教科版高中物理总复习知识讲解 带电体在电场中的运动(基础)
- 格式:doc
- 大小:432.50 KB
- 文档页数:11
物理总复习:带电体在电场中的运动编稿:李传安审稿:张金虎【考纲要求】1、知道带电体在电场中的运动特点;2、会综合力学知识分析带电体在电场中的运动问题;3、会用能量的观点处理带电体在电场中的运动问题。
【考点梳理】考点、带电体在电场中的运动要点诠释:1、在复合场中的研究方法(1)牛顿运动的定律+运动学公式(2)能量方法:能量守恒定律和功能关系动量方法:动量守恒定律和动量定理2、电场中的功能关系:(1)只有电场力做功,电势能和动能之和保持不变。
(2)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变。
(3)除重力之外,其他各力对物体做的功等于物体机械能的变化。
(4)电场力做功的计算方法??cosFlW?cos?qElW。
①由公式计算,此公式只在匀强电场中使用,即W?qU计算,此公式适用于任何形式的静电场。
②用公式ABAB③静电场中的动能定理:外力做的总功(包括电场力做的功)等于动能的变化。
由动能定理计算电场力做的功。
【典型例题】类型一、带电物体在静电场和重力场的复合场中运动时的能量守恒(1)带电物体只受重力和静电场力作用时,电势能、重力势能以及动能相互转化,总能E?E+E?恒定值量守恒,即KPG电P(2)带电物体除受重力和静电场力作用外,如果还受到其它力的作用时,电势能、重力势能以及动能之和发生变化,此变化量等于其它力的功,这类问题通常用动能定理来解决。
例1、地球表面附近某区域存在大小为150 N/C、方向竖直向下的电场.一质量为1.00×47--C 的小球从静止释放,在电场区域内下落10.0 m、带电荷量为-1.00×1010.对此过kg2,忽略空气阻力)((重力加速度大小取9.80 m/s)程,该小球的电势能和动能的改变量分别为43--J×10 J和9.95×A.-1.501043--J×10 J和10B.1.50×9.9543--J10和9.65×C.-1.50×10 J43--J 109.65×1.50×10 J和D.【答案】D【解析】本题考查功与能.设小球下落的高度为h,则电场力做的功W=-qEh=-144--J;重力做的功W10=mgh1.5×10 J,电场力做负功,电势能增加,所以电势能增加1.5×233--J,根据动能定理可知ΔE10=W=9.65×109.65×=+W,9.8×=10 J合力做的功=WW k123-J,因此D项正确.举一反三的电势为零,且相邻三条虚线为电场中的等势面,等势面b、b、c【变式1】如图所示,a在电场力作用下从10J,两个等势面间的电势差相等,一个带正电的粒子在A点时的动能为)速度为零,当这个粒子的动能为7.5J时,其电势能为(A运动到B2.5JD. - B. 2.5J C. 0 A. 12.5JD【答案】运A10JB,电场力做功为-,则带电粒子从【解析】根据动能定理可知,带电粒子从A 到带电粒子在电场中的电势,b时动能为5Jb时,电场力做功-5J,粒子在等势面动到等势面。
带电粒子在电场中的运动知识点精解1.带电粒子在电场中的加速这是一个有实际意义的应用问题。
电量为q的带电粒子由静止经过电势差为U 的电场加速后,根据动能定理及电场力做功公式可求得带电粒子获得的速度大小为可见,末速度的大小与带电粒子本身的性质(q/m)有关。
这点与重力场加速重物是不同的。
2.带电粒子在电场中的偏转如图1-36所示,质量为m的负电荷-q以初速度v0平行两金属板进入电场。
设两板间的电势差为U,板长为L,板间距离为d。
则带电粒子在电场中所做的是类似平抛的运动。
(1)带电粒子经过电场所需时间(可根据带电粒子在平行金属板方向做匀速直线运动求)(2)带电粒子的加速度(带电粒子在垂直金属板方向做匀加速直线运动)(3)离开电场时在垂直金属板方向的分速度(4)电荷离开电场时偏转角度的正切值3.处理带电粒子在电场中运动问题的思想方法(1)动力学观点这类问题根本上是运动学、动力学、静电学知识的综合题。
