第7节 抛物线
- 格式:docx
- 大小:157.15 KB
- 文档页数:4
第2课时直线与抛物线的位置关系课标解读考向预测1.会判断直线与抛物线的位置关系.2.会求直线与抛物线相交所得的弦长.3.能解决与抛物线的切线相关的简单几何问题.从近几年高考来看,直线与圆锥曲线的综合问题是高考考查的重点,高考试题中加大了思维能力的考查,以及二级结论的考查,减少了对复杂运算的考查.预计2025年高考对直线与抛物线综合问题考查的难度会增加,平时应注意二级结论的应用.必备知识——强基础1.直线与抛物线的位置关系(1)直线与抛物线的三种位置关系(2)设直线l :y =kx +m ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立,整理成关于x 的方程k 2x 2+(2km -2p )x +m 2=0.①若k ≠0,当Δ>0时,直线与抛物线04相交,有05两个交点;当Δ=0时,直线与抛物线06相切,有07一个交点;当Δ<0时,直线与抛物线08相离,09无交点.②若k =0,直线与抛物线10只有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此,直线与抛物线只有一个交点是直线与抛物线相切的11必要不充分条件.2.弦长问题设直线与抛物线交于A(x1,y1),B(x2,y2)两点,则|AB|=1+k2|x1-x2|=1+k2·(x1+x2)2-4x1x2或|AB|=1+1k2|y1-y2|=1+1k2·(y1+y2)2-4y1y2(k为直线的斜率,k≠0).3.抛物线的焦点弦问题若MN为抛物线y2=2px(p>0)的焦点弦(过焦点的弦),则焦点弦长为|MN|=12x1+x2+p(x1,x2分别为M,N的横坐标).设过抛物线焦点的弦的端点为A(x1,y1),B(x2,y2),则四种标准方程形式下的弦长公式如下表.标准方程弦长公式y2=2px(p>0)|AB|=x1+x2+py2=-2px(p>0)|AB|=p-(x1+x2)x2=2py(p>0)|AB|=y1+y2+px2=-2py(p>0)|AB|=p-(y1+y2)4.抛物线的切线(1)过抛物线y2=2px(p>0)上的点P(x1,y1)的切线方程是y1y=p(x+x1).(2)抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+p2k(k≠0).抛物线焦点弦的几个常用结论设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2;(2)若A在第一象限,B在第四象限,则|AF|=p1-cosα,|BF|=p1+cosα,弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角);(3)1 |FA|+1|FB|=2p;(4)以弦AB为直径的圆与准线相切;(5)以AF或BF为直径的圆与y轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上;(7)通径:过焦点与对称轴垂直的弦,长度为2p;(8)过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点.设直线l1的倾斜角为α,则|AB |=2psin 2α,|DE |=2psin =2p cos 2α.1.概念辨析(正确的打“√”,错误的打“×”)(1)抛物线C :y 2=2px (p >0)的焦点F 到准线l 的距离为2,则过点A (-1,0)恰有2条直线与抛物线C 有且只有一个公共点.()(2)已知过抛物线C :y 2=x 的焦点F 的直线l 与C 交于A ,B 两点,若直线l 垂直于x 轴,则|AB |=1.()(3)在平面直角坐标系xOy 中,已知抛物线C :y 2=4x 的焦点为F ,直线l 的倾斜角为60°且经过点F .若l 与C 交于A (x 1,y 1),B (x 2,y 2)两点,则x 1x 2=2.()答案(1)×(2)√(3)×2.小题热身(1)(人教A 选择性必修第一册3.3例4改编)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=()A .83B .163C .5D .33答案B解析由题意得,抛物线的焦点为F (1,0),直线AB 的方程为y =3(x -1).=3(x -1),2=4x ,得3x 2-10x +3=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=103,所以|AB |=x 1+x 2+2=163.(2)(人教A 选择性必修第一册习题3.3T12改编)过定点P (0,1)且与抛物线y 2=8x 有且仅有一个公共点的直线有________条.答案3解析当斜率不存在时,直线方程为x =0,只有一个公共点,符合题意;当斜率存在时,设直线方程为y =kx +1,=kx +1,2=8x ,得k 2x 2+(2k -8)x +1=0,当k =0时,直线方程为y=1,只有一个公共点,符合题意;当k ≠0时,令Δ=(2k -8)2-4k 2=0,解得k =2,即直线与抛物线有一个公共点,符合题意.所以满足题意的直线有3条.(3)过点P (4,-3)作抛物线y =14x 2的两条切线,切点分别为A ,B ,则直线AB 的方程为________________.答案2x -y +3=0解析设切点为A (x 1,y 1),B (x 2,y 2),又y ′=12x ,则切线PA 的方程为y -y 1=12x 1(x -x 1),即y =12x 1x -y 1,同理,切线PB 的方程为y =12x 2x -y 2,由P (4,-3)是PA ,PB 的交点可知,-3=2x 1-y 1,-3=2x 2-y 2,由两点确定一条直线,可得过A ,B 的直线方程为-3=2x -y ,即2x -y +3=0.(4)(2024·山东济南模拟)已知A ,B 为抛物线C :x 2=4y 上的两点,M (-1,2),若AM →=MB →,则直线AB 的方程为________________.答案x +2y -3=0解析由题意知点M (-1,2)在抛物线内,且M (-1,2)是线段AB 的中点,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2,21=4y 1,22=4y 2,两式相减得(x 1-x 2)(x 1+x 2)=4(y 1-y 2),即k AB =y 1-y 2x 1-x 2=x 1+x 24=-12,则直线AB 的方程为y -2=-12(x +1),即x +2y -3=0.+2y -3=0,2=4y ,消去y ,得x 2+2x -6=0,Δ=22-4×(-6)>0,故斜率为-12符合题意.因此直线AB 的方程为x +2y-3=0.考点探究——提素养考点一抛物线的切线例1(1)过抛物线x 2=4y 上一点(4,4)的抛物线的切线方程为()A .2x -y -4=0B .2x +y -4=0C .x -2y +4=0D .x +2y +4=0答案A解析解法一:设切线方程为y -4=k (x -4).-4=k (x -4),2=4y⇒x 2=4(kx -4k +4)⇒x 2-4kx +16(k -1)=0,由Δ=(-4k )2-4×16(k -1)=0,得k 2-4k +4=0.∴k =2.故切线方程为y -4=2(x -4),即2x -y -4=0.解法二:由x 2=4y ,得y =x 24,∴y ′=x 2.∴y ′|x =4=42=2.∴切线方程为y -4=2(x -4),即2x -y-4=0.(2)(2023·四川成都适应性考试)已知A ,B 为抛物线y =x 2上两点,以A ,B 为切点的抛物线的两条切线交于点P ,过点A ,B 的直线斜率为k AB ,若点P 的横坐标为13,则k AB =________.答案23解析设A (x 1,y 1),B (x 2,y 2),以A ,B 为切点的抛物线的切线斜率分别为k A ,k B ,由y =x 2,得y ′=2x ,故k A =2x 1,k B =2x 2,所以切线PA 的方程为y -x 21=2x 1(x -x 1),即x 21-2x 1x +y =0.同理可得,切线PB 的方程为x 22-2x 2x +y =0.设点P 的坐标为(x 0,y 0),所以x 21-2x 1x 0+y 0=0,x 22-2x 2x 0+y 0=0,所以x 1,x 2为方程x 2-2x 0x +y 0=0的两根,故x 1+x 2=2x 0,x 1x 2=y 0,则k AB =y 1-y 2x 1-x 2=x 1+x 2=2x 0=23.【通性通法】求抛物线切线方程的方法方法一首先设出切线方程,然后与抛物线方程联立,利用判别式求解方法二首先求导得出切线的斜率,然后由点斜式得出切线方程方法三过抛物线C :y 2=2px (p >0)上一点P (x 0,y 0)的切线方程为y 0y =p (x +x 0)【巩固迁移】1.(多选)(2023·辽宁名校联考)已知抛物线C :x 2=2py (p >0)的准线l 的方程为y =-1,过C 的焦点F 的直线与C 交于A ,B 两点,以A ,B 为切点分别作C 的两条切线,且两切线交于点M ,则下列结论正确的是()A .C 的方程为x 2=2yB .∠AMB =90°C .M 恒在l 上D .|MF |2=|AF |·|BF |答案BCD解析由题得-p2=-1,所以p =2,因此C 的方程为x 2=4y ,A 错误;由题意可知AB 的斜率存在,F (0,1),设AB 的方程为y =kx +1,A (x 1,y 1),B (x 2,y 2),=kx +1,2=4y ,得x 2-4kx-4=0,所以x 1+x 2=4k ,x 1x 2=-4.