第十章 统计指数(答案)
- 格式:xls
- 大小:34.00 KB
- 文档页数:1
统计指数习题及答案统计学是一门研究数据收集、分析和解释的学科,具有广泛的应用领域。
在统计学学习过程中,习题是非常重要的一部分,通过解答习题可以帮助我们巩固知识,提高应用能力。
本文将介绍一些常见的统计指数习题,并给出相应的答案。
1. 平均数习题a) 某班级有10名学生,他们的身高分别为160、165、170、155、175、180、170、165、160、175(单位:厘米),求班级学生的平均身高。
答案:将所有身高相加得到:160+165+170+155+175+180+170+165+160+175=1695,然后除以学生人数10,得到平均身高为169.5厘米。
b) 一家电商公司在过去一周的每天销售额分别为5000、6000、7000、8000、9000、10000、11000元,求这一周的平均销售额。
答案:将每天销售额相加得到:5000+6000+7000+8000+9000+10000+11000=57000,然后除以7天,得到平均销售额为8142.86元。
2. 中位数习题a) 某班级有30名学生,他们的考试成绩从低到高排列如下:60、65、70、75、80、85、90、95、100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、195、200、205。
求班级学生的中位数。
答案:由于学生人数为偶数,中位数为第15和第16个成绩的平均值,即(135+140)/2=137.5。
b) 一家公司的员工薪资从低到高排列如下:3000、3500、4000、4500、5000、5500、6000、6500、7000、7500、8000、8500、9000、9500、10000元。
求公司员工的中位数。
答案:由于员工人数为奇数,中位数为第8个薪资,即6000元。
3. 众数习题a) 某班级有40名学生,他们的考试成绩如下:60、70、80、80、90、90、90、100、100、100、100、110、110、110、110、120、120、120、120、120、130、130、130、130、130、130、140、140、140、150、150、150、150、150、150、150、150、150、160、160。
统计学知到章节测试答案智慧树2023年最新中国石油大学(华东)第一章测试1.对某城市工业企业未安装设备的价值进行调查,总体是()参考答案:该城市所有的工业企业的未安装设备2.某企业员工平均工资为7800元,则()参考答案:平均工资7800是指标3.调查某市职工家庭的生活状况,则总体是()参考答案:该市全部职工家庭4.几位学生的身高分别是1.68米,1.75米,1.78米元,这几个数字是()。
变量值5.某学校的所有学生为一总体时,则学生的平均年龄就是()参考答案:质量指标6.要了解某班50个学生的学习情况,则总体单位是()参考答案:每一个学生7.构成统计总体的总体单位( )参考答案:可以有多个标志8.下列标志中属品质标志的是()性别9.下列指标属于质量指标的是()。
参考答案:资金产值率10.统计一词的三种涵义是()。
参考答案:统计工作、统计资料、统计学第二章测试1.根据统计表的编制要求,下列说法不正确的是()参考答案:统计表中相同的数据可以用“同上”填写2.为直观反映近10年来公司收益状况,收集了2008-2017年公司年利润的数据,,用()图形展示最为合适。
参考答案:折线图3.决定统计图形式的不是数据,也不是尺寸,而是你想说明的主题和你想指出的内容要点。
参考答案:对4.企业产品按产品等级分组、按产品销售区域分组、按产品销量分组和按生产车间分组四种统计分组中属于按品质标志分组的有3个。
参考答案:对5.对统计数据进行分组整理时的基本原则是组间差异尽可能大,组内差异尽可能小。
参考答案:对第三章测试1.对于具有对称分布的数据而言,大约有()的数据值与平均数的距离在3个标准差之内。
参考答案:100%2.两组数据的平均数不等,但标准差相等,则()参考答案:平均数小的,离散程度大3.一组数据的算术平均数是50,标准差系数系数为0.6,则该组数据的方差是()参考答案:9004.一组数据存在极端值时,不能计算的指标是()算术平均数5.箱线图不仅可以反映一组数据的分布是否对称,是否存在离群点,还可以对多组数据的分布特征进行比较。
第10章统计指数——练习题●1. 给出某市场上四种蔬菜的销售资料如下表:⑵再用帕氏公式编制四种蔬菜的销售量总指数和价格总指数;⑶比较两种公式编制出来的销售量总指数和价格总指数的差异。
解:设销售量为q,价格为p,则价值量指标、数量指标、质量指标三者关系为:销售额=销售量×价格qp = q×p于是,对已知表格标注符号,并利用Excel计算各综合指数的构成元素如下:于是代入相应公式计算得:⑴用拉氏公式编制总指数为:四种蔬菜的销售量总指数 10002124104.16% , 2039.2q q p L q p===∑∑四种蔬菜的价格总指数 0102196.8107.73%2039.2p q p L q p===∑∑⑵ 用帕氏公式编制总指数:四种蔬菜的销售量总指数为 11012281103.83% 2196.8q q p P q p===∑∑四种蔬菜的价格总指数为 1112281107.39%2124p q p P q p===∑∑ ⑶ 比较两种公式编制出来的销售量总指数和价格总指数,可见:拉氏指数>帕氏指数 在经济意义上,拉氏指数将同度量因素固定在基期。
销售量总指数说明消费者为保持与基期相同的消费价格,因调整增减的实际购买量而导致实际开支增减的百分比;价格总指数说明消费者为购买与基期相同数量的四种蔬菜,因价格的变化而导致实际开支增减的百分比。
帕氏指数将同度量因素固定在计算期。
销售量总指数说明消费者在计算期购买的四种蔬菜,因销售量的变化而导致实际开支增减的百分比;价格总指数说明消费者在计算期实际购买的四种蔬菜,因价格的变化而导致实际开支增减的百分比。
●2.依据上题的资料,试分别采用埃奇沃斯公式、理想公式和鲍莱公式编制销售量指数;然后,与拉氏指数和帕氏指数的结果进行比较,看看它们之间有什么关系。
解:采用埃奇沃斯公式编制销售量指数为:1011011101()()212422814405103.9896%2039.22196.84236q q pp q p q p E q pp q p q p++==+++===+∑∑∑∑∑∑采用理想公式编制销售量指数为:103.994869%q F ===采用鲍莱公式编制销售量指数为:1011000111()()22104.16%103.83%104.00%2q q q q p q p B L P q p q p =+=++==∑∑∑∑与拉氏销售量指数和帕氏销售量指数的结果进行比较,它们之间的关系是: q q q q q L B F E P >>>>即拉氏销售量指数最大,鲍莱销售量指数次大,理想销售量指数居中,埃奇沃斯销售量指数较小,帕氏销售量指数最小。