处理问题的要点是要注意区分不同的物理过程,弄清在不同物理过程中物体的受力情况及运动性质,并选用相应的物理规律。
能用来处理该类问题的物理规律主要有:牛顿定律结合直线运动公式;动量定理;动量守恒定律。
(2)功能观点对于有变力参加作用的带电体的运动,必须借助于功能观点来处理。
即使都是恒力作用问题,用功能观点处理也常常显得简洁。
具体方法常用两种:①用动能定理。
②用包括静电势能、内能在内的能量守恒定律。
【说明】该类问题中分析电荷受力情况时,常涉及"重力〞是否要考虑的问题。
一般区分为三种情况:①对电子、质子、原子核、(正、负)离子等带电粒子均不考虑重力的影响;②根据题中给出的数据,先估算重力mg和电场力qE的值,假设mg<<qE,也可以忽略重力;③根据题意进展分析,有些问题中常隐含着必须考虑重力的情况,诸如"带电颗粒〞、"带电液滴〞、"带电微粒〞、"带电小球〞等带电体常常要考虑其所受的重力。
物理总复习:带电体在电场中的运动: :【考纲要求】1、知道带电体在电场中的运动特点;2、会综合力学知识分析带电体在电场中的运动问题;3、会用能量的观点处理带电体在电场中的运动问题。
【考点梳理】考点、带电体在电场中的运动要点诠释:1、在复合场中的研究方法(1)牛顿运动的定律+运动学公式(2)能量方法:能量守恒定律和功能关系动量方法:动量守恒定律和动量定理2、电场中的功能关系:(1)只有电场力做功,电势能和动能之和保持不变。
(2)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变。
(3)除重力之外,其他各力对物体做的功等于物体机械能的变化。
(4)电场力做功的计算方法①由公式cos W Fl θ=计算,此公式只在匀强电场中使用,即cos W qEl θ=。
②用公式AB AB W qU =计算,此公式适用于任何形式的静电场。
③静电场中的动能定理:外力做的总功(包括电场力做的功)等于动能的变化。
由动能定理计算电场力做的功。
【典型例题】类型一、带电物体在静电场和重力场的复合场中运动时的能量守恒(1)带电物体只受重力和静电场力作用时,电势能、重力势能以及动能相互转化,总能 量守恒,即 +PG K P E E E +=电恒定值(2)带电物体除受重力和静电场力作用外,如果还受到其它力的作用时,电势能、重力 势能以及动能之和发生变化,此变化量等于其它力的功,这类问题通常用动能定理来解决。
例1、如图所示,实线为电场线,虚线为等势面,且相邻两等势面的电势差相等,一个正电荷在等势面U 3上时具有动能4210J -⨯,它运动到等势面U 1时,速度为零,令U 2=0,那么该点电荷的电势能为5410J -⨯时,其动能大小是多少?(设整个运动过程中只有电场力做功)【思路点拨】(1)确定每两个等势面之间的电势能的差值,(2)根据零势面,确定电势能零点,这是同一个等势面;(3)根据有一个已知量的等势面(零势面)确定总能量,(4)所求任意点的某能量就等于总能量减去这点的一个已知能量。
物理总复习:带电粒子在电场中的运动: :【考纲要求】1、知道带电粒子在电场中的运动规律,并能分析解决加速和偏转方面的问题;2、会结合力学知识分析解决带电粒子在复合场中的运动问题;3、知道示波管的基本原理。
【考点梳理】考点一、带电粒子在匀强电场中的加速带电粒子在电场中运动时,重力一般远小于静电力,因此重力可以忽略。
要点诠释:如图所示,匀强电场中有一带正电q 的粒子(不计重力),在电场力作用下从A 点加速运动到B 点,速度由v 0增加到v.,A 、B 间距为d ,电势差为U AB.(1)用动力学观点分析:Eq a m =, U E d=,2202v v ad -= (2)用能量的观点(动能定理)分析:2201122AB qU mv mv =-能量观点既适用于匀强电场,也适用于非匀强电场,对匀强电场又有AB W qU qEd ==。
考点二、带电粒子在匀强电场中的偏转要点诠释:(1)带电粒子以垂直于电场线方向的初速度v 0进入匀强电场时,粒子做类平抛运动。