由y =14x 2得y ′=12x ,所以AM 的斜率为k AM =12x 1,所以AM 的方程为y -y 1=12x 1(x -x 1),即y -14x 21=12x 1(x -x 1)①,同理BM 的斜率为k BM =12x 2,所以BM 的方程为y -14x 22=12x 2(x -x 2)②,所以k AM ·k BM =14x 1x 2=-1,即AM ⊥BM ,所以∠AMB=90°,B 正确;由①②得(x 2-x 1)y =14x 1x 2(x 2-x 1),因为x 1≠x 2,所以y =-1,将y =-1代入①②得x =x 2+x 12=2k ,所以点M 的坐标为(2k ,-1),又C 的准线l 的方程为y =-1,所以M 恒在l 上,C 正确;当AB 的斜率k 不为零时,则k MF =-1-12k =-1k ,所以k AB ·k MF =-1,所以AB ⊥MF ,当AB 的斜率k =0时,点M 的坐标为(0,-1),显然AB ⊥MF ,在Rt △ABM 中,由△AMF ∽△MBF 得|MF ||AF |=|BF ||MF |,所以|MF |2=|AF |·|BF |,D 正确.故选BCD.考点二焦点弦问题例2(1)(2024·河北邯郸模拟)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |=()A .4B .92C .5D .6答案B解析解法一:易知直线l 的斜率存在,设为k ,则其方程为y =k (x -1).=k (x -1),2=4x ,得k 2x 2-(2k 2+4)x +k 2=0,设点A ,B 的横坐标分别为x A ,x B ,则x A x B =1①,因为|AF |=2|BF |,由抛物线的定义得x A +1=2(x B +1),即x A =2x B +1②,由①②解得x A =2,x B =12,所以|AB |=|AF |+|BF |=x A +x B +p =92.解法二:由对称性,不妨设点A 在x 轴的上方,如图,设A ,B 在准线上的射影分别为D ,C ,作BE ⊥AD 于E ,设|BF |=m ,直线l 的倾斜角为θ,则|AB |=3m ,由抛物线的定义知|AD |=|AF |=2m ,|BC |=|BF |=m ,所以cos θ=|AE ||AB |=13,所以sin 2θ=89.又y 2=4x ,知2p =4,故利用弦长公式,得|AB |=2p sin 2θ=92.解法三:因为|AF |=2|BF |,所以1|AF |+1|BF |=12|BF |+1|BF |=32|BF |=2p =1,解得|BF |=32,|AF |=3,故|AB |=|AF |+|BF |=92.(2)(多选)(2023·湖北鄂州市教学研究室期末)已知抛物线C :x 2=4y 的焦点为F ,准线l 与y 轴的交点为D ,过点F 的直线m 与抛物线C 交于A ,B 两点,点O 为坐标原点.下列结论正确的是()A .存在点A ,B ,使∠AOB ≤π2B .|AB |的最小值为4C .DF 平分∠ADBD .若点M (2,3)是弦AB 的中点,则直线m 的方程为x -y +1=0答案BCD解析抛物线C 的焦点F 的坐标为(0,1),由题意分析可知,直线m 的斜率一定存在.设A (x 1,y 1),B (x 2,y 2),直线m 的方程为y =kx +1,与抛物线C :x 2=4y 联立,得x 2-4kx -4=0,所以x 1+x 2=4k ,x 1x 2=-4,所以OA →·OB →=x 1x 2+y 1y 2=x 1x 2+x 214·x 224=-4+1=-3<0,所以∠AOB 为钝角,故A 错误;|AB |=y 1+y 2+2=kx 1+1+kx 2+1+2=k (x 1+x 2)+4=4k 2+4≥4(当且仅当k =0时,等号成立),故B 正确;因为点D (0,-1),k DA +k DB =y 1+1x 1+y 2+1x 2=kx 1+2x 1+kx 2+2x 2=2kx 1x 2+2(x 1+x 2)x 1x 2=2k ×(-4)+2×4kx 1x 2=0,即直线DA 和直线DB 的倾斜角互补,所以DF 平分∠ADB ,故C 21=4y 1,22=4y 2,两式相减得(x 1+x 2)(x 1-x 2)=4(y 1-y 2),因为点M (2,3)是弦AB 的中点,所以x 1+x 2=4,所以直线m 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1,所以直线m 的方程为x -y +1=0,故D 正确.故选BCD.【通性通法】解决焦点弦问题的策略(1)利用抛物线的定义把过焦点的弦分成两个焦半径,然后转化为到准线的距离,再求解.(2)利用与抛物线焦点弦有关的二级结论求解.【巩固迁移】2.(2024·山东聊城质检)已知抛物线y2=2px(p>0)的焦点为F,过F作斜率为2的直线l与抛物线交于A,B两点,若弦AB的中点到抛物线准线的距离为3,则抛物线的方程为()A.y2=125x B.y2=245xC.y2=12x D.y2=6x 答案B解析因为直线l的方程为y=即y=2x-p,2=2px,=2x-p,消去y,得4x2-6px+p2=0,设A(x1,y1),B(x2,y2),则x1+x2=3p2,又因为弦AB的中点到抛物线准线的距离为3,所以|AB|=6,而|AB|=x1+x2+p,所以x1+x2=6-p,故3p2=6-p,解得p=125,所以抛物线的方程为y2=245x.故选B.3.(多选)(2023·新课标Ⅱ卷)设O为坐标原点,直线y=-3(x-1)过抛物线C:y2=2px(p>0)的焦点,且与C交于M,N两点,l为C的准线,则()A.p=2B.|MN|=83C.以MN为直径的圆与l相切D.△OMN为等腰三角形答案AC解析对于A,直线y=-3(x-1)过点(1,0),所以抛物线C:y2=2px(p>0)的焦点为F(1,0),所以p2=1,即p=2,所以抛物线C的方程为y2=4x,A正确;对于B,不妨设M(x1,y1),N(x2,y2),x1>x2,=-3(x-1),2=4x,消去y并化简,得3x2-10x+3=0,解得x1=3,x2=13,所以|MN|=x1+x2+p=3+13+2=163,B错误;对于C,设MN的中点为A,M,N,A到直线l的距离分别为d1,d2,d,因为d=12(d1+d2)=12(|MF|+|NF|)=12|MN|,即A到直线l的距离等于|MN|的一半,所以以MN为直径的圆与直线l相切,C正确;对于D,由上述分析可知y1=-3×(3-1)=-23,y2=-3×=233,所以|OM|=32+(-23)2=21,|ON |=133,所以△OMN 不是等腰三角形,D 错误.故选AC.考点三直线与抛物线的综合问题例3(2023·重庆统考模拟预测)如图,已知抛物线C :y 2=2px (p >0),F 为其焦点,点A (2,y 0)在C 上,△OAF 的面积为4.(1)求抛物线C 的方程;(2)过点P (m ,0)(m >0)作斜率为-1的直线l 1交抛物线C 于点M ,N ,直线MF 交抛物线C 于点Q ,以Q 为切点作抛物线C 的切线l 2,且l 2∥l 1,求△MNQ 的面积.解(1)由题意,可知抛物线C 的焦点将A (2,y 0)代入抛物线C 的方程,得y 20=4p ,且p >0,则|y 0|=2p ,因为△OAF 的面积为12×p 2×2p =p p 2=4,解得p =4,所以抛物线C 的方程为y 2=8x .(2)由(1)可得抛物线C 的方程为y 2=8x ,焦点F (2,0),设直线l 1:x =-y +m (m >0),M (x 1,y 1),N (x 2,y 2),Q (x 3,y 3),=-y +m ,2=8x ,消去x ,得y 2+8y -8m =0,则Δ=64+32m >0,可得y 1+y 2=-8,y 1y 2=-8m ,因为点M (x 1,y 1)在抛物线上,则y 21=8x 1,即x 1=y 218,所以直线MF 的方程为x =x 1-2y 1y +2=y 218-2y 1y +2=y 21-168y 1y +2,=y 21-168y 1y +2,2=8x ,消去x ,得y 2+16-y 21y 1y -16=0,可得y 1y 3=-16,即y 3=-16y 1,则x 3=y 21-168y 1×2=32y 21,即因为l 2∥l 1,可设l 2:x =-y +n ,代入得32y 21=16y 1+n ,即n =32y 21-16y 1,所以l 2:x =-y +32y 21-16y 1,=-y +32y 21-16y 1,2=8x ,消去x ,得y 2+8y +0,因为l 2为抛物线C 的切线,则Δ=64-0,整理得y 21-8y 1+16=0,解得y 1=4,又因为y 1+y 2=-8,y 1y 2=-8m ,y 1y 3=-16,可得y 2=-12,m =6,y 3=-4,即Q (2,-4),l 1:x =-y +6,可得|MN |=2×|4-(-12)|=162,点Q (2,-4)到直线l 1:x +y -6=0的距离d =|2-4-6|2=42,所以S △MNQ =12|MN |·d =12×162×42=64.【通性通法】解决直线与抛物线综合问题的策略(1)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线y 2=2px 的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则一般用弦长公式.(2)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.【巩固迁移】4.