第十章指数内容提要:1.指数概述2.综合指数3.平均指数近期应用4.指数体系与因素分析目的要求:1.指数的含义和种类2.综合指数和平均指数的编制方法和编制特点3.综合指数与平均指数的因素分析方法4.统计指数在社会经济问题中的应用重点、难点:1.拉氏指数、帕氏指数2.综合指数和平均指数的编制方法3.综合指数与平均指数的因素分析方法讲授内容:第一节指数的概念和种类1.概念(1)广义指数:广义指数是指用来测定社会经济现象中一个变量值对另一个特定的变量值大小的相对数.(2)狭义指数:狭义指数是一种特殊的相对数,是表明不能直接相加和对比的复杂现象总体综合变动程度的相对数.2.种类个体指数(1)按对象的范围分总指数数量指标指数(2)按指标的性质分质量指标指数动态指数(3)按反映的时态分静态指数综合指数(4)按编制的方法分平均指数平均指标指数3.作用(1)综合反映复杂现象总体数量上的变动状况;(2)分析复杂现象中的各内在因素变动的方向与变动程度以及对总体变动影响程度;(3)说明在总平均指标变动中,变量水平和总体结构变动的作用;(4)分析研究社会经济现象在长时间内的发展变化趋势.第二节综合指数一、综合指数编制的基本原理综合指数用类似对比的总量指标中包含两个或两个以上的因素,只观察其中一个因素的变动,将其他因素的变动固定下来,这样编制的总指数,称为综合指数.编制综合指数首先要明白两个概念:一是“指数化指标”,所谓指数化指标就是编制综合指数所要测定因素;二是“同度量因素”,所谓“同度量因素”是指媒介因素,借助媒介因素,把不同度量单位的现象总体转化为数量上可以加总,并客观上体现出它在实际经济现象或过程中的份额或比重. 综合指数的基本公式如下:p k =10i i p q p q ∑∑; q = 10i iq p q p ∑∑. 公式中,k 表示综合指数,p 表示质量指标,q 表示数量指标;小标1和0分别表示报告期和基期,i 为同度量因素固定的时期.编制综合指数的基本方法是“先综合,后对比”,即首先把指数化因素乘以同度量因素加以综合,然后再进行对比. 二、拉氏指数p k =1000p q p q ∑∑; q k =100q p q p∑∑.拉氏指数由于以基期变量值为权数,可以消除权数变动对指数的影响,从而使不动时期的指数具有可比性.例 假定某市场3中商品的销售价格和销售量资料如表10-1所示.计算拉氏价格指数和销售量指数.解 q k =10q p q p ∑∑=1926018440=104.4% , p k =1000p q p q∑∑=1790018440=97.1% . 综合指数不仅可以反映现象的相对变动程度.还可以进行绝对数分析,即用于测定指数化指标变动所引起的相应总值的绝对变动额.对于上面的资料,我们有10p q ∑-00p q ∑= 17900 - 18440 = -540(元); 1q p ∑-0q p∑= 19260 – 18440 = 820(元).即由于价格下降2.9%,使销售额减少了540元;又由于销售量增长4.4%,使销售额增加了820元. 三、帕氏指数p =1101p q p q ∑∑; q k =111q p qp ∑∑.帕氏指数因以报告期变量值为权数,不能消除权数变动对指数的影响,因而不同时期的指数缺乏可比性;但帕氏指数可以同时反映出价格和消费结构的变化,具有比较明确的经济意义. 例 以表10-1的资料,计算帕氏价格指数和销售量指数. 解 p =1101p q p q∑∑ =1850019260= 96.1% , q k =111q p q p∑∑ = 1850017900 = 103.4% .类似地,依据帕氏指数也可以就价格和销售量的变化进行绝对数分析.对于上面的资料,计算得到11p q ∑- 01p q ∑ = 18500 - 19260 = - 760(元),11q p ∑- 01q p ∑ = 18500 - 17900 = - 600(元).即由于价格下降了3.9%,使销售额减少了760元;又由于销售量增长3.4%,使销售额增加了600元. 四、拉氏指数与帕氏指数的比较首先,由于拉氏指数和帕氏指数各自选取的同度量因素不同,即使利用同样的资料编制指数,两者给出的计算结果一般也会存在差异.其次,拉氏指数和帕氏指数的同度量因素水平和计算结果的不同,表明它们具有不完全相同的经济分析意义.通常人们认为,帕氏价格指数的分子与分母之差,即11p q ∑- 01p q ∑ = 101()p p q -∑能够表明报告期实际销售的商品由于价格变化而增减了多少的销售额,因而较之拉氏价格指数具有更强的显示经济意义.不过,从另一个角度看,拉氏价格指数的分子与分母之差,即10p q ∑- 00p q ∑ = 100()p p q -∑ 仍然是有意义的.它至少能够说明,消费者为了维持基期的消费水平或购买同基期一样多的商品,由于价格的变化将会增减多少实际开支.由此可见,从经济分析意义的角度看,拉氏指数和帕氏指数孰优孰劣,其实并无绝对的特别判断标准.关键在于能够辨别两者的细微差异,并明确我们利用有关指数具体是要说明什么样的问题. 五、综合指数的其他类型 1.马埃指数p k =011010()2()2q q p q q p ++∑∑=101001()()p q q p q q ++∑∑=10110001p q p q p q p q ++∑∑∑∑, q k =101100()2()2p p q p p q ++∑∑=101001()()q p p q p p ++∑∑=11100100q p q p q p q p ++∑∑∑∑.上述公式实质上使,分子分别为拉氏公式分子和帕氏公式分子之和,分母分别为拉氏公式分母与帕氏公式分母之和. 2.固定权数综合指数p k =10n n p qp q ∑∑, q k =10n nq p q p∑∑.式中:n q 和n p 分别表示特定的数量和价格水平.由于固定权数综合指数的同度量因素不因比较时期(报告期和基期)的改变而改变,因此采用固定权数综合指数.它不但方便指数的编制,而且便于观察现象长期发展变化的趋势. 3.理想指数p FqF第三节 平均数指数及其应用一、平均数指数的编制原理与总指数恰好相反,编制平均指数的基本方式是“先对比,后平均”,也即首先通过对比计算个别现象的个体指数,然后将个体指数加以平均得到总指数.根据经济分析的一般要求,平均指数的权数应该是与所要编制的指数密切关联的价值总量,即pq .但权数的水平却可以考虑不同的情况,分别有以下四种:对于质量指标指数 p k 对于数量指标指数q k权数Ⅰ 00p q 权数Ⅰ 00q p 权数Ⅱ 01p q 权数Ⅱ 01q p 权数Ⅲ 10p q 权数Ⅲ 10q p 权数Ⅳ 11p q 权数Ⅳ 11q p但从实用的角度看,权数Ⅱ和权数Ⅲ的资料一般不易获得,故通常应用较多的还是权数Ⅰ和权数Ⅳ.即基期的总值资料(00p q )和报告期的总值资料(11q p ).平均指数的形式一般有三种,即算术平均指数、调和平均指数以及几何平均指数.平均指数的各种形式在分析上没有绝对的优劣之分.但从实用的角度上看,算术平均指数计算较为简便,含义比较直观,故应用的最为普通,其次就是调和平均指数,几何平均指数计算比较复杂,故应用的较少一些. 