垂直于场强方向的匀速直线运动,沿场强方向的匀加速直线运动。
(2)偏转问题的处理方法,类似于平抛运动的研究方法,粒子沿初速度方向做匀速直线运动,可以确定通过电场的时间0l t v =。
粒子沿电场线方向做初速度为零的匀加速直线运动,加速度F qE qU a m m md===; 穿过电场的位移侧移量:221at y =222001().22Uq l ql U md v mv d=⋅=; 穿过电场的速度偏转角: 200tan y v qlU v mv dθ==。
两个结论:(1)不同的带电粒子从静止开始,经过同一电场加速后再进入同一偏转电场,射出时的偏转角度总是相同的。
(2)粒子经过电场偏转后,速度的反向延长线与初速度延长线的交点为粒子水平位移的中点。
(与平抛运动的规律一样)考点三、示波管的构造原理(1)示波管的构造:示波器的核心部件是示波管,示波管的构造简图如图所示,也可将示波管的结构大致分为三部分,即电子枪、偏转电极和荧光屏。
高一物理《带电粒子在电场中的运动》知识点总结一、带电粒子在电场中的加速分析带电粒子的加速问题有两种思路:1.利用牛顿第二定律结合匀变速直线运动公式分析.适用于匀强电场.2.利用静电力做功结合动能定理分析.对于匀强电场和非匀强电场都适用,公式有qEd =12m v 2-12m v 02(匀强电场)或qU =12m v 2-12m v 02(任何电场)等. 二、带电粒子在电场中的偏转如图所示,质量为m 、带电荷量为q 的粒子(忽略重力),以初速度v 0平行于两极板进入匀强电场,极板长为l ,极板间距离为d ,极板间电压为U .1.运动性质:(1)沿初速度方向:速度为v 0的匀速直线运动.(2)垂直v 0的方向:初速度为零的匀加速直线运动.2.运动规律:(1)t =l v 0,a =qU md ,偏移距离y =12at 2=qUl 22m v 02d. (2)v y =at =qUl m v 0d ,tan θ=v y v 0=qUl md v 02. 三、带电粒子的分类及受力特点(1)电子、质子、α粒子、离子等粒子,一般都不考虑重力,但不能忽略质量.(2)质量较大的微粒,如带电小球、带电油滴、带电颗粒等,除有说明或有明确的暗示外,处理问题时一般都不能忽略重力.(3)受力分析仍按力学中受力分析的方法分析,切勿漏掉静电力.四、求带电粒子的速度的两种方法(1)从动力学角度出发,用牛顿第二定律和运动学知识求解.(适用于匀强电场)由牛顿第二定律可知,带电粒子运动的加速度的大小a =F m =qE m =qU md.若一个带正电荷的粒子,在静电力作用下由静止开始从正极板向负极板做匀加速直线运动,两极板间的距离为d ,则由v 2-v 02=2ad 可求得带电粒子到达负极板时的速度v =2ad =2qU m.(2)从功能关系角度出发,用动能定理求解.(可以是匀强电场,也可以是非匀强电场)带电粒子在运动过程中,只受静电力作用,静电力做的功W =qU ,根据动能定理,当初速度为零时,W =12m v 2-0,解得v =2qU m ;当初速度不为零时,W =12m v 2-12m v 02,解得v =2qU m +v 02. 五、带电粒子在电场中的偏转的几个常用推论(1)粒子从偏转电场中射出时,其速度方向的反向延长线与初速度方向的延长线交于一点,此点为粒子沿初速度方向位移的中点.(2)位移方向与初速度方向间夹角α的正切值为速度偏转角θ正切值的12,即tan α=12tan θ. (3)不同的带电粒子(电性相同,初速度为零),经过同一电场加速后,又进入同一偏转电场,则它们的运动轨迹必定重合.注意:分析粒子的偏转问题也可以利用动能定理,即qEy =ΔE k ,其中y 为粒子在偏转电场中沿静电力方向的偏移量.。
《带电粒子在电场中的运动》知识清单一、电场的基本概念要理解带电粒子在电场中的运动,首先得清楚电场是什么。
电场是存在于电荷周围的一种特殊物质,它对处于其中的电荷有力的作用。
