隙的作用以及磁场能量在变压器中的分布,那么,根据输出功率如何选用磁芯呢?将在反激式开关电源设计思考三中讨论。
反激式开关电源设计的思考三---磁芯的选取字体大小:大 | 中 | 小 2007-03-09 14:11 - 阅读:4852 - 评论:2 反激式开关电源设计的思考三(磁芯的选取)在DCM状态下选择:Uin-电源输入直流电压Uinmin-电源输入直流电压最小值D-占空比Np-初级绕组匝数Lp-初级绕组电感量Ae-磁芯有效面积Ip-初级峰值电流f-开关频率Ton-开关管导通时间I-初级绕组电流有效值η-开关电源效率J-电流密度通过(3)式可方便计算出反激式开关电源在电流断续模式时磁芯的AeAw值,通过查厂商提供的磁芯参数表就可选择合适的磁芯,在选择磁芯时要留一定的余量。
例如:有一反激式开关电源输出功率为10W,开关频率为40KHz, ΔB为0.16T,电流密度取 4.5A/mm2磁芯选用EE系列,那么由公式(3)可知:考虑到实际绕线的绝缘层等的影响,须考虑填充系数(取0.8), 即:Ap = AeAw/0.8=1.736×1000 / 0.8 = 2207.5通过上面计算,EE19磁芯比较接近,考虑到辅助绕组和其他因素选择EE20磁芯。
为计算方便,(3)式可修正为:Ap = AwAe = 6500×P0 / (△B×J×f) (4)单位:P0 ----- 瓦特;△B ---- 特斯拉J ------ 安培/平方毫米f ------ 千赫兹Ap ------ 毫米的四次方在实际使用中一定要注意公式的应用条件,公式(4)是在单端反激式开关电源电流断续模式下推导出来的,并且用了一系列假设:1.窗口使用系数SF:0.42.初级绕组面积Ap = 次级绕组面积 As3.当直流输入电压最低时Dm=0.54.电源效率η= 0.85.填充系数为0.8因此,该计算值在使用中要根据实际情况酌情修正,并且作为我们选择磁芯的一个大致参考,由于工艺的原因必须通过实践验证而最终确定。
另外单端反激式开关电源中,他激式和自激式的效率差别比较大,一般自激式的效率比较低,大概在0.7左右,使用公式(4)时要乘以(0.8/0.7=)1.15进行修正。
磁芯选好后,在反激式开关电源设计过程中应该遵循的规则将在反激式开关电源设计的思考四中讨论。
反激式开关电源设计的思考四-反激式开关电源设计应遵循的规则字体大小:大 | 中 | 小 2007-03-20 16:41 - 阅读:1783 - 评论:10 反激式开关电源设计的思考四-反激式开关电源设计应遵循的规则(www. )由于反激式开关电源的特殊性,在设计时要特别考虑的问题就多一些,归纳起来有如下几点:一、任何时刻开关管上所承受的电压都要低于它所能够承受的最大电压,并且要有足够的安全裕量;以此为出发点,就确定了变压器的变化;Ucemax = Uinmax + N·Uo + Upk + Uy式中:Ucemax-开关管所能承受的最大电压N-变比初级匝数Np / 次级匝数NsUin-直流输入电压最大值Uo-输出电压Upk-漏感所产生的电压Uy-电压裕量此式很重要一点,就是确定了变比N,变比一确定一系列问题就确定下来;比如:反射电压:VoR = N·Vo;占空比: D = VoR /( Vin +VoR);导通时间: Ton = D·T变比一定要选择合适,以使电路达到优化;若使用双极型晶体管对其基电极的控制很重要,因为它影响着Vcemax的大小:Vces>Vcer>Vceo;在ce间承受最高电压时最好保证 be结短接或者反偏,此时晶体管就可承受较高的反偏电压.二、任何时刻都应保证磁芯不饱和;由于反激式开关变压器的特殊性,磁芯饱和问题在反激式变换器的设计中尤为重要。
一旦磁芯饱和,开关管瞬间就会损坏。
为防止磁芯饱和反激式开关变压器磁芯一般都留气隙,显著扩大磁场强度的范围,但仅靠气隙并不能完全解决磁芯饱和的问题,由磁感应定律很容易得出:由(1)式知:磁感应强度与输入电压和导通时间有关。
在输入电压一定时,由反馈电路保证Ton的合适值。
在工作过程中,根据磁饱和的形式分两种情况:一种是:一次性饱和:当反馈环路突然失控时,在一个周期内导通一直持续,直到过大的Ip使磁芯饱和而使开关管立即损坏;另一种是:逐次积累式饱和:磁芯每个周期都有置位与复位动作,反激式开关电源磁芯置位是由初级绕组来实现,磁芯复位是由次级绕组和输出电路来实现。
当电路等设计不当时,每次磁芯不能完全复位,一次次的积累,在若干周期内磁芯饱和。
就像吹气不一样,一口气吹破就相当磁芯一次性饱和;每吹一次,就排气,但每次排气量都比进气量少一点,这样循环几次后,气球就会被撑破的;若每次充排气量相同,气球就不会破的,磁芯也是如此,如下图:磁芯从a→b→c为置位,从c→d→a为复位,每个周期都要回到a,磁芯就不会饱和。
对于反激式开关电源的断续模式,磁芯复位一般是不成问题的。
三、始终保持变换器工作于一个模式如CCM或DCM;不要在两个模式之间转换,这两种模式不同,对反馈回路的调节电路要求也不同,在考虑某一种模式而设计的调节电路,如运行到另一模式时易引起不稳定或者性能下降。
四、保证最小导通时间不接近双极性开关管的存储时间;(MOSFET管例外)在设计反激式开关电源时,特别在开关电源频率较高、直流输入电压最高,负载又较轻时,开关导通时间Ton最小,若这个时间接近或小于双极性晶体管的存储时间(0.5μs~1.0μs)时,极易造成开关管失控,而使磁芯饱和。
此时就要重新审视开关频率的选择,或能否工作于如此高电压或者通过调节占空比来适应。
或者选用其他电路拓扑。
五、不要将变换器的重要元件的参数选得接近分布参数;具体来说,电阻不要太大,电容器和电感器不要太小。
(1)许多反激式开关电源都有一个振荡频率,由IC芯片提供,如UC3842,由RC决定,当把R选择太大,C太小时,就易使稳定性特别差;如电容C小得接近分布参数,也就是说取掉该电容由线路板及其它元件间的分布参数而形成的容值都和所选的电容容值差不多;或者所选电阻太大以至于线路板上的漏电流所等效的阻值都和所选的电阻大小差不多;这将造成工作不稳定,如温度或湿度变化时其分布参数也跟着变化,严重影响振荡的稳定性。
R一般不要大于1M欧,C一般不要小于22PF。
(2)反激式开关电源的输出功率如下式:(DCM)注意:由于笔误,应为:U2=U*U,D2=D*D由(2)式可知:在电流断续模式时,当电压和频率固定的情况下,输出功率和变压器的初级电感成反比。
即要增加功率就要减小初级绕组的电感量。
反激式开关变压器的特殊性:当开关管导通时变压器相当于仅有初级绕组的一个带磁芯的电感器,当这个电感器小到一定值时就不可太小了,当小至和分布电感值差不多时,这样变压器的参数就没有一致性,工作稳定性差,可能分布参数的变化都会使整个电感值变化一少半,电路的可靠性就无从谈起。
初级电感值至少应是分布电感的10倍以上。