(2023·甘肃张掖高台县第一中学统考期末)已知点A (x 0,-2)在抛物线C :y 2=2px (p >0)上,且A 到C 的焦点F 的距离与到x 轴的距离之差为12.(1)求抛物线C 的方程;(2)当p <2时,M ,N 是C 上不同于点A 的两个动点,且直线AM ,AN 的斜率之积为-2,AD ⊥MN ,D 为垂足.证明:存在定点E ,使得|DE |为定值.解(1)抛物线C :y 2=2px (p >0)的焦点为准线方程为x =-p2,又点A (x 0,-2)在抛物线C :y 2=2px (p >0)上,即(-2)2=2px 0,∴x 0=2p ,即-依题意,可得2p +p 2-2=12,解得p =1或p =4,∴y 2=2x 或y 2=8x .(2)证明:∵p <2,∴y 2=2x ,A (2,-2).设MN :x =my +n ,2=2x ,=my +n ,消去x ,整理得y 2-2my -2n =0,Δ=4m 2+8n >0,(ⅰ)且y 1+y 2=2m ,y 1y 2=-2n ,∴k AM ·k AN =2y 1-2·2y 2-2=-2,∴(y 1-2)(y 2-2)=-2,即y 1y 2-2(y 1+y 2)+6=0,∴n +2m =3,适合(ⅰ),将n =3-2m 代入x =my +n ,得x -3=m (y -2),-3=0,-2=0,=3,=2,∴直线MN 恒过定点Q (3,2).又AD ⊥MN ,∴点D 在以AQ 为直径的圆上,∵A ,Q |AQ |=(2-3)2+(-2-2)2=17,∴以AQ +y 2=174,∴存在点使得|DE |=172,为定值.课时作业一、单项选择题1.已知直线l 与抛物线x 2=2py (p >0)只有一个公共点,则直线l 与抛物线的位置关系是()A .相交B .相切C .相离D .相交或相切答案D解析直线l 与抛物线的对称轴平行或直线l 与抛物线相切时只有一个公共点,所以D 正确.故选D.2.过抛物线y 2=4x 的焦点F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若点C (x 1,0)与点D (x 2,0)关于直线x =32对称,则|AB |=()A .3B .4C .5D .6答案C解析抛物线y 2=4x ,∴p =2,过焦点F 的直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,则|AF |=x 1+p 2=x 1+1,|BF |=x 2+p 2=x 2+1,∴|AB |=|AF |+|BF |=x 1+x 2+2,又点C (x 1,0)与点D (x 2,0)关于直线x =32对称,则x 1+x 2=32×2=3,∴|AB |=3+2=5.3.(2023·四川资阳统考三模)已知抛物线C :y 2=8x ,过点P (2,-1)的直线l 与抛物线C 交于A ,B 两点,若|AP |=|BP |,则直线l 的斜率是()A .-4B .4C .-14D .14答案A解析设A (x 1,y 1),B (x 2,y 2),21=8x 1,22=8x 2,作差得y 21-y 22=8(x 1-x 2).因为|AP |=|BP |,所以P 是线段AB 的中点,所以y 1+y 2=-2,则直线l 的斜率k =y 1-y 2x 1-x 2=8y 1+y 2=-4.故选A.4.(2024·江西九江二模)青花瓷又称白地青花瓷,常简称青花,是中华陶瓷烧制工艺的珍品,是中国瓷器的主流品种之一,属釉下彩瓷.一只内壁光滑的青花瓷大碗水平放置在桌面上,瓷碗底座高为1cm ,瓷碗的轴截面可以近似看成是抛物线,碗里不慎掉落一根质地均匀、粗细相同且长度为22cm 的筷子,筷子的两端紧贴瓷碗内壁.若筷子的中点离桌面的最小距离为7cm ,则该抛物线的通径长为()A .16B .18C .20D .22答案C解析如图,建立平面直角坐标系,设抛物线为x 2=2py (p >0),焦点A (x 1,y 1),B (x 2,y 2),∵|AB |=22,|AB |≤|AF |+|BF |,∴y 1+y 2+p ≥22,设线段AB 的中点为M ,则2y M +p ≥22,由题意知,y M 的最小值为6,即12+p =22,得p =10,∴该抛物线的通径长为2p =20.故选C.5.(2023·辽宁名校联考)过抛物线C :x 2=4y 的焦点F 的直线l 交C 于A ,B 两点,点A 处的切线与x ,y 轴分别交于点M ,N .若△MON (O 为坐标原点)的面积为12,则|AF |=()A .2B .3C .4D .5答案A解析由题意可知,直线l 的斜率存在,且过抛物线C :x 2=4y 的焦点F ,与其交于A ,B 两点,设,14a又y =14x 2,所以y ′=x 2,所以点A 处的切线方程为y -14a 2=a2(x -a ).令x =0,可得y =-14a 2,即,-14a令y =0,可得x =a 2,即因为△MON 的面积为12,所以12×|-14a 2|×|a2|=12,解得a 2=4,所以|AF |=14a 2+1=2.故选A.6.(2023·河北石家庄模拟)过抛物线y 2=2px (p >0)的焦点的直线与抛物线交于A ,B 两点,若AB 中点的纵坐标为2,且|AB |=8,则p =()A .1B .2C .3D .4答案B解析设直线AB :y =k ≠0.2=2px ,=得k 2x 2-(k 2p +2p )x +k 2p 24=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=k 2p +2p k2=p +2p k 2,y 1+y 2=k (x 1+x 2-p )=2pk .由题可知,x 1+x 2+p =8,y 1+y 22=2,+pk2=4,2,=1,=2.故选B.7.(2023·湖北武汉模拟)已知抛物线x 2=2py (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则该抛物线的准线方程为()A .y =-3B .y =-32C .x =-3D .x =-32答案B解析根据题意,设A (x 1,y 1),B (x 2,y 2),所以x 21=2py 1①,x 22=2py 2②,由①-②,得(x 1-x 2)(x 1+x 2)=2p (y 1-y 2),即k AB =y 1-y 2x 1-x 2=x 1+x 22p ,因为直线AB 的斜率为1,线段AB 中点的横坐标为3,所以k AB =y 1-y 2x 1-x 2=x 1+x 22p =3p =1,即p =3,所以抛物线的方程为x 2=6y ,准线方程为y =-32.故选B.8.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为()A .16B .14C .12D .10答案A解析抛物线C :y 2=4x 的焦点为F (1,0),由题意可知l 1,l 2的斜率存在且不为0.不妨设直线l 1的斜率为k ,则直线l 2的斜率为-1k ,故l 1:y =k (x -1),l 2:y =-1k (x -1).2=4x ,=k (x -1),消去y ,得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=2k 2+4k 2=2+4k 2,由抛物线的定义可知,|AB |=x 1+x 2+2=4+4k 2.同理可得|DE |=4+4k 2,∴|AB |+|DE |=8+4k 2+4k 2≥8+216=16,当且仅当1k 2=k 2,即k =±1时取等号.故|AB |+|DE |的最小值为16.二、多项选择题9.(2023·广州模拟)已知点O 为坐标原点,直线y =x -1与抛物线C :y 2=4x 交于A ,B 两点,则()A .|AB |=8B .OA ⊥OBC .△AOB 的面积为22D .线段AB 的中点到直线x =0的距离为2答案AC解析设A (x 1,y 1),B (x 2,y 2),因为抛物线C :y 2=4x ,则p =2,焦点为(1,0),则直线y =x -1过焦点.=x -1,2=4x ,消去y ,得x 2-6x +1=0,则x 1+x 2=6,x 1x 2=1,y 1y 2=(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=-4,所以|AB |=x 1+x 2+p =6+2=8,故A 正确;因为OA →·OB →=x 1x 2+y 1y 2=1-4=-3≠0,所以OA 与OB 不垂直,故B 错误;原点到直线y =x -1的距离为d =12,所以△AOB 的面积为S =12|AB |·d =12×8×12=22,故C 正确;因为线段AB 的中点到直线x =0的距离为x 1+x 22=62=3,故D 错误.故选AC.10.已知抛物线y 2=2px (p >0)的焦点F 到准线的距离为4,直线l 过点F 且与抛物线交于A (x 1,y 1),B (x 2,y 2)两点,若M (m ,2)是线段AB 的中点,则下列结论正确的是()A .p =4B .抛物线的方程为y 2=16xC .直线l 的方程为y =2x -4D .|AB |=10答案ACD解析由焦点F 到准线的距离为4,并根据抛物线的定义可知p =4,故A 正确;抛物线的方程为y 2=8x ,故B 错误;因为焦点F (2,0),y 21=8x 1,y 22=8x 2,若M (m ,2)是线段AB 的中点,则y 1+y 2=4,所以y 21-y 22=8x 1-8x 2,即y 1-y 2x 1-x 2=8y 1+y 2=84=2,所以直线l 的方程为y =2x -4,故C 2=8x ,=2x -4,得x 2-6x +4=0,所以x 1+x 2=6,所以|AB |=|AF |+|BF |=x 1+x 2+4=10,故D 正确.