电荷分为正电荷和负电荷,同种电荷相互排斥,异种电荷相互吸引。
电场强度是描述电场强弱和方向的物理量,用 E 表示。
它的定义是:电场中某点的电场强度等于放在该点的电荷所受到的电场力 F 与电荷量 q 的比值,即 E = F / q 。
电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。
二、带电粒子在电场中的受力当带电粒子置于电场中时,它会受到电场力的作用。
对于电荷量为q 的带电粒子,在电场强度为 E 的电场中,所受电场力的大小为 F =qE 。
这个力的方向取决于电荷的正负以及电场的方向。
正电荷受力方向与电场方向相同,负电荷受力方向与电场方向相反。
三、带电粒子在匀强电场中的直线运动匀强电场是指电场强度大小和方向都不变的电场。
1、加速运动如果带电粒子在匀强电场中沿电场线方向运动,且初速度为零或与电场线方向相同,那么粒子将做匀加速直线运动。
可以使用牛顿第二定律和运动学公式来分析其运动。
假设粒子的电荷量为 q ,质量为 m ,电场强度为 E ,则粒子所受电场力 F = qE 。
根据牛顿第二定律 F = ma ,可得加速度 a = qE /m 。
如果已知初速度 v₀、运动时间 t ,则末速度 v = v₀+ at ;如果已知位移 x ,则可以使用公式 x = v₀t + 1/2 at²。
2、减速运动当带电粒子在匀强电场中沿电场线方向运动,且初速度与电场线方向相反时,粒子做匀减速直线运动。
分析方法与匀加速直线运动类似,只是加速度方向与初速度方向相反。
四、带电粒子在匀强电场中的偏转当带电粒子以初速度 v₀垂直于电场方向进入匀强电场时,粒子将做类平抛运动。
1、水平方向粒子在水平方向不受力,做匀速直线运动。
水平位移 x = v₀t 。
掌握带电物体在电场中的运动规律,是高中物理学习中的一个难点。
但只要掌握了这方面的知识,就能轻松理解电场中带电粒子的运动,从而更好地解决电学问题,让高中物理不再难。
一、电场的基本概念要掌握带电物体在电场中的运动规律,首先需要了解电场的基本概念。
电场是指空间中存在电荷时所具有的某种特性区域。
电场是由带电粒子所产生的,它可以对空间中带电粒子施加力的作用,进而引起这些带电粒子的运动。
电场是有方向的,它的方向由正电荷向量场指向负电荷向量场,即电场的方向总是由正向负的方向。
二、带电物体在电场中的运动规律有了电场的基本概念,我们可以开始了解带电物体在电场中的运动规律了。
(1) 电场对带电物体施加的力带电物体在电场中受到一个电场力,这个力的大小和方向都可以通过库伦定律来计算。
库伦定律的表达式为:F = kq1q2/r²式中,F 是电场力的大小,k 是一个常数,q1 和 q2 分别是两个电荷之间的电荷量,r 是两个电荷之间的距离。
(2) 带电物体的电势能在电场中,带电物体的电势能也是一个非常重要的概念。
电势能是指电场力对电荷所做的功,它的大小可以通过以下公式计算:U = qV式中,U 是带电物体的电势能,q 是带电物体的电荷量,V 是电场中独立点电势。
(3) 带电物体的动能在电场中,带电物体也具有动能。
它的大小可以通过以下公式计算:K = 1/2mv²式中,K 是带电物体的动能,m 是带电物体的质量,v 是带电物体的速度。
带电物体的动能和电势能的总和为机械能。
(4) 带电物体的运动轨迹带电物体在电场中的运动轨迹受到多个因素影响,如电场的方向、大小、带电物体的初速度等等。
但从整体上看,带电物体在电场中的运动轨迹可以归为两类,即直线运动和圆周运动。
对于一定方向的电场,带电物体会做直线运动。
这种运动性质可以通过下图来体现:[插入图片]而对于有一定大小的、在某个平面内作用的电场,带电物体则会做圆周运动。
带电粒子在电场中的运动知识总结基础规律一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场。
带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要。