二、平均数指数的类型 (一)算术平均指数算术平均指数一般用00p q 加权,基本公式如下pk =100000p p q p p q ∑∑,q=10000q p q q p q∑∑. 例10.3 以表10-1的资料,分别计算价格和销售量的算术平均指数.解 p k =100000p p q p p q ∑∑=558007550008000544050100068500080005440⨯+⨯+⨯++=1790018440=97.1%;qk =100000q p qq p q∑∑=110970500080005440100880500080005440⨯+⨯+⨯++=1926018440=104.4%. 这两式的计算结果与前面综合指数中的拉氏指数的计算结果完全相同.不难发现,这是因为当个体指数与总值权数之间存在严格的一一对应关系时,采用基期总值加权的平均指数,实际上式拉氏综合指数的变形.但当复杂总体所包括的变量比较多时,用综合指数计算是很繁杂的,一是资料收集困难;二是需要全部商品治疗.而平均指数完全可以克服这些困难,使计算更简单、方便.因此,平均指数是一种相对对立的总指数编制方法,具有比综合指数更广泛的适用性. 以价格指数为例,其计算公式可变形为p k =10000p p q p p q ∑∑=001000p q p p p q ⨯∑∑=100p w p ∑. 为了简化指数编制工作,实践中常常将相对权数固定起来,连续使用若干个指数编制时期.仍以价格指数为例,其公式就成为p k =10c p W p ∑或 p k =1100cp W p ∑. 其中c W 为固定起来的相对权数,它可以用小数表示(此时权数之和等于1),也可以用百分点表示(此时权数之和等于100),这称作“固定加权算术平均指数”. (二)调和平均指数调和平均指数一般用11p q 加权,基本计算形式如下p =111111p q p qp p ∑∑,q k =111111p q p qq q ∑∑.例10.4 以表10-1的资料,分别计算价格和销售量的调和平均指数. 解 p k =111111p q p qp p ∑∑=605072005250111605072005250558007550100068++⨯+⨯+⨯=1850019260=96.1%;q k =11111p qp qq q ∑∑=605072005250111605072005250100880++⨯+⨯+⨯=1850017900=103.4%.这两式的计算结果和前面综合指数中帕氏指数的计算结果完全相同.不难发现,这也是因为当个体指数与总值权数之间存在严格的一一对应关系时,采用报告期总值加权的平均指数实际上是帕氏综合指数的变形.第四节 指数体系与因素分析一、指数体系指数体系的基本含义是:若干因素指数的乘积应等于总变动指数,若干因素影响差额的总和应等于实际发生的总差额.指数体系在指数分析中具有重要的作用.第一,利用指数体系可以对现象的总变动进行因素分析.在利用指数体系分析现象的总变动中各个因素变动的影响程度时,可以从相对数和绝对数两个方面进行说明.从相对数方面分析时,各因素指数乘积应等于总变动指数.从绝对数方面分析时,各因素影响差额之和应等于实际发生的总差额.第二,利用指数体系可以进行指数之间的相互推算.在三个指数(一个总变动数和两个因素指数)形成的指数体系之中,只要已知其中任何两个指数,就可以推算出剩余的另一个指数来.二、因素分析1.因素分析的意义因素分析是借助于指数体系来分析社会经济现象变动中各种因素变动发生作用的影响程度.社会经济现象的变动分两种情况:一种是社会经济现象的总变动,另一种是社会经济现象的平均变动,因素分析均可以解决这两方面的问题.第一,分析社会经济现象总体总量指标的变动受各种因素变动的影响程度.它是利用综合指数体系,从数量指标指数和质量指标指数的相互联系中,分析这种现象因素的变动影响关系.第二,分析社会经济现象总体平均指标变动受各种因素变动的影响程度.它是利用综合指数编制的方法原理,通过平均指标指数体系来进行分析.进行因素分析,一方面要从数量上使指数之间形成等式关系,另一方面还要具有一定的经济意义,明确数据所代表的经济内容.按非全面资料所编制的各种平均指数,并不具有承担因素分析的条件. 2.因素分析的种类按照分析现象包含因素的多少,可分为两因素分析和多因素分析.两因素分析之现象只包含两个因素,分别分析两个因素对现象变动的影响.多因素分析是指分析的现象由多个因素构成,分别分析各因素对现象变动的影响.按照分析指标的种类不同,可分为总量指标的因素分析和平均指标的因素分析.总量指标的因素分析又分总量指标的两因素分析和多因素平均指标的因素分析也包括两因素分析和多因素分析.3.因素分析的基本方法因素分析的基本方法是连锁替代法.连锁替代法时实际工作中经常应用的因素分析方法.这种方法是在被分析的指标所包含的因素结合式中,将各因素的基期数字顺次以报告期数字替代,有多少因素就有多少次替代;每次替代所得结果与替代前所得结果进行对比,就是该因素的影响程度,二者的差额就是被替代因素的变动对被分析指标影响的绝对额. 4.因素分析的步骤(1)计算被分析指标的总变动程度和绝对额; (2)计算各因素变动影响程度和绝对额;(3)对影响因素进行综合分析,即总变动程度等于各因素变动程度之连乘积,总变动绝对额等于各因素变动影响绝对额之总和. 三、两因素分析下面结合例子说明,用连锁替代法进行两因素分析的计算过程和实际分析意义.例 某个体服装摊位某月两周销售资料,如表10-2所示.表10-2 某个体服装摊位销售资料进行销售额变动的因素分析.解 销售额变动分析销售额变动指数=110q p q p ∑∑=54402600≈2.092,销售额变动的绝对额=11q p ∑-00q p ∑=5440-2600=2840(元).销售量变动影响分析销售额变动影响程度=10q p q p∑∑=62002600≈2.385, 销售额变动影响绝对额=10q p ∑-00q p ∑=6200-2600=3600(元).销售价格变动影响分析销售价格变动影响程度=111q p q p ∑∑=54406200=0.877, 销售价格变动影响绝对额=11q p ∑-10q p ∑=5440-6200= -760(元).影响因素综合分析110q p q p∑∑=101101q p q p qp q p⨯∑∑∑∑,即2.092≈0.877⨯2.385.11q p ∑-00q p ∑=(10q p ∑-00q p ∑)+(11q p ∑-10q p ∑), 即2840 = -760 + 3600.分析结果表明:从相对数方面看,该个体服装摊位的销售额第二周比第一周增加了1.092倍,是由于销售量提高了1.385倍和价格下降了12.3%,这两个因素共同作用的结果;从绝对数方面看,该个体服装摊位销售额第二周比第一周增加了2840元,是由于销售量上升使销售额增加了3600元,销售价格下降使销售额减少760元共同作用的结果. 四、多因素分析指数体系因素分析法,可以推广到三个、四个甚至更多因素分析.假如要对企业的产品产量进行因素分析,可将产品产量按下述方式分解产品产量=生产工人数(f )⨯平均每工人工作天数(a )⨯平均每天工作小时数(b )⨯平均每工时产量(c ).