故选ACD.三、填空题11.(2023·天津高考)过原点O 的一条直线与圆C :(x +2)2+y 2=3相切,交曲线y 2=2px (p >0)于点P ,若|OP |=8,则p 的值为________.答案6解析由题意得直线OP 的斜率存在.设直线OP 的方程为y =kx ,因为该直线与圆C 相切,所以|-2k |1+k2=3,解得k 2=3.将直线方程y =kx 与曲线方程y 2=2px (p >0)联立,得k 2x 2-2px=0,因为k 2=3,所以3x 2-2px =0,解得x =0或x =2p 3,设P (x 1,y 1),则x 1=2p3,又O (0,0),所以|OP |=1+k 2|x 1-0|=2×2p3=8,解得p =6.12.(2024·陕西咸阳二模)过抛物线y =14x 2的焦点F 的直线l 与抛物线交于A ,B 两点,若l的倾斜角为45°,则线段AB 的中点到x 轴的距离是________.答案3解析由题意,抛物线方程为x 2=4y ,则F (0,1),∴直线l 的方程为y =x +1,将直线方程代入抛物线方程,整理,得x 2-4x -4=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4,故线段AB的中点的横坐标为x 1+x 22=2,代入直线l 的方程,得y =3,∴线段AB 的中点到x 轴的距离是3.13.(2024·贵州遵义统考)已知抛物线x 2=2y 上两点A ,B 关于点M (2,t )对称,则直线AB 的斜率为________.答案2解析设A (x 1,y 1),B (x 2,y 2),代入抛物线方程x 2=2y ,21=2y 1,22=2y 2,则x 21-x 22=2(y 1-y 2)①,因为A ,B 两点关于点M (2,t )对称,则x 1≠x 2,x 1+x 2=4,所以由①得y 1-y 2x 1-x 2=x 1+x 22=2,即直线AB 的斜率为2.14.(2023·山东鄄城三模)已知抛物线C :y 2=2px (p >0)的焦点为F ,过A (-1,0)作抛物线C 的切线,切点为B ,|BF |=3,则抛物线C 上的动点P 到直线l :x -y +4=0的距离与到y 轴的距离之和的最小值为________.答案32-2解析根据抛物线的对称性,不妨设B (x 0,y 0)(y 0>0),由抛物线定义知,|BF |=x 0+p2=3,∴x 0=3-p2>0,∴p <6,∴y 0=6p -p 2,当y >0时,y =2px ,∴y ′=2p 2x ,∴2p23-p2=6p -p 23-p 2+1,解得p =0(舍去)或p =4或p =203(舍去),则抛物线C 的方程为y 2=8x ,焦点F (2,0),准线方程为x =-2,焦点F (2,0)到直线l :x -y +4=0的距离d =|2-0+4|12+(-1)2=32,抛物线C上的动点P 到直线l :x -y +4=0的距离与到y 轴的距离之和的最小值为32-2.四、解答题15.已知F 为抛物线T :x 2=4y 的焦点,直线l :y =kx +2与T 交于A ,B 两点.(1)若k =1,求|FA |+|FB |的值;(2)点C (-3,-2),若∠CFA =∠CFB ,求直线l 的方程.解由已知得F (0,1),设12=kx +2,2=4y ,得x 2-4kx -8=0,所以x 1+x 2=4k ,①x 1x 2=-8.②(1)|FA |+|FB |=x 214+1+x 224+1=(x 1+x 2)2-2x 1x 24+2.当k =1时,由①②,得|FA |+|FB |=10.(2)由题意可知,FA →1,x 214-FB →2,x 224-FC →=(-3,-3).由∠CFA =∠CFB ,得cos 〈FA →,FC →〉=cos 〈FB →,FC →〉,即FA →·FC →|FA →||FC →|=FB →·FC →|FB →||FC →|,又|FA |=x 214+1,|FB |=x 224+1,所以由FA →·FC →|FA →||FC →|=FB →·FC→|FB →||FC →|,得4+2(x 1+x 2)-x 1x 2=0,即4+8k +8=0,解得k =-32,所以直线l 的方程为3x +2y -4=0.16.(2024·江西南昌等四地联考)已知直线l :x -y +1=0与抛物线C :x 2=2py (p >0)交于A ,B 两点,|AB |=8.(1)求p ;(2)设抛物线C 的焦点为F ,过点F 且与l 垂直的直线与抛物线C 交于E ,G 两点,求四边形AEBG 的面积.解(1)设A (x A ,y A ),B (x B ,y B ),-y +1=0,2=2py ,可得x 2-2px -2p =0,易得Δ=4p 2+8p >0,所以x A +x B =2p ,x A x B =-2p ,则|AB |=2×(x A +x B )2-4x A x B =22×p 2+2p =8,即p 2+2p -8=0,因为p >0,所以p =2.(2)由题意可得抛物线C 的焦点为F (0,1),直线EG 的方程为x +y -1=0.+y -1=0,2=4y ,化简可得x 2+4x -4=0,则Δ=16+16>0,设E (x 1,y 1),G (x 2,y 2),则x 1+x 2=-4,y 1+y 2=2-(x 1+x 2)=6,则|EG |=y 1+y 2+p =8,因为AB ⊥EG ,所以S 四边形AEBG =12|AB |·|EG |=12×8×8=32.17.(多选)(2023·云南昆明模拟)设抛物线C :y 2=4x 的焦点为F ,O 为坐标原点,过F 的直线与C 交于A (x 1,y 1),B (x 2,y 2)两点,则()A .∠AOB 可能为直角B .x 1x 2为定值C .若与抛物线C 分别相切于点A ,B 的两条切线交于点N ,则点N 在抛物线C 的准线上D .以BF 为直径的圆与y 轴有两个交点答案BC解析设直线l AB :x =ty +1,与y 2=4x 联立并消去x ,得y 2-4ty -4=0,y 1y 2=-4,则x 1x 2=y 21y 2216=1,故B 正确;因为x 1x 2=1,所以k OA ·k OB =y 1y 2x 1x 2≠-1,所以∠AOB ≠π2,故A 不正确;设N (x 0,y 0),由y 2=4x ,得y =±2x ,所以y ′=±1x ,因为AN ,BN 均为切线,设k AN =1x 1,k BN =-1x 2,则AN 的方程为y -y 1=1x 1(x -x 1),化简,得yy 1-2x -2x 1=0,BN 的方程为y -y 2=-1x 2(x -x 2),化简,得yy 2-2x -2x 2=0,因为AN 与BN 的交点为N (x 0,y 0),所以y 0y 1-2x 0-2x 1=0,y 0y 2-2x 0-2x 2=0,则直线AB 的方程为y 0y -2x 0-2x =0,由于直线AB 过点F (1,0),所以x 0=-1,又因为抛物线C 的准线方程为x =-1,所以点N 在抛物线C 的准线上,故C 正确;设BF 的中点,|BF |2=1+x 22,则以BF 为直径的圆与y 轴相切,故D 不正确.故选BC.18.(多选)(2023·河北秦皇岛模拟)过抛物线C :y 2=2px (p >0)上一点A (1,-4)作两条相互垂直的直线,与C 的另外两个交点分别为M ,N ,则()A .C 的准线方程是x =-4B .过C 的焦点的最短弦长为8C .直线MN 过定点(0,4)D .当点A 到直线MN 的距离最大时,直线MN 的方程为2x +y -38=0答案AD解析将A (1,-4)代入C 的方程中,得p =8,所以C 的方程为y 2=16x ,所以C 的准线方程是x =-4,故A 正确;当过C 的焦点且与x 轴垂直时弦长最短,此时弦长为16,故B 不正确;设y y 直线MN 的方程为x =my +n ,将直线MN 的方程代入C 的方程,得y 2-16my -16n =0,所以y 1+y 2=16m ,y 1y 2=-16n .因为AM ⊥AN ,所以AM →·AN →=1,y 1+1,y 2+=(y 21-16)(y 22-16)256+(y 1+4)(y 2+4)=0.因为y 1≠-4,y 2≠-4,所以(y 1+4)(y 2+4)≠0,所以(y 1-4)(y 2-4)256+1=0,整理得y 1y 2-4(y 1+y 2)+272=0,所以-16n -64m +272=0,得n =-4m +17,所以直线MN 的方程为x =m (y -4)+17,所以直线MN 过定点P (17,4),故C 不正确;当MN ⊥AP 时,点A 到直线MN 的距离最大,此时直线MN 的方程为2x +y -38=0,故D 正确.19.(2023·河北石家庄三模)已知M ,N 为抛物线C :y 2=2px (p >0)上不同两点,O 为坐标原点,OM ⊥ON ,过O 作OH ⊥MN 于H ,且点H (2,2).(1)求直线MN 的方程及抛物线C 的方程;(2)若直线l 与直线MN 关于原点对称,Q 为抛物线C 上一动点,求点Q 到直线l 的距离最短时,点Q 的坐标.解(1)如图,由点H (2,2),得直线OH 的斜率为1,又OH ⊥MN ,则直线MN 的斜率为-1,故直线MN 的方程为y -2=-(x -2),整理,得直线MN 的方程为x +y =4.设M (x 1,y 1),N (x 2,y 2),+y =4,2=2px ,得y 2+2py -8p =0,1+y 22p ,1y 2=-8p ,由OM ⊥ON ,得OM →·ON →=0,即x 1x 2+y 1y 2=y 21y 224p2+y 1y 2=0,因为y 1y 2≠0,所以y 1y 2=-4p 2,所以-4p 2=-8p ,解得p =2,故抛物线C 的方程为y 2=4x .