二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。
2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动。
3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。
4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。
三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用。
2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关。
3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直。
4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小。
5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能。
6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧。
知识归纳一、方法总结1、带电粒子在电场中运动(1)匀加速运动:注意1:求解时间时,用运动学公式。
注意2:求解某一方向运动时,也可利用动能定理。
(2)类平抛运动:2、带电粒子在磁场中运动(1)匀速直线运动:利用平衡条件。
(2)匀速圆周运动:其中R、θ主要通过几何关系确定。
(3)关于“几何关系”注意1:确定圆心方法:利用三角函数、勾股定理等。
物理总复习:带电体在电场中的运动: :【考纲要求】1、知道带电体在电场中的运动特点;2、会综合力学知识分析带电体在电场中的运动问题;3、会用能量的观点处理带电体在电场中的运动问题。
【考点梳理】考点、带电体在电场中的运动 要点诠释:1、在复合场中的研究方法(1)牛顿运动的定律+运动学公式(2)能量方法:能量守恒定律和功能关系动量方法:动量守恒定律和动量定理2、电场中的功能关系:(1)只有电场力做功,电势能和动能之和保持不变。
(2)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变。
(3)除重力之外,其他各力对物体做的功等于物体机械能的变化。
(4)电场力做功的计算方法①由公式cos W Fl θ=计算,此公式只在匀强电场中使用,即cos W qEl θ=。
②用公式AB AB W qU =计算,此公式适用于任何形式的静电场。
③静电场中的动能定理:外力做的总功(包括电场力做的功)等于动能的变化。
由动能定理计算电场力做的功。
【典型例题】类型一、带电物体在静电场和重力场的复合场中运动时的能量守恒(1)带电物体只受重力和静电场力作用时,电势能、重力势能以及动能相互转化,总能 量守恒,即 +PG K P E E E +=电恒定值(2)带电物体除受重力和静电场力作用外,如果还受到其它力的作用时,电势能、重力 势能以及动能之和发生变化,此变化量等于其它力的功,这类问题通常用动能定理来解决。
例1、地球表面附近某区域存在大小为150 N/C 、方向竖直向下的电场.一质量为1.00×10-4 kg 、带电荷量为-1.00×10-7 C 的小球从静止释放,在电场区域内下落10.0 m .对此过程,该小球的电势能和动能的改变量分别为(重力加速度大小取9.80 m/s 2,忽略空气阻力)( )A .-1.50×10-4 J 和9.95×10-3 JB .1.50×10-4 J 和9.95×10-3 JC .-1.50×10-4 J 和9.65×10-3 JD .1.50×10-4 J 和9.65×10-3 J【答案】D【解析】本题考查功与能.