按照连锁替代法,可以得到多因素分析体系1111100011001110111100000000100011001110f a b c f a b c f a b c f a b c f a b cf a b c f a b c f a b c f a b c f a b c =⨯⨯⨯∑∑∑∑∑∑∑∑∑∑,1111f a b c ∑-0000f a b c ∑=(1000f a b c ∑-0000f a b c ∑) +(1100f a b c ∑-1000f a b c ∑) +(1110f a b c ∑-1100f a b c ∑) +(1111f a b c ∑-1110f a b c ∑).例 某企业生产及劳动的部分资料,如表10-3所示.试分析生产工人数、工人工作天数、每天工作小时数、每小时产量对产量的影响.解(1)产量总指数=11110000f a b c f a b c∑∑=388.572374.5=1.0376. 产量报告期比基期增加了3.76%,绝对额为1111f a b c ∑-0000f a b c ∑= 3885720-3745000 = 140720(件).(2)工人人数指数=10000000f a b c f a b c∑∑=338.1374.5= 90.28%. 工人人数报告期比基期减少了9.72%,由此而减少的产量为 1000f a b c ∑-0000f a b c ∑= 3381000-3745000 = - 364000(件). (3)工作日指数=11001000f a b c f a b c∑∑=318.276338.1= 94.14%. 工作日报告期比基期减少了5.86%,由此而减少的产量为1100f a b c ∑-1000f a b c ∑= 3182760-3381000 = -198240(件).(4)工作时指数=11101100f a b c f a b c∑∑=328.626318.276=118.24%. 工时数报告期比基期提高3.25%,由此而增加的产量为1110f a b c ∑-1100f a b c ∑=3286260-3182760=103500(件). (5)小时劳动生产率指数=11111110f a b c f a b c∑∑=388.572328.626=118.24%. 小时劳动生产率报告期比基期提高18.24%,由此而增加的产量为1111f a b c ∑-1110f a b c ∑=3885720-3286260=599460(件).上列计算结果的综合分析130.76%=90.28%⨯94.14%⨯103.25%⨯118.24%, 140720=(-364000)+(-198240)+103500+599460. 分析结果说明,报告期由于小时劳动生产率提高18.24%,工时数提高3.25%和工人人数减少9.72%,工作日减少5.86%,四方面因素综合作用的结果使产量增长3.76%;产量总额增加140720件,主要是由于小时劳动生产率的提高使产量增加599460件,工时数延长,使产量增加103500件.但由于工人人数的精简及劳动日的减少,分别使产量减少364000件和198240件.因此,得出的结论是:企业应该实行减员增效.五、总平均数指数与平均指标变动的因素分析总平均指数也称平均指标指数,它是对总体平均指标变动的测定,如平均工资指数、劳动生产率指数都属于平均指标指数.平均指标指数有两个特点:首先,它是利用分组资料计算的指数.他所测定的总平均数是对组平均数的加权平均,其权数是各组的单位数.总平均数即加权算术平均数,其表示形式为x=/i iix f f ∑∑.式中被平均标志i x 位各组平均水平,权数i f 为各组单位数.它所综合的变量并非不可同度量,而是不同地区、不同单位或不同部门的同一指标,无需采用同度量因素.其次,从作用看,总平均数指数除了测定总平均指标的变动程度外,还测定了总体内部各组平均数变动和各组权数(结构变动)对总平均指标变动的影响.分析平均指标的变动,需要计算以下三种指数 (1)可变构成指数.分析总平均数的变动,计算形式为1001i x f x ff f÷∑∑∑∑.(2)固定构成指数.分析总体内部各组平均水平变动对总平均数的影响,计算形式为10111i x f x ff f÷∑∑∑∑.(3)结构变动影响指数.分析总体内部各组权数(结构变动)对总平均指标变动的影响,计算形式为01001x f x f f f÷∑∑∑∑.可变构成指数、固定构成指数和结构变动指数都是反映复杂现象变动的指数,因此都是总指数.这三个指数存在内在的联系(1)可变构成指数=结构变动指数⨯固定结构指数1100010011011111()()x f x f x f x f x f x f f ff ff f÷=÷⨯÷∑∑∑∑∑∑∑∑∑∑∑∑. (2)总平均数变动绝对额=结构变动影响额+各组平均变动影响额1100010011011111()()x f x fx f x f x f x f f ff ff f -=-+-∑∑∑∑∑∑∑∑∑∑∑∑.下面结合例子说明总平均数指数的计算与应用. 例 某企业职工有关工资资料,见表10-4.从表10-4中的数据可以看出,该企业两类职工的工资水平和人数在基期和报告期都不同,并且变动的幅度也不同,这必然导致该企业报告期和基期的总平均工资水平的变动.解 (1)计算总平均工资变动指数可变构成指数=110010x f x f f f÷∑∑∑∑=883.8828.6=106.67%,变动绝对额=11001x f x f f f-∑∑∑∑=883.8-828.6=55.2(元).(2)计算各组工资变动影响指数固定构成指数=110111x f x f f f ÷∑∑∑∑=883.8833.8=106.00%, 各组变量水平变动绝对额=110111x f x ff f-∑∑∑∑=883.8-833.8=50(元). (3)计算结构变动影响指数结构影响指数=01001x f x f f f ÷∑∑∑∑=883.8828.6=100.63%, 结构影响变动绝对额=01001x f x ff f-∑∑∑∑=883.8-828.6=5.2(元). 所以总平均工资指数=结构变动影响指数⨯各组平均工资变动影响指数 即106.67%=100.63%⨯106.00%;总平均工资变动绝对额=结构变动影响额+各组工资变动影响额 即111x f f ∑∑-00x f f∑∑=(011x f f ∑∑-00x f f∑∑)+(111x f f ∑∑-011x f f∑∑),亦即883.8-828.6=(833.8-828.6)+(883.8-833.8),则55.2=5.2+50.分析结果表明,从相对数方面看,该企业总平均工资报告期比基期上涨了6.67%,这是因为各组职工工资水平变动使总平均工资上涨6.00%,职工结构变动影响使总平均工资上涨0.63%,二者共同作用的结果;从绝对数方面看,该企业总平均工资报告期比基期增加55.2元,这是因为各组职工工资水平变动使总平均工资增加50元,职工结构变动影响使总平均工资增加5.2元的共同结果.