(2)设点A (x ,y )是直线l 上任一点,则点A 关于原点的对称点A ′(-x ,-y )在直线MN 上,所以-x +(-y )=4,即直线l 的方程为x +y =-4.设点Q (x 0,y 0),则y 20=4x 0,点Q 到直线l 的距离d =|x 0+y 0+4|2=|y 204+y 0+4|2=(y 0+2)2+1242,当y 0=-2时,d 取得最小值322,此时Q (1,-2).20.(2023·辽宁沈阳模拟)已知抛物线C :x 2=2py (p >0),其焦点到准线的距离为2,直线l 与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线C 的切线l 1,l 2,且l 1与l 2交于点M .(1)求p 的值;(2)若l 1⊥l 2,求△MAB 面积的最小值.解(1)由题意知,准线方程为y =-p 2,焦点到准线的距离为2,即p =2.(2)由(1)知,抛物线的方程为x 2=4y ,即y =14x 2,所以y ′=12x ,设12l 1:y -x 214=x 12(x -x 1),l 2:y -x 224=x 22(x -x 2),由于l 1⊥l 2,所以x 12·x 22=-1,即x 1x 2=-4.设直线l 的方程为y =kx +m ,与抛物线的方程联立,=kx +m ,2=4y ,消去y ,得x 2-4kx -4m=0,Δ=16k 2+16m >0,所以x 1+x 2=4k ,x 1x 2=-4m =-4,所以m =1,即直线l :y =kx +1,此时Δ=16k 2+16>0.=x 12x -x 214,=x 22x -x 224,=2k ,=-1,即M (2k ,-1).点M 到直线l 的距离d =|k ·2k +1+1|1+k 2=21+k 2,|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=4(1+k 2),所以S =12×4(1+k 2)×21+k 2=4(1+k 2)32≥4,当k =0时,△MAB 的面积取得最小值4.。
第九章 解析几何第七节 抛物线A 级·基础过关|固根基|1.抛物线y =ax 2(a<0)的准线方程是( ) A .y =-12aB .y =-14aC .y =12aD .y =14a解析:选B 抛物线y =ax 2(a<0)可化为x 2=1a y ,准线方程为y =-14a.故选B.2.(2019届四川成都检测)已知抛物线C :y 2=4x 的焦点为F ,点A(0,-3).若线段FA 与抛物线C 相交于点M ,则|MF|=( )A.43 B.53 C.23D.33解析:选A 由题意,F(1,0),|AF|=2,设|MF|=d ,则M 到准线的距离为d.M 的横坐标为d -1,由三角形相似,可得d -11=2-d 2,所以d =43,故选A.3.直线l 过抛物线y 2=2px(p>0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线方程是( )A .y 2=12x B .y 2=8x C .y 2=6xD .y 2=4x解析:选B 设A(x 1,y 1),B(x 2,y 2),根据抛物线定义, x 1+x 2+p =8,因为AB 的中点到y 轴的距离是2,所以x 1+x 22=2,所以p =4,所以抛物线方程为y 2=8x.故选B.4.(2019届太原模拟)已知抛物线C :y 2=2px(p>0)的焦点为F ,准线为l ,且l 过点(-2,3),M 在抛物线C 上,若点N(1,2),则|MN|+|MF|的最小值为( )A .2B .3C .4D .5解析:选B 依题意,知l :x =-2,则抛物线C :y 2=8x ,过点M 作MM′⊥l,垂足为M′,过点N 作NN′⊥l,垂足为N′,则|MN|+|MF|=|MN|+|MM ′|≥|NN ′|=3,故选B.5.(2020届陕西省百校联盟高三模拟)已知抛物线C :y 2=4x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF|=( )A .1 B.32 C .2D.52解析:选B 依题意得F(1,0).设l 与x 轴的交点为M ,则|FM|=2.如图,过点Q 作l 的垂线,垂足为Q 1,则|QQ 1||FM|=|PQ||PF|=34,所以|QQ 1|=34|FM|=32,所以|QF|=|QQ 1|=32,故选B.6.已知直线l 与抛物线C :y 2=4x 相交于A ,B 两点,若线段AB 的中点为(2,1),则直线l 的方程为________.解析:设A(x 1,y 1),B(x 2,y 2),则有⎩⎪⎨⎪⎧y 21=4x 1,①y 22=4x 2,②由①-②得y 21-y 22=4(x 1-x 2),由题可知x 1≠x 2.∴y 1-y 2x 1-x 2=4y 1+y 2=42=2,即k AB =2,∴直线l 的方程为y -1=2(x -2),即y =2x -3.答案:y =2x -37.抛物线x 2=2py(p>0)的焦点为F ,其准线与双曲线x 23-y23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.解析:在等边三角形ABF 中,AB 边上的高为p ,AB 2=33p ,所以B ⎝ ⎛⎭⎪⎫±33p ,-p 2.又因为点B 在双曲线上,故p 233-p 243=1,解得p =6.答案:68.已知双曲线C 1:x 2a 2-y 2b 2=1(a>0,b>0)的离心率为2.若抛物线C 2:x 2=2py(p>0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为________.解析:因为双曲线C 1:x 2a 2-y 2b 2=1(a>0,b>0)的离心率为2,所以2=ca=1+b 2a 2,解得ba=3,所以双曲线的渐近线方程为3x ±y =0.因为抛物线C 2:x 2=2py(p>0)的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,所以F 到双曲线C 1的渐近线的距离为⎪⎪⎪⎪⎪⎪p 23+1=2,所以p =8,所以抛物线C 2的方程为x 2=16y.答案:x 2=16y9.已知抛物线y 2=2px(p>0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M.(1)求抛物线的方程;(2)若过M 作MN⊥FA,垂足为N ,求点N 的坐标. 解:(1)抛物线y 2=2px 的准线为x =-p 2,由题意可得4+p 2=5,所以p =2.所以抛物线方程为y 2=4x.(2)因为点A 的坐标是(4,4), 由题意得B(0,4),M(0,2).又因为F(1,0),所以k FA =43,且FA 的方程为y =43(x -1),①因为MN⊥FA,所以k MN =-34,且MN 的方程为y -2=-34x ,②联立①②,解得x =85,y =45,所以N 的坐标为⎝ ⎛⎭⎪⎫85,45. 10.设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k(k>0)的直线l 与抛物线C 交于A ,B 两点,|AB|=8.(1)求l 的方程;(2)求过点A ,B 且与抛物线C 的准线相切的圆的方程. 解:(1)由题意得F(1,0),l 的方程为y =k(x -1)(k>0).设A(x 1,y 1),B(x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB|=|AF|+|BF|=(x 1+1)+(x 2+1)=4k 2+4k 2.由题设知4k 2+4k 2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得,AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0), 则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16, 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6. 因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144. B 级·素养提升|练能力|11.已知抛物线x 2=4y 上一动点P 到x 轴的距离为d 1,到直线l :x +y +4=0的距离为d 2,则d 1+d 2的最小值是( )A.522+2 B.522+1 C.522-2 D.522-1 解析:选D 抛物线x 2=4y 的焦点为F(0,1),由抛物线的定义可得d 1=|PF|-1,则d 1+d 2=|PF|+d 2-1,而|PF|+d 2的最小值等于焦点F 到直线l 的距离,即(|PF|+d 2)min =52=522,所以d 1+d 2的最小值是522-1.12.(一题多解)(2019届湖北武汉部分学校调研)过抛物线C :y 2=2px(p>0)的焦点F ,且斜率为3的直线交抛物线C 于点M(M 在x 轴上方),l 为抛物线C 的准线,点N 在l 上且MN⊥l,若|NF|=4,则M 到直线NF 的距离为( )A. 5 B .2 3 C .3 3D .2 2解析:选B 解法一:因为直线MF 的斜率为3,MN⊥l,所以∠NMF=60°,又|MF|=|MN|,且|NF|=4,所以△NMF 是边长为4的等边三角形,所以M 到直线NF 的距离为2 3.故选B.解法二:由题意可得直线MF 的方程为x =33y +p 2,与抛物线方程y 2=2px 联立消去x 可得y 2-233py -p 2=0,解得y =-33p 或y =3p ,又点M 在x 轴上方,所以M ⎝ ⎛⎭⎪⎫3p 2,3p .