设小球下落的高度为h ,则电场力做的功W 1=-qEh =-1.5×10-4 J ,电场力做负功,电势能增加,所以电势能增加1.5×10-4 J ;重力做的功W 2=mgh=9.8×10-3 J ,合力做的功W = W 1+ W 2=9.65×10-3 J ,根据动能定理可知ΔE k =W =9.65×10-3J ,因此D 项正确.举一反三【变式1】如图所示,a 、b 、c 三条虚线为电场中的等势面,等势面b 的电势为零,且相邻两个等势面间的电势差相等,一个带正电的粒子在A 点时的动能为10J ,在电场力作用下从A 运动到B 速度为零,当这个粒子的动能为7.5J 时,其电势能为( )A. 12.5JB. 2.5JC. 0D. -2.5J【答案】D【解析】根据动能定理可知,带电粒子从A 到B ,电场力做功为-10J ,则带电粒子从A 运动到等势面b 时,电场力做功-5J ,粒子在等势面b 时动能为5J ,带电粒子在电场中的电势能和动能之和为5J ,当动能为7.5J 时,其电势能为-2.5J 。
【变式2】图中虚线所示为静电场中的等势面1、2、3、4,相邻的等势面间的电势差相等,其中等势面3的电势为0。
一带正电的点电荷在静电力作用下运动,经过a 、b 点时的动能分别为26eV 和5eV .当这一点电荷运动到某一位置,其电势能变为-8eV 时,它的动能应为( )A.8eVB. 13eVC. 20eVD. 34eV【答案】C【解析】相邻等势面的电势差相等,电荷在穿过相邻的等势面间时电场力做功相等,动能减少了21eV ,电势能增加了21eV ,即每个等势面间的电势能相差7eV 。
等势面3的电势为0,点势能为零,动能为12eV ,即总能量等于12eV 。
当电势能变为-8eV 时,根据能量的转化和守恒定律,其动能为12(8)20K P E E E eV eV eV =-=--=,故选C 。
这一点在什么地方呢?(在等势面2的左边一点)。
例2、如图所示,在匀强电场中将一带电荷量为+q 、质量为m 的小球以初速度0v 竖直向上抛出,在带电小球由抛出到上升至最大高度的过程中,下列判断正确的是( )A.小球的机械能守恒B.小球的电势能增加C.所用的时间为v gD.到达最高点时,速度为零,加速度大于g【思路点拨】运动分析:小球在竖直方向做匀减速运动,在水平方向做匀加速运动。
【答案】C【解析】在带电小球由抛出到上升至最大高度的过程中,电场力方向向右,电场力做正功,动能增大,电势能减小,AB 均错;小球竖直方向只受重力,加速度为重力加速度,到最大高度的时间0v t g=,C 对;到达最高点时,具有水平方向的速度,速度不为零,加速度等于重力加速度与电场力引起的加速度的矢量和,大于重力加速度,D 错。
故选C 。
【总结升华】本题在电场和重力场的复合场中重点考察带电小球的功能关系转化,在学习过程中要明确各种功能关系是解这类问题的关键。
举一反三【变式】如图所示,一个绝缘光滑半圆轨道放在竖直向下的匀强电场中,场强为E ,在其上端,一个质量为m ,带电量为+q 的小球由静止下滑,则( )A. 小球运动过程中机械能守恒B. 小球经过最低点时速度最大C. 小球在最低点受到的压力 mg qE +D. 小球在最低点受到的压力为3()mg qE +【答案】BD 【解析】小球在重力场和静电场构成的复合场中运动时,重力势能、动能和电势能之和守恒,小球由静止下滑的过程中,电场力做功,电势能发生变化,因此球的机械能不守恒,选项A 错误;带正电的小球在最低点处电势能和重力势能都最小,由能量守恒知,其动能必定最大,速度最大,选项B 正确;对小球运用动能定理 212mgR qER mv +=; 在最低点运用牛顿第二定律 2v N m g q E m R--=解得小球在最低点受到的压力是3()N mg qE =+类型二、等效“重力场”问题例3、如图所示,光滑绝缘半球槽的半径为R ,处在水平向右的匀强电场中,一质量为m 的带电小球从槽的右端A 处无初速沿轨道滑下,滑到最低位置B 时,球对轨道的压力为2mg 。
求:(1)小球受到电场力的大小和方向; (2)带电小球在滑动过程中的最大速度。
【思路点拨】已知球对轨道的压力,即可根据牛顿第二定律结合圆周运动的特点,求出速度,求出电场力。