第五节 指数的应用一、居民消费价格指数居民消费价格指数在国外也被称为消费者价格指数(Consumer Price Index ,简记为CPI ),是反映一定时期居民支付所购买的生活消费品价格和获得服务项目趋势和程度的一种相对数,它可以观察居民生活消费品及服务项目价格的变动对居民生活的影响,为各级政府掌握居民消费价格政策、工资政策以及为新国民经济核算体系中消除价格变动因素的核算提供科学依据.居民消费价格指数还是反映通货膨胀的重要指标.居民消费价格指数上升,意味着货币购买力下降,货币贬值;反之,居民消费价格指数下降,意味着货币购买了上升,货币增值.居民消费价格指数的倒数,就是货币购买力指数. 二、股票价格指数 (一)股票与股票价格指数股票是股份公司发行给股东的,证明持股人对公司部分资产拥有所有权的证明.股份作为公司的构成成分,它是一种价值的反映,可以用货币加以度量.股票是股份的表现形式,因此它是一种有价证券股票价格指数(Stock price index )是反映某一股票市场上多种股票价格变动趋势的一种相对数,简称股价指数.其单位一般用“点”(point )表示,即将基期指数作为100,没上升或下降一个单位称为“一点”.股票价格指数的编制方法有多种,综合指数公司是其中的一种重要方法.我国的上证指数、美国标准普尔指数、香港恒生股票指数等,都是采用综合指数公式编制.其计算公式为00r p p q k p q =∑∑. (10.26)式(10.26)是以基期的股票发行量(或流通量)为同度量因素的拉式综合指数.式中0q 代表基期股票发行量(活流通量). (二)几种主要的股票指数 1.道 琼斯股票价格平均指数 2.标准普尔指数3.伦敦《金融时报》股票价格指数4.日经指数5.我国几种股价指数本章小结:1.指数是用来分析社会经济现象数量变动的对比性指标.广义指数是用来测定社会经济现象中一个变量值对另一个特定的变量值大小的相对数.狭义指数是一种特殊的相对数,是表明不能直接相加和对比的复杂现象总体综合变动程度的相对数.2.综合指数的编制特点是先综合后对比.编制综合指数必须明确指数化指标和同度量因素,指数化指标是被测定的因素,同度量因素也即权数,作为同度量因素的指标固定在哪个时期上,不是固定不变的。
第十章统计指数一、填空题1.狭义指数是反映复杂现象总体变动的2.指数按其所反映的对象范围的不同,分为指数和指数。
3.指数按其所标明的指标性质的不同,分为指数和指数。
4.指数按其采用基期的不同,分为指数和指数。
5. 指数是在简单现象总体条件下存在的,指数是在复杂现象总体的条件下进行编制的。
6.总指数的计算形式有两种,一种是指数,一种是指数。
7.按照一般原则,编制数量指标指数时,同度量因素固定在,编制质量指标指数时,同度量因素固定在。
8.在编制质量指标指数时,指数化指标是指标,同度量因素是与之相联系的指标。
9.综合指数编制的特点,一是选择与指标相联系的同度量因素,二是把同度量因素的时期。
10.拉氏指数对于任何指数化指标的同度量因素都固定在,派氏指数对于任何指数化指标的同度量因素都固定在。
11.编制指数的一般方法是:指数是按拉氏指数公式编制的;指数是按派氏指数公式编制的。
12.综合指数的编制方法是先后。
13.编制综合指数时,与指数化指标相联系的因素称,还可以称为。
14.平均指数的计算形式为指数和指数。
15.平均指数是先计算出数量指标或质量指标的指数,然后再进行计算,来测定现象的总变动程度。
16.在编制平均指数时,算术平均数指数多用为权数,调和平均数指数多用为权数。
17.数量指标的算术平均数指数,在采用为权数的特定条件下,和一般综合指数的计算结论相同;而质量指标的调和平均数指数,在采用为权数的特定条件下,计算结果和综合指数一致。
18.编制数量指标平均指数,一是掌握,二是掌握。
19.编制质量指标平均指数,一是掌握,二是掌握。
20.在零售物价指数中,K表示,W表示。
21.平均指数既可依据资料编制,也可依据资料编制,同时还可用估算的权数比重进行编制计算。
22.因素分析包括数和数分析。
23.总量指标二因素分析是借助于来进行,即当总量指标是两个原因指标的时,才可据此进行因素分析。
24指数体系中,指数之间的数量对等关系表现在两个方面:一是结果指数等于因素指数的,二是结果指数的分子分母之差等于各因素指数的。
第八章对比分析与统计指数思考与练习一、选择题:1.某企业计划要求本月每万元产值能源消耗率指标比去年同期下降5%,实际降低了2.5%,则该项计划的计划完成百分比为< d )。
b5E2RGbCAPa. 50.0%b. 97.4%c. 97.6%d. 102.6%2.下列指标中属于强度相对指标的是< b )。
a..产值利润率b.基尼系数c. 恩格尔系数d.人均消费支出3.编制综合指数时,应固定的因素是<c)。
a.指数化指标 b.个体指数 c.同度量因素 d.被测定的因素4.指出下列哪一个数量加权算术平均数指数,恒等于综合指数形式的拉氏数量指标指数<c)。
a.;b.;c.; d.5.之所以称为同度量因素,是因为:<a)。
a.它可使得不同度量单位的现象总体转化为数量上可以加总;b.客观上体现它在实际经济现象或过程中的份额。
c.是我们所要测定的那个因素;d.它必须固定在相同的时期。
6.编制数量指标综合指数所采用的同度量因素是<a )a.质量指标 b.数量指标 c.综合指标d.相对指标7.空间价格指数一般可以采用< c)指数形式来编制。
a.拉氏指数 b.帕氏指数 c.马埃公式 d.平均指数二、问答题:1.报告期与基期相比,某城市居民消费价格指数为110%,居民可支配收入增加了20%,试问居民的实际收入水平提高了多少?p1EanqFDPw解:<1+20%)/110%-100%=109.10%-100%=9.10%2.某公司报告期能源消耗总额为28.8万元,与去年同期相比,所耗能源的价格平均上升了20%,那么按去年同期的能源价格计算,该公司报告期能源消耗总额应为多少?DXDiTa9E3d解:28.8÷<1+20%)=24万元3.编制综合指数时,同度量因素的选择与指数化指标有什么关系?同度量因素为什么又称为权数?它与平均指数中的权数是否一致?RTCrpUDGiT解:<略)4.结构影响指数的数值越小,是否说明总体结构的变动程度越小?一般说来,当总体结构发生什么样的变动时,结构影响指数就会大于1。
指数分析一、填空题1.统计指数按其反映现象范围的不同可分为和,按其反映指标性质的不同可分为和。
2.总指数的编制方法有和两种。
3.编制综合指数的原则是:编制数量指标指数是以 为同度量因素,编制质量指标指数是以 为同度量因素。
4.在指数体系中,总量指标指数等于各因素指数的。
5.平均指标指数等于标志水平指数乘以指数。
二、单选题1.甲产品报告期产量与基期产量的比值是110%,这是()。
A.综合指数B.总指数 C.个体指数 D.平均数指数2.下列指数中属于数量指标指数的是()。
A.物价指数B.平均工资指数C.销售量指数D.销售额指数3.某企业总成本报告期比基期增长30%,产量增长20%,则单位成本增长()。
A.10%B.8.33%C.50%D.80%4.某企业产品物价上涨,销售额持平,则销售量指数()A.增长B.下降C.不变D.不能确定5.我国股票价格指数采用的计算方法是()。