因为MN⊥l,所以N ⎝ ⎛⎭⎪⎫-p 2,3p ,所以|NF|=⎝ ⎛⎭⎪⎫p 2+p 22+(0-3p )2=2p.由题意2p =4,解得p =2,所以N(-1,23),F(1,0),直线NF 的方程为3x +y -3=0,且点M 的坐标为(3,23),所以M 到直线NF 的距离为|33+23-3|3+1=23,故选B.解法三:由题意可得直线MF 的方程为x =33y +p 2,与抛物线方程y 2=2px 联立消去x 可得y 2-233py -p 2=0,解得y =-33p 或y =3p ,又点M 在x 轴上方,所以M ⎝ ⎛⎭⎪⎫3p 2,3p .因为MN⊥l,所以N ⎝ ⎛⎭⎪⎫-p 2,3p ,所以|NF|=⎝ ⎛⎭⎪⎫p 2+p 22+(0-3p )2=2p.由题意2p =4,解得p =2,所以N(-1,23),F(1,0),M(3,23),设M 到直线NF 的距离为d ,在△MNF 中,S △MNF =12|NF|×d =12|MN|×y M ,所以d =14×4×23=23,故选B.13.已知过抛物线y 2=2px(p>0)的焦点,斜率为22的直线交抛物线于A(x 1,y 1),B(x 2,y 2)(x 1<x 2)两点,且|AB|=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.解:(1)因为抛物线y 2=2px 的焦点为⎝ ⎛⎭⎪⎫p 2,0,所以直线AB 的方程为y =22⎝ ⎛⎭⎪⎫x -p 2, 由⎩⎪⎨⎪⎧y =22⎝ ⎛⎭⎪⎫x -p 2,y 2=2px ,消去y 得4x 2-5px +p 2=0, 所以x 1+x 2=5p 4.由抛物线定义得|AB|=x 1+x 2+p =9, 即5p4+p =9,所以p =4.所以抛物线的方程为y 2=8x.(2)由p =4知,方程4x 2-5px +p 2=0可化为x 2-5x +4=0, 解得x 1=1,x 2=4,故y 1=-22,y 2=4 2. 所以A(1,-22),B(4,42).则OC →=OA →+λOB →=(1,-22)+λ(4,42)=(1+4λ,-22+42λ).因为C 为抛物线上一点,所以(-22+42λ)2=8(1+4λ),整理得λ2-2λ=0,所以λ=0或λ=2.14.如图所示,抛物线关于x 轴对称,它的顶点在坐标原点,点P(1,2),A(x 1,y 1),B(x 2,y 2)均在抛物线上.(1)写出该抛物线的方程及其准线方程;(2)当PA 与PB 的斜率存在且倾斜角互补时,求y 1+y 2的值及直线AB 的斜率. 解:(1)由已知条件,可设抛物线的方程为y 2=2px(p>0). 因为点P(1,2)在抛物线上, 所以22=2p×1,解得p =2.故所求抛物线的方程是y 2=4x ,准线方程是x =-1. (2)设直线PA 的斜率为k PA ,直线PB 的斜率为k PB . 则k PA =y 1-2x 1-1(x 1≠1),k PB =y 2-2x 2-1(x 2≠1),因为PA 与PB 的斜率存在且倾斜角互补, 所以k PA =-k PB . 所以y 1-214y 21-1=-y 2-214y 22-1,所以y 1+2=-(y 2+2). 所以y 1+y 2=-4.由A(x 1,y 1),B(x 2,y 2)均在抛物线上,得⎩⎪⎨⎪⎧y 21=4x 1,①y 22=4x 2,② 由①-②得,y 21-y 22=4(x 1-x 2),所以k AB =y 1-y 2x 1-x 2=4y 1+y 2=-1.。
超详细抛物线知识点归纳总结抛物线是一个经典的二次曲线,它的形状类似于一个向上开口或向下开口的U 形曲线。
在数学和物理学中,抛物线具有许多重要的性质和应用。
下面是超详细的抛物线知识点总结:1. 基本定义:抛物线是平面上到定点(焦点)和定直线(准线)之距离相等的点的轨迹。
准线与抛物线的交点被称为顶点,准线上两个焦点和顶点的中垂线被称为对称轴。
2. 标准方程:一般抛物线的标准方程为 y = ax^2 + bx + c,其中 a、b、c 是常数。
通过变换可以将一般方程转化为其他形式,如顶点形式、焦点形式和准线形式。
3. 顶点形式:顶点形式的抛物线方程为 y = a(x-h)^2 + k,其中 (h,k) 是顶点的坐标。
通过平移和缩放可以将一般方程转化为顶点形式。
4. 焦点形式:焦点形式的抛物线方程为 (x-h)^2 = 4p(y-k),其中 (h,k) 是顶点的坐标,p 是焦距的一半。
焦点形式可以直接得到焦点坐标。
5. 准线形式:准线形式的抛物线方程为 y = px^2,其中 p 是焦距的一半。
准线形式的焦点在原点,并且准线是 x 轴。
6. 直径和焦距:抛物线的直径是通过顶点且与曲线相切的直线段。
焦距是焦点到准线的垂直距离。
7. 对称性:抛物线是关于对称轴对称的。
即曲线上任意一点关于对称轴对称的点,其到焦点和准线的距离相等。
8. 切线与法线:抛物线上任意一点处的切线是通过该点且与曲线相切的直线。
切线的斜率等于该点处的导数。
法线是与切线垂直的直线,其斜率是切线斜率的负倒数。
9. 焦点与直角焦点:焦点是到准线距离等于到抛物线上一点距离的点。
直角焦点是到准线距离等于到抛物线上一点距离的点,并且该点与焦点、准线之间的连线与准线垂直。
10. 焦半径:焦半径是焦点与抛物线上任意一点的连线与准线的夹角的二倍。
11. 焦散性质:抛物线的焦点到抛物线上任意一点的距离可以通过反射性质来得到。
即经过抛物线上某点的光线经过反射后都通过焦点。
九年级数学科教案备课序号:第 7 节主备教师备课组长执行教学上课时间2022年月日教学内容第3课时抛物线形实物及运动轨迹问题课型新授课教学目标知识与技能掌握二次函数模型的建立,会把实际问题转化为二次函数问题过程与方法1. 利用二次函数解决抛物线形实物及运动轨迹相关问题.2.能运用二次函数的图象与性质进行决策.情感态度价值观从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣德育渗透从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣教法与学法类比法、引导发现法、分组讨论法、练习法教学重点掌握二次函数模型的建立,会把实际问题转化为二次函数问题教学难点利用二次函数解决拱桥及运动中的有关问题教学准备多媒体、课件教学过程个性思考一、知识链接如图是二次函数的图象,现在请你根据给出的坐标系的位置,说出二次函数的解析式类型.(1)________ (2)_________ (3)_________二、要点探究探究点1:利用二次函数解决抛物线形实物问题合作探究如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m.水面下降1m,水面宽度增加多少?问题1 怎样建立直角坐标系比较简单呢?问题2 从图看出,什么形式的二次函数,它的图象是这条抛物线的位置呢?问题3 如何确定a的值是多少?问题4 水面下降1m,水面宽度增加多少?知识要点:解决抛物线型实际问题的一般步骤.(1) 根据题意建立适当的直角坐标系;(2) 把已知条件转化为点的坐标;(3) 合理设出函数解析式;(4) 利用待定系数法求出函数解析式;(5) 根据求得的解析式进一步分析、判断并进行有关的计算.典例精析例1 如图,隧道的截面由抛物线和长方形构成,长方形OABC的长是12m,宽是4m,按照图中所示的平面直角坐标系,抛物线可以用y=﹣x2+2x+c表示.(1)请写出该抛物线的函数解析式;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?变式如图,施工队要修建一个横断面为抛物线的公路隧道,OM宽度为16米,其顶点P到OM的距离为8米.(1)请建立适当的平面直角坐标系,并求出这条抛物线的函数解析式;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽3.5米、高5.8米的特种车辆?请通过计算说明.探究点2:利用二次函数解决抛物线形运动轨迹问题例2 某广场喷泉的喷嘴安装在平地上.有一喷嘴喷出的水流呈抛物线状,喷出的水流高度y(m)与喷出水流离喷嘴的水平距离x(m)之间满足(1)喷嘴能喷出水流的最大高度是多少?(2)喷嘴喷出水流的最远距离为多少?变式某公园要建造圆形喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.如果不计其它因素,那么水池的半径至少要多少m才能使喷出的水流不致落到池外?0例3 如图,一名运动员在距离篮球框中心4m(水平距离)远处跳起投篮,篮球准确落入篮筐,已知篮球运行的路线为抛物线,当篮球运行水平距离为2.5m时,篮球达到最大高度,且最大高度为3.5m,如果篮框中心距离地面3.05m,那么篮球在该运动员出手时的高度是多少米?三.课堂小结拱桥问题和抛物线形运动轨迹问题转化的关键→建立恰当的直角坐标系→①能够将实际距离准确的转化为点的坐标;②选择运算简便的方法.四.作业必做:教科书52页第3题选做:教科书56页第5题板书设计教学反思。