求最大速度,最大速度的点加速度为零,合力为零,找出最大速度的地方应用动能定理求解。
【答案】(1)12mg ,方向水平向右;(2 【解析】(1)设小球运动到最低位置B 时速度为v ,此时2v N mg m R-=,求得2v gR =设电场力大小为F ,由题意,小球从A 处沿槽滑到最低位置B 的过程中, 设电场力方向向右,根据动能定理212mgR FR mv -= 联立解得12F mg =,电场力为正,所以方向水平向右 (2)小球在滑动过程中最大速度的条件:是小球沿轨道运动到某位置时切向合力为零,设此时小球和圆心间的连线与竖直方向的夹角为θ,如图所示sin cos mg F θθ= 得1tan2θ=,可得sin θ=,cos θ= 小球由A 处到最大速度位置的过程中,应用动能定理211cos (1sin )022m mgR mgR mv θθ--=-解得m v =【总结升华】求速度最大的点,可以设一个角度,求B 点切线方向合力为零,就可求出角度,这点速度最大。
这点不是最低点,所以叫“等效最低点”。
举一反三【变式】如图所示,在竖直平面内,有一半径为R 的绝缘的光滑圆环,圆环处于场强大小为E ,方向水平向右的匀强电场中,圆环上的A 、C 两点处于同一水平面上,B 、D 分别为圆环的最高点和最低点.M 为圆环上的一点,∠MOA=45°.环上穿着一个质量为m ,带电量为+q 的小球,它正在圆环上做圆周运动,已知电场力大小qE 等于重力的大小mg ,且小球经过M 点时球与环之间的相互作用力为零. 求:(1)带电小球在圆环上做圆周运动的最小速度; (2)小球经过A 点时的动能;(3)小球在圆环上做圆周运动的最大速度及位置。
【答案】(1)min 2v gR =(2)32(1)2KA E mgR =-, (3)连接MO 并延长至与圆环的交点P ,max 52v gR =【解析】(1)小球经过M 点时球与环之间的相互作用力为零,M 是等效“最高点”,此时小球的速度最小,重力与电场力的合力提供向心力,已知qE mg =,∠MOA=45°,=2F mg 合,根据牛顿第二定律 2=2Mv F mg m R=合 所以M 点的动能22kM E mgR =最小速度为min 2v gR =. (等效“重力加速度”为2g g '=,则 min 2v g R gR '==)(2)当小球从M 点运动到A 点的过程中,电场力和重力做功分别为2(1c o s 45)(1)2E W m g R m g R =--=-- 2sin 452G W mgR mgR ==根据动能定理22(1)KA KM mgR mgR E E --=- 所以A 点的动能32(1)2KA E mgR =- (3)速度最大点在等效“最低点”,连接MO 并延长至与圆环的交点P 就是等效“最低点”,如图所示。
从M 到P 点(前面已求出的A 、B 、C 、D 的动能都能用,但要保证正确,从B 到P 最简单)根据动能定理 2sin 452cos 45KP KM mg R F R E E +=-解得最大动能为2KP E mgR =,最大速度max v =类型三、电场中的功能关系【带电体在电场中的运动2例4】例4、一个质量为m 的带电量为-q 的物体,可以在水平轨道O x 上运动,轨道O 端有一与轨道垂直的固定墙。
轨道处于匀强电场中,电场强度大小为E ,方向沿O x 轴正方向。
当物体m 以初速度0v 从0x 点沿x 轴正方向运动时受到轨道大小不变的摩擦力f 的作用,且f Eq <,设物体与墙面碰撞时机械能无损失,且电量不变,求:(1)小物体m 从0x 位置运动至与墙面碰撞时电场力做了多少功? (2)物体m 停止运动前,它所通过的总路程为多少?【思路点拨】对小物体进行运动过程分析,根据静电场场力做功与路径无关求出小物体所通过的总路程。
【答案】20022mv qEx x f+=【解析】运动过程分析:小物体受到的电场力F Eq =,大小不变,方向指向墙壁;摩擦力的方向总是与小物体运动的方向相反。