A.平均指数B.综合指数 C.固定权数平均指数 D.实际权数平均指数三、多选题1.综合指数是()。
A.总指数的一种形式B.由两个总量指标对比形成的指数C.可变形为平均指数D.由两个平均指标对比形成的指数E.一切现象的动态相对数 2.某市商品物价指数为108%,其分子与分母之差为100万元,这表明()。
A.该市所有商品的价格平均上涨8%B.该市由于物价上涨使销售额增加100万元C.该市商品物价上涨108%D.该市由于物价上涨使商业多收入100万元E.该市由于物价水平的上涨使居民多支出100万元3.零售物价总指数是()。
A.综合指数B.平均指数C.固定权数物价指数D.实际权数物价指数E.质量指标指数4.指数体系的作用有()。
A.对现象进行综合评价B.进行指数之间的相互推算C.对现象的总变动进行因素分析D.可以测定复杂现象的综合变动E.分析总体数量特征的长期变动趋势5.我国证券交易所股价指数包括()。
A.上证综合指数B.深圳综合指数C.上证30指数D.深圳成分指数E.股价平均指数四、判断题1.总指数使反映复杂现象综合变动的相对数,具有平均的意义。
人教版七年级数学下册第十章数据的收集、整理与描述第一节统计调查试题(含答案)某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从兵乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:(1)这次抽样调查中,共调查了名学生;(2)补全条形统计图,并求扇形统计图中表示“乒乓球”的扇形的圆心角度数;(3)若全校有1500名同学,估计全校最喜欢篮球的有多少名同学?【答案】(1)200;(2)48;126°;(3)300人.【解析】试题分析:(1)、根据羽毛球的人数和比例求出总人数;(2)、根据总人数减去其他球类的人数得出跳绳的人数,首先求出乒乓球的百分比,然后计算角度;(3)、首先求出样本中篮球的百分比,然后求出总人数.试题解析:(1)、30÷15%=200、200-70-40-30-12=48 70÷200×360°=126°(3)、1500×(40÷200)=300(名)考点:统计图.42.某校为了组织一项球类对抗赛,在本校随机检查了若干名学生,对他们每人最喜欢的一项球类运动进行了统计,并绘制成如图①、②所示的条形和扇形统计图.根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数,并补全条形统计图.(2)若全校有1500名学生,请你估计该校最喜欢篮球运动的学生人数.【答案】(1)50人,补图见解析;(2)240人【解析】÷=(人),解:本次被调查的学生数1326%50⨯=人,喜爱羽毛球的人数5016%8----=(人),喜爱其他的人数5013101683∴本次被调查的学生人数是50人,正确补全图形:(2)150016%240⨯=(人).故估计该校最喜欢篮球运动的学生有240人.43.某区教育局对本区教师个人的每学期绩效工资进行抽样问卷调查,并将调查结果整理后制作了如下不完整的统计图表:某区教师个人绩效工资统计表分组个人学期绩效工资x(元)频数(人)频率A x≤200018 0.15B2000<x≤4000a bC4000<x≤6000D6000<x≤800024 0.20E x>8000 12 0.10合计c 1.00根据以上图表中信息回答下列问题:(1)直接写出结果a= ;b= ;c= ;并将统计图表补充完整;(2)教师个人的每学期绩效工资的中位数出现在第组;(3)已知该区共有教师5000人,请你估计教师个人每学期绩效工资在6000元以上(不含6000元)的人数.【答案】(1)36,0.36,120;(2)C(3)1500【解析】试题分析:(1)利用A组的频数与频率可计算出调查的总人数C的值,再利用频数分布直方图得到a的值,则用a除以c可得到b的值,然后计算出C 组的频数后补全统计图;(2)根据中位数定义求解;(3)利用样本估计总体,用5000乘以样本中D组和E组的频率和即可.试题解析:(1)c=18÷0.15=120,a=36,b=36÷120=0.30;C组的人数为120﹣18﹣36﹣24﹣12=30(人)如图,(2)教师个人的每学期绩效工资的中位数出现在第C组;(3)5000×(0.20+0.10)=1500,所以估计教师个人每学期绩效工资在6000元以上(不含6000元)的人数为1500人.考点:1、频数(率)分布直方图;2、用样本估计总体;3、频数(率)分布表;4、中位数44.“古圣先贤孝为宗,万善之门孝为基,礼敬尊亲如活佛,成就生命大意义,父母恩德重如山,知恩报恩不忘本,做人饮水要思源,才不愧对父母恩…”.某实验中学为加强对学生的感恩教育,教学生唱《跪羊图》,并对学生的学习成果进行随机抽查,现对部分学生的成绩(x为整数,满分100分)进行了统计,绘制了如下尚不完整的统计图表.调查结果扇形统计图根据以上信息解答下列问题:(1)统计表中a=________,b=________,c=________;(2)求扇形统计图中D组所在扇形的圆心角的度数;(3)若参加《跪羊图》演唱的同学共有2000人,请估计成绩在90分及以上的学生有多少人?【答案】(1)80,400,0.15;(2)144︒;(3)300人【解析】【分析】(1)用A组的频数与A组所占扇形的百分数相除即可求出总数b,用总数b乘C组的频率即可求出a,用B组的频数除以总数即可求出c;(2)用360°乘D组所占扇形统计图中的百分数即可;(3)用90分以上的频率乘学校参加《跪羊图》演唱的总人数2000即可.【详解】解:(1)400.1400b =÷=,4000.280a =⨯=,604000.15c =÷=.(2)“D ”所对的扇形的圆心角度数为36040%144⨯︒=︒;(3)200015%300⨯=(人).答:估计成绩在90分及以上的学生有300人.【点睛】本题考查了频数频率统计表和扇形统计图,解决本题的关键是正确理解题意,熟练掌握频数频率统计表中各组量与扇形统计图中各组量的对应关系,掌握样本估计总体的方法.错因分析:本题属于中档题.失分原因如下表:45.某校为了了解今年九年级学生的数学学习情况,在中考考前适应性训练测试后,对九年级全体同学的数学成绩作了统计分析,按照成绩高低分为A 、B 、C 、D 四个等级并绘制了如图1和图2的统计图(均不完整),请结合图中所给出的信息解答问题:(1)该校九年级学生共有人.(2)补全条形统计图与扇形统计图.(要求:请将扇形统计图的空白部分按比例分成两部分.)【答案】(1)280;(2)图见解析【解析】【分析】(1)根据统计图中A等级的人数和百分比求出总人数;(2)先求出C等级所占百分比,从而得出D等级的百分比,再根据总人数得出D等级的人数,最后根据数据补全图形即可.【详解】解:(1)∵A等级的人数为42人,所占百分比为15%,则42÷15%=280(人)∴该校九年级学生共有280人.