第九章 解析几何第七节 抛物线A 级·基础过关 |固根基|1.(2019届沈阳质检)抛物线x 2=4y 的焦点到准线的距离为( ) A .1 B .2 C .4D .8解析:选B 由x 2=2px 的焦点到准线的距离为p ,得x 2=4y 中的焦点到准线的距离为2,故选B . 2.(2019届广东七校第二次联考)已知抛物线y 2=24ax(a>0)上的点M(3,y 0)到其焦点的距离是5,则该抛物线的方程为( )A .y 2=8x B .y 2=12x C .y 2=16xD .y 2=20x解析:选A 抛物线y 2=24ax(a>0)的准线方程为x =-6a ,点M(3,y 0)到其焦点的距离是5,根据抛物线的定义可知,点M(3,y 0)到准线的距离也为5,即3+6a =5,∴a=13,∴y 2=8x ,故选A .3.(2019届石家庄市质检)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M(2,22)的直线l 交抛物线于另一点N ,则|NF|∶|FM|等于( )A .1∶2B .1∶3C .1∶ 2D .1∶ 3解析:选A 解法一:由题意知抛物线y 2=4x 的焦点F 的坐标为(1,0),M(2,22),∴直线l 的方程为y =22(x -1).由⎩⎨⎧y 2=4x ,y =22(x -1),得2x 2-5x +2=0,解得x =2或x =12,∴点N 的横坐标为12.∵抛物线y 2=4x 的准线方程为x =-1,∴|NF|=32,|MF|=3,∴|NF|∶|MF|=1∶2,故选A .解法二:由题意知抛物线y 2=4x 的焦点F 的坐标为(1,0),M(2,22),∴直线l 的方程为y =22(x-1).由⎩⎨⎧y 2=4x ,y =22(x -1),得y 2-2y -4=0,解得y =22或y =-2,∴点N 的纵坐标为- 2.过点M 作MM′⊥x 轴,垂足为M′,过点N 作NN′⊥x 轴,垂足为N′,则△MM′F∽△NN′F,∴|NF|∶|MF|=|NN′|∶|MM′|=|-2|∶22=1∶2,故选A .解法三:∵M(2,22)是抛物线上的点,且抛物线y 2=4x 的准线方程为x =-1,∴|MF|=3.又1|MF|+1|NF|=2p =1,∴|NF|=32,∴|NF|∶|MF|=1∶2,故选A .解法四:设直线l 的倾斜角为α,则|MF|=p 1-cos α,|NF|=p1+cos α,∴|NF|∶|MF|=(1-cosα)∶(1+cos α),又M(2,22),F(1,0),∴tan α=22,∴cos α=13,∴|NF|∶|MF|=1∶2,故选A .4.(2019届江西五校联考)过抛物线C :y 2=2px(p>0)的焦点F 且倾斜角为锐角的直线l 与抛物线C 交于A ,B 两点,过线段AB 的中点N 且垂直于l 的直线与抛物线C 的准线相交于点M ,若|MN|=|AB|,则直线l 的倾斜角为( )A .15°B .30°C .45°D .60°解析:选B 分别过A ,B ,N 作抛物线准线的垂线,垂足分别为A′,B′,N′,由抛物线的定义知|AF|=|AA′|,|BF|=|BB′|,所以|NN′|=12(|AA′|+|BB′|)=12|AB|.因为|MN|=|AB|,所以|NN′|=12|MN|,即在△MNN′中,cos ∠MNN ′=12,所以∠MNN′=60°,即直线MN 的倾斜角为120°.又直线MN 与直线l 垂直且直线l 的倾斜角为锐角,所以直线l 的倾斜角为30°,故选B .5.(2019届郑州市第二次质量预测)已知抛物线C :y 2=2x ,过原点O 作两条互相垂直的直线分别交抛物线C 于A ,B 两点(A ,B 均不与坐标原点重合),则抛物线的焦点F 到直线AB 距离的最大值为( )A .2B .3C .32D .4解析:选C 设直线AB 的方程为x =my +t ,A(x 1,y 1),B(x 2,y 2),把直线AB 的方程代入抛物线的方程得y 2-2my -2t =0,Δ=4m 2+8t>0,所以y 1+y 2=2m ,y 1y 2=-2t.由题意得OA⊥OB,所以x 1x 2+y 1y 2=0,即y 212×y 222+y 1y 2=0,得y 1y 2=-4,所以-2t =-4,即t =2,故直线AB 恒过定点(2,0),则抛物线的焦点F ⎝ ⎛⎭⎪⎫12,0到直线AB 的距离的最大值为2-12=32,故选C . 6.(2019届湖南岳阳二模)过抛物线x 2=4y 的焦点F 作直线,交抛物线于P 1(x 1,y 1),P 2(x 2,y 2)两点,若y 1+y 2=6,则|P 1P 2|=( )A .5B .6C .8D .10解析:选C 过P 1作P 1M ⊥准线l ,垂足为M ,过P 2作P 2N ⊥准线l ,垂足为N ,由抛物线定义知|P 1F|=|P 1M|=y 1+1,|P 2F|=|P 2N|=y 2+1,∴|P 1P 2|=|P 1F|+|P 2F|=y 1+y 2+2=8,故选C .7.(2019届江西五校协作体2月联考)已知点A(0,2),抛物线C :y 2=2px(p>0)的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若|FM||MN|=55,则p 的值等于( )A .18B .14C .2D .4解析:选C 过点M 向准线作垂线,垂足为P ,由抛物线的定义可知,|MF|=|MP|,因为|FM||MN|=55,所以|MP||MN|=55,所以sin ∠MNP =55,则tan ∠MNP =12.又∠OFA+∠MNP=90°(O 为坐标原点),所以tan∠OFA =2= 2 12p ,则p =2,故选C .8.(2019届沈阳市第一次质量监测)抛物线y 2=6x 上一点M(x 1,y 1)到其焦点的距离为92,则点M 到坐标原点的距离为________.解析:由y 2=6x ,知p =3,由抛物线定义得,x 1+p 2=92,即x 1=3,代入y 2=6x 中,得y 21=18,则|MO|=x 21+y 21=33(O 为坐标原点).答案:3 39.(2020届成都摸底)已知抛物线C :y 2=2px(p >0)的焦点为F ,准线为l ,若位于x 轴上方的动点A 在准线l 上,线段AF 与抛物线C 相交于点B ,|AF||BF|-|AF|=1,则抛物线C 的标准方程为________.解析:如图,设直线l 与x 轴交于点D ,过点B 作BE⊥l 于点E ,则|DF|=p.由抛物线的定义知|BE|=|BF|.设|BE|=|BF|=m ,因为△AEB∽△ADF,所以|AF||AB|=|DF||BE|,即|AF||AF|-|BF|=|DF||BF|,所以|AF||AF|-m =p m ,所以|AF|=pm p -m .由|AF||BF|-|AF|=1,得pmp -m m -pmp -m=1,解得p =1,所以抛物线C 的标准方程为y 2=2x. 答案:y 2=2x10.(2019届河北省“五个一名校”高三考试)如果点P 1,P 2,P 3,…,P 10是抛物线y 2=2x 上的点,它们的横坐标依次为x 1,x 2,x 3,…,x 10,F 是抛物线的焦点,若x 1+x 2+x 3+…+x 10=5,则|P 1F|+|P 2F|+|P 3F|+…+|P 10F|=________.解析:由抛物线的定义可知,抛物线y 2=2px(p>0)上的点P(x 0,y 0)到焦点F 的距离|PF|=x 0+p 2,在y 2=2x 中,p =1,所以|P 1F|+|P 2F|+…+|P 10F|=x 1+x 2+…+x 10+5p =10.答案:1011.(2019届昆明市高三诊断测试)过点E(-1,0)的直线l 与抛物线C :y 2=4x 交于A ,B 两点,F 是抛物线C 的焦点.(1)若线段AB 中点的横坐标为3,求|AF|+|BF|的值; (2)求|AF|·|BF|的取值范围.解:(1)设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=6. 由抛物线的定义知|AF|=x 1+1,|BF|=x 2+1, 则|AF|+|BF|=x 1+x 2+2=8. (2)设直线l 的方程为x =my -1,由⎩⎪⎨⎪⎧x =my -1,y 2=4x 得y 2-4my +4=0. 由Δ=16m 2-16>0,得m 2>1,则y 1+y 2=4m ,y 1y 2=4. 由抛物线的定义知|AF|=x 1+1,|BF|=x 2+1, 则|AF|·|BF|=(x 1+1)(x 2+1)=m 2y 1y 2=4m 2. 因为m 2>1,所以|AF|·|BF|>4. 故|AF|·|BF|的取值范围是(4,+∞).12.(2019届郑州市第一次质量预测)已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,过A ,B 分别向抛物线的准线作垂线,垂足分别为M ,N.R 为准线上一点.(1)若AR∥FN,求|MR||MN|的值;(2)若点R 为线段MN 的中点,设以线段AB 为直径的圆为圆E ,判断点R 与圆E 的位置关系.解:由已知,得F(1,0),设直线l 的方程为x =my +1,与抛物线y 2=4x 联立,得⎩⎪⎨⎪⎧y 2=4x ,x =my +1,消去x ,得y 2-4my -4=0.设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4. 由题知M(-1,y 1),N(-1,y 2),设R(-1,y R ).(1)∵AR∥FN,即AR →∥FN →,AR →=(-1-x 1,y R -y 1),FN →=(-2,y 2),∴0=(-1-x 1)y 2+2(y R -y 1)=(-2-my 1)y 2+2(y R -y 1)=-2(y 1+y 2)-my 1y 2+2y R =-4m +2y R ,∴y R =2m =y 1+y 22,∴R 是MN 的中点,∴|MR||MN|=12.(2)若R 是MN 的中点,则R(-1,2m),RA →·RB →=(x 1+1,y 1-2m)·(x 2+1,y 2-2m)=(my 1+2,y 1-2m)·(my 2+2,y 2-2m)=(my 1+2)(my 2+2)+(y 1-2m)(y 2-2m)=(m 2+1)y 1y 2+4m 2+4=-4(m 2+1)+4m 2+4=0.