(2)∵C等级的人数为84,84÷280=0.3=30%,∴C等级在扇形统计图里的圆心角为108°,D等级所占比例为20%,在扇形统计图里的圆心角为72°,∴280×20%=56(人),∴条形统计图与扇形统计图如图所示:【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.46.如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图.请你根据统计图提供的信息完成下列填空:(1)这一周访问该网站一共有万人次;(2)周日学生访问该网站有万人次;(3)周六到周日学生访问该网站的日平均增长率为.【答案】(1)10;(2)0.9;(3)44%【解析】【分析】(1)把条形统计图中每天的访问量人数相加即可得出答案;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(3)根据增长率的算数列出算式,再进行计算即可.【详解】(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次); 故答案为10;(2)∵星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30%,∵星期日学生日访问总量为:3×30%=0.9(万人次);故答案为0.9;(3)周六到周日学生访问该网站的日平均增长率为:330% 2.525%2.525%⨯-⨯⨯=44%;故答案为44%.考点:折线统计图;条形统计图47.2018年12月份,我市迎来国家级文明城市复查,为了了解学生对文明城市的了解情况,学校随机抽取了部分学生进行问卷调查,将调查结果按照“A 非常了解.B 了解.C 了解较少.D 不了解”四类分别统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:()1此次共调查了______名学生;()2扇形统计图中D所在的扇形的圆心角为______;()3将条形统计图补充完整;()4若该校共有800名学生,请你估计对文明城市的了解情况为“非常了解”的学生的人数.【答案】(1)120;(2)54;(3)见解析;(4)200人【解析】【分析】(1)由B类别人数及其所占百分比可得;(2)用总人数乘以D类别人数占总人数的比例即可得;(3)先用总人数乘以C类别的百分比求得其人数,再根据各类别百分比之和等于总人数求得A的人数即可补全图形;(4)用总人数乘以样本中A类别的人数所占比例即可得.【详解】(1)本次调查的总人数为4840%120(÷=名),故答案为:120;(2)扇形统计图中D所在的扇形的圆心角为1836054⨯=,120故答案为:54;(3)C 类别人数为12020%24(⨯=人), 则A 类别人数为()12048241830(-++=人), 补全条形图如下:(4)估计对文明城市的了解情况为“非常了解”的学生的人数为30800200120⨯=人. 【点睛】此题主要考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.48.第十一届“汉语桥”世界中学生中文比赛复赛决赛在云南师范大学开赛.比赛吸引了来自99个国家110个赛区的332名师生来华.某校为了解全校学生对比赛中几类节目的喜爱情况(A :中国歌曲、B :中国民族舞蹈、C :中国曲艺、D :武术、E :其它表演),从全校学生中随机抽取部分学生进行问卷调查,要求每个学生选择一项最喜爱的节目,并把调查结果绘制成两幅不完整的统计图.请根据以上信息,解答下列问题:(1)这次被调查的学生共有多少人?(2)请将条形统计图补充完整;扇形统计图中,B节目所对应的圆心角是多少度;(3)若该校有2400名学生,估计全校学生中喜欢中国民族舞蹈节目的共有多少人?【答案】(1)200人;(2)统计图见解析,90°;(3)600人.【解析】【分析】(1)用中国歌曲的人数40人除以其占总人数的百分比即可求得;(2)根据D节目所占总人数的百分比可先算得D节目人数,然后进一步即可得出B节目人数,随后补充条形统计图即可,然后用B节目人数除以总人数乘以360°即可得出其圆心角度数;(3)先算出调查中喜欢中国民族舞蹈节目占总人数得比例,然后乘以总人数2400名学生即可.【详解】÷=(人),(1)4020%200答:这次被调查的学生共有200人;(2)由题意得:D 节目的人数为20010%20⨯=(人) ∴B 节目的人数为2004030206050----=(人). 补全条形统计图如解图所示;B 节目所对扇形圆心角为5036090200︒︒⨯=; (3)502400600200⨯=(人) 答:估计全校学生中喜欢中国民族舞蹈节目的共有600人. 【点睛】本题主要考查了统计图的运用,熟练掌握相关概念是解题关键.错因分析 容易题.失分原因是:∵对“样本容量=某一项的人数÷相应的百分比”掌握不熟练;∵没掌握计算扇形圆心角的方法:“某项的扇形圆心角度数 其对应的百分比(频率)”;∵没掌握样本估计总体的方法.49.我市为了解中学生的视力情况,对某校三个年级的学生视力进行了抽样调查,得到不完整的统计表与扇形统计图如下,其中扇形统计图的圆心角α为36°,x 表示视力情况,根据上面提供的信息,回答下列问题:(1)此次共调查了人;(2)请将表格补充完整;(3)这组数据的中位数落在组内;(4)扇形统计图中“D组”的扇形所对的圆心角的度数是.【答案】(1)200;(2)补图见解析;(3)C;(4)108°.【解析】试题分析:(1)根据圆心角α为36°,求出A组所占的百分比,的出频率,再根据频数是20,即可得出总人数;(2)根据频数、频率之间的关系,分别求出B组的频数、C组的频率、D 组的频数以及频率,填表即可;(3)根据中位数的定义即可得出这组数据的中位数落在C组内;(4)用360°乘以D组的频率即可得出答案.试题解析:(1)∵圆心角α为36°,=0.1,∵A组的频率是:36360∵总人数是20÷0.1=200(人),(2)B组的频数是200×0.35=70;C组的频率是50÷200=0.25;D组的频数是:200-20-70-50=60,频率是60÷200=0.3;填表如下:(3)∵这组数据共有200个数,∵中位数是第100,101个数的平均数,∵这组数据的中位数落在C组内;(4)扇形统计图中“D组”的扇形所对的圆心角的度数是360°×0.30=108°.考点:1.统计图;2.中位数.50.据2005年5月10日《重庆晨报》报道:我市四月份空气质量优良,高居全国榜首,某校初三年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽查了今年1~4月份中30天空气综合污染指数,统计数据如下:空气综合污染指数:30,32,40,42,45,45,77,83,85,87,90,113,127,153,16738,45,48,53,57,64,66,77,92,98,130,184,201,235,243请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1)填写频率分布表中未完成的空格:(2)写出统计数据中的中位数、众数;(3)请根据抽样数据,估计我市今年(按360天计算)空气质量是优良.(包括Ⅰ、Ⅰ级的天数)【答案】(1)见解析;(2)中位数是80,众数是45;(3)估计我市今年空气质量是优良的天数有252天.【解析】试题分析:(1)由正字可得第一行的频数为9;第三行的正字笔画=30-9-12-6=3,频数为3,频率为:3÷30=0.1.(2)30个数的中位数是第15个和第16个数的平均数,(77+83)÷2=80,45出现次数最多,为3次.所以45为众数.(3)应先算出前2组的频率之和,再计算360×频率即可.(1)如图:(2)30个数的中位数是第15个和第16个数的平均数,(77+83)÷2=80,45出现次数最多,为3次.所以45为众数.(3)∵360×(0.30+0.40)=360×0.70=252(天).∵估计我市今年空气质量是优良的天数有252天.考点:1.频数(率)分布表;2.用样本估计总体;3.中位数;4.众数.。