∴RA →⊥RB →,即RA⊥RB, ∴点R 在以AB 为直径的圆E 上.B 级·素养提升 |练能力|13.(2019届湖南五市十校联考)在平面直角坐标系xOy 中,抛物线C :y 2=4x 的焦点为F ,准线为l ,P 为抛物线C 上一点,PQ 垂直l 于点Q ,M ,N 分别为PQ ,PF 的中点,直线MN 与x 轴交于点R ,若∠NFR =60°,则|FR|=( )A .2B . 3C .2 3D .3解析:选A 如图,连接MF ,QF ,设准线l 与x 轴交于H ,∵y 2=4x 的焦点为F ,准线为l ,P 为C 上一点,∴|FH|=2,|PF|=|PQ|.∵M,N 分别为PQ ,PF 的中点,∴MN∥QF.∵PQ 垂直l 于点Q ,∴PQ ∥OR.∵|PQ|=|PF|,∠NFR=60°,∴△PQF 为等边三角形,∴MF⊥PQ.又M 为PQ 的中点,∴F 为HR 的中点,∴|FR|=|FH|=2.故选A .14.(2019届郑州市第二次质量预测)已知抛物线C :y 2=4x 的焦点为F ,直线l 过焦点F 与抛物线C 交于A ,B 两点,且直线l 不与x 轴垂直,线段AB 的垂直平分线与x 轴交于点T(5,0),O 为坐标原点,则S △AOB =( )A .2 2B . 3C . 6D .3 6解析:选A 由题意知,抛物线的焦点为F(1,0),设直线l :y =k(x -1)(k≠0),A(x 1,y 1),B(x 2,y 2),将直线y =k(x -1)代入y 2=4x ,化简整理得k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2+4k 2,x 1x 2=1,y 1+y 2=k(x 1+x 2)-2k =2k +4k -2k =4k ,所以AB 的中点为⎝ ⎛⎭⎪⎫1+2k 2,2k ,AB 的垂直平分线方程为y -2k =-1k ⎝ ⎛⎭⎪⎫x -1-2k 2.由于AB 的垂直平分线与x 轴交于点T(5,0),所以0-2k =-1k ⎝ ⎛⎭⎪⎫5-1-2k 2,化简得k =±1,即直线AB 的方程为y =±(x-1).点O 到直线AB 的距离d =|1|1+1=22,又|AB|=1+1|x 1-x 2|=1+1(x 1+x 2)2-4x 1x 2=2×36-4=8,所以S △AOB =12×22×8=22,故选A .15.(2019届洛阳市第二次联考)如图,已知在平面直角坐标系xOy 中,点S(0,3),SA ,SB 与圆C :x 2+y 2-my =0(m>0)和抛物线x 2=-2py(p>0)都相切,切点分别为M ,N 和A ,B ,SA∥ON,则点A 到抛物线准线的距离为( )A .4B .2 3C .3D .3 3解析:选A 连接OM ,∵SM,SN 是圆C 的切线,∴|SM|=|SN|,|OM|=|ON|.又SA∥ON,∴SM∥ON,∴四边形SMON 是菱形,∴∠MSN=∠MON.连接MN ,由切线的性质得∠SMN=∠MON,则△SMN 为正三角形,又MN 平行于x 轴,所以直线SA 的斜率k =tan 60°= 3.设A(x 0,y 0),则y 0-3x 0= 3 ①.又点A 在抛物线上,∴x 2=-2py 0 ②.由x 2=-2py ,得y =-x 22p ,y′=-1p x ,则-1px 0= 3 ③,由①②③得y 0=-3,p =2,所以点A 到抛物线准线的距离为-y 0+p2=4,故选A .16.(2020届湖北部分重点中学联考)已知点A(0,1),抛物线C :y 2=ax(a >0)的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若|FM|∶|MN|=1∶2,则实数a 的值为________.解析:依题意得抛物线的焦点F 的坐标为⎝ ⎛⎭⎪⎫a 4,0,过M 作抛物线的准线的垂线,垂足为K ,由抛物线定义知|MF|=|MK|.因为|FM|∶|MN|=1∶2,所以|KN|∶|KM|=3∶1.又k FN =0-1a 4-0=-4a ,k FN =-|KN||KM|=-3,所以-4a =-3,解得a =433.答案:43317.(2019届昆明市教学质量检测)已知抛物线y 2=4x 上一点P 到准线的距离为d 1,到直线l :4x -3y +11=0的距离为d 2,则d 1+d 2的最小值为________.解析:如图,设抛物线的准线为m ,焦点为F ,分别过点P ,F 作PA⊥m,PM⊥l,FN⊥l,垂足分别为A ,M ,N.连接PF ,因为点P 在抛物线上,所以|PA|=|PF|,所以(d 1+d 2)min =(|PF|+|PM|)min =|FN|.点F(1,0)到直线l 的距离|FN|=|4+11|42+(-3)2=3,所以(d 1+d 2)min =3.答案:3。
第7节 抛物线
【知识衍化体验】
知识梳理
1.准线;
2.,0y R x ∈≥,0y =,(0,0),(,0)2p ,2p x =-,
1. 【基础自测】
1、(1)×;(2)×;(3)×;(4)√。
2、y x x y 94,2922=-
= 3、y x x y 8,1222=-=
4、D .
5、A.
由已知1l 垂直于x 轴是不符合题意,所以1l 的斜率存在设为1k ,2l 的斜率为2k ,由题意有121k k ⋅=-,设11(,)A x y ,22(,)B x y ,33(,)D x y ,44(,)E x y
此时直线1l 方程为1(1)y k x =-,
取方程214(1)
y x y k x ⎧=⎨=-⎩,得2222111240k x k x x k --+=, ∴21122124k x x k --+=-212
124k k += 同理得 223422
24k x x k ++= 由抛物线定义可知1234||||2AB DE x x x x p +=++++
22122222121224244448816k k k k k k ++=++=++=≥ 当且仅当121k k =-=(或1-)时,取得等号.
6、C .
设()()22,2,,P pt pt M x y (不妨设0t >),则22,22p FP pt pt ⎛
⎫=- ⎪⎝⎭
,∵13FM FP =,
∴22,2362,3p p p x t pt y ⎧-=-⎪⎪⎨⎪=⎪⎩,∴22,332,3p p x t pt y ⎧=+⎪⎪⎨⎪=⎪⎩
∴22112122OM t k t t t ==≤=++
∴max ()2OM k =
,故选C .
【考点聚焦突破】
例1(1)A
(2)A
【训练1】
(1)p =
例2(1)B
(2) C
【训练2】(1)81-
;(2)
x y 252=。
角度1 直线与抛物线的公共点(交点)问题
例3-1解(1)依题意知,动点P 到定点F (1,0)的距离等于P 到直线1x =-的距离,曲线C 是以原点为顶点,F (1,0)为焦点的抛物线
∵
12
p =∴2p = ∴ 曲线C 方程是24y x = (2)当l 平行于y 轴时,其方程为1x =,由214x y x =⎧⎨=⎩解得(1,2)A 、(1,2)B - 此时=14=3OA OB ⋅--
当l 不平行于y 轴时,设其斜率为k ,
则由2(1)4y k x y x
=-⎧⎨=⎩得2222(24)0k x k x k -++=
设1122(,),(,)A x y B x y ,则有121x x =,212224+k x x k
+= ∴12121212==(1)(1)OA OB x x y y x x k x k x ⋅++--2221212(1)()k x x k x x k =+-++
222
2224=1+143k k k k k +-⋅+=-=- (3)设221212(,),(,)44
y y M y N y ∴222121121(,),(,)44
y y y OM y MN y y -==- ∵0OM MN ⋅= ∴0)(16
)(121212221=-+-y y y y y y ∵0,121≠≠y y y ,化简得)16(112y y y +
-= ∴6432256232256212122=+≥++
=y y y 当且仅当4,16,25612121
21±===y y y y 时等号成立 ∵222||((8)646444
y ON y y ==+-≥,又 ∴当222min 64,8||85||y y ON ON ==±=,,故的取值范围是),58[+∞
例3-2 解:(1)由⎩⎨⎧==py x x
y 22解得)2,2(),0,0(p p B A
∴p p p AB 22442422=+==,∴2=p
(2)由∴得)4,4(),0,0(,42B A y x =
假设抛物线L 上存在异于点A 、B 的点C )4,0()4
,(2
≠≠t t t t ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线,
令圆的圆心为),(b a N ,则由⎩⎨⎧==NC NA NB NA ,得⎪⎩
⎪⎨⎧-+-=+-+-=+222222
222)4()()4()4(t b t a b a b a b a ,
得⎪⎪⎩
⎪⎪⎨⎧++=+-=⇒⎪⎩⎪⎨⎧+=+=+83248481244222t t b t t a t t tb a b a ∴抛物线L 在点C 处的切线斜率)0(2
|≠='==t t y k t x 又该切线与NC 垂直,∴04
12212432
=--+⇒-=⋅--t t bt a t t a t b , ∴08204
128324)84(223322=--⇒=--++⋅++-⋅t t t t t t t t t t ∴4,0≠≠t t ,∴2-=t
故存在点C 且坐标为()2,1-
【训练3】(1)
3
1;(2)2。
1、。