第九章习题一、名词解释时间序列:是指反映客观现象的同一指标在不同时间上的数值,按时间先后顺序排列而形成的序列。
发展水平:是指时间序列中的每一项具体指标数值,反映的是现象在不同时间发展所达到的规模和水平。
增长水平:简称增长量,是时间序列中两个不同时期发展水平之差,其计算公式为:增长量=报告期发展水平-基期发展水平。
由于所采用的基期不同,增长量可以分为逐期增长量和累积增长量。
发展速度:是两个时期发展水平对比而得到的结果,表明现象发展的程度,说明报告期水平是基期水平的百分之几(或若干倍)。
增长速度:是根据增减量与基期水平对比而求得的一种相对数,反映现象在一段时期内数量增减的方向和程度的动态分析指标。
加法模型:假设各构成部分对时间序列的影响是可加的,并且是相互独立的,这样就可以把时间序列Y表示为:Y=T+S+C+I。
按照这种模型,时间序列的发展变化是4种因素叠加而成的。
乘法模型:假设四个因素变动之间存在某些相互影响的关系,则时间序列各期水平的数值就是四种因素相乘的乘积,其分解模型为:Y=T×S×C×I。
按照这种模型,时间序列的发展变化是4种因素乘积而成的倍比关系。
一次指数平滑法:一次指数平滑法是指以最后的一个第一次指数平滑。
如果为了使指数平滑值敏感地反映最新观察值的变化,应取较大α值,如果所求指数平滑值是用来代表该时间序列的长期趋势值,则应取较小α值。
季节变动:由于季节气候(春、夏、秋、冬、晴、阴、雨等)和社会习惯(春节、端午、重阳等)等原因,客观现象普遍存在季节变动影响(服装的销售量,农作物的生长,旅游人次;等等)。
测定季节变动的规律,主要在于测定季节指数,常用的测定季节指数的方法有简单平均法和移动平均趋势剔除法。
循环波动:循环波动的周期在一年以上且长短不一,可采用剩余法对循环波动进行分析。
二、单项选择1~5:D A B C D 6~10:B A D C D三、简答题1、根据时点序列计算序时平均数分别有哪几种类型?请分别予以说明。
注:原题目中红色字是我做题时加上的,你做题时也应该这样。
1.某厂产品产量和成本资料要求:分析该该厂总成本的变动情况,并从相对数和绝对数角度分析该厂产量及单位成本对总成本变动的影响。
注:单位成本是质量指标,可以用p 表示,也可以用z 表示(1)总成本指数:%76.84820/6950011===∑∑qz q z K zq总成本减少的绝对额:(万元)1258206950011-=-=-∑∑qz qz(2)总成本变动因素分析:①产量变动的影响: 产量指数:%9.93820/7700001===∑∑zq z q K q产量变动影响总成本数额:(万元)508207700001-=-=-∑∑zq zq②单位成本变动的影响: 单位成本指数:%26.90770/6950111===∑∑zq z q K z价格变动影响总成本额:(万元)757706950111-=-=-∑∑zq zq③三者的关系 (2分) %76.84%26.909.93=⨯=⨯=z K K K q pq()()万元)75(50125001010110011-+-=--+-=-∑∑∑∑∑∑q z qz q z qz qz q z2.三种食品的销售量和价格资料如下所示:要求:运用指数体系从相对数和绝对数两方面分析销售量和价格对销售额变动的影响。
(计算结果保留百分号后2位小数)(1)%26.122265000/3240000011===∑∑qp q p K pq(元)590002650003240000011=-=-∑∑qp q p (2)销售量指数:%11026500029150001===∑∑pq p q K q(元)26500265000291500001=-=-∑∑p qp q(3) 价格指数:%15.111291500324000111===∑∑pq p q K p(元)325002915003240000111=-=-∑∑pq p q(4)三者的关系%26.122%15.111%110=⨯=⨯=p q pq K K K ()()2650032500590000101011011+=-+-=-∑∑∑∑∑∑q p q p q p q p q p q p动的影响。
第五章 统计指数分析 习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 统计指数: 是社会经济现象数量变化的相对数,说明不能直接相加的社会经济现象数量综合变化程度特殊相对数。
2. 总指数: 反映复杂现象总体变化方向和程度的相对数。
3. 综合指数:通过综合两个总量指标对比计算的相对数,它是总指数的基本形式。
4. 同度量因素:计算总指数时起媒介作用和权数作用的因素。
5. 平均指数:由个体指数加权平均计算的总指数。
6. 指数体系:指经济上具有一定联系、数量上具有对等关系的三个或三个以上的指数组成的整体。
二、判断改错对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。
1. 计划完成相对数是广义指数。
( √ )2. 总指数的平均性是以综合性为基础的,没有综合性就没有平均性。
( √ )3. 01q q K q =是总指数。
( × ) 个体指数4. 影响因素指数是有两个因素同时变动,并从属于某一现象总体指数的相对数,属于广义指数。
( ×)两个因素中只有一个因素变动,狭义指数 5. 编制总指数的基本形式是平均指数。
( × ) 综合指数6. 产品成本指数、劳动生产率指数、粮食作物单产水平指数是质量指标指数。
(√ )7. 平均指数与综合指数虽然形式不同,但计算结果相同。
(√ ) 8. 在单位成本指数∑∑1011qz qz 中,1011q z q z ∑∑-表示单位成本增减的绝对额。
( × ) 表示由于单位成本的变动使总成本增减的绝对额9.平均指数也是编制总指数的一种重要形式,它有独立的应用意义。
(√)10.加权平均总指数的编制,实质就是计算个体指数(或类指数)的平均数。
(√)11. 算术平均指数是通过数量指标个体指数,以基期的价值量指标为权数,进行加权平均得到的。
(√)12. 在建立指数体系时,首先要分析研究对象与其影响因素之间的内在经济联系。
第10章统计指数——练习题●1. 给出某市场上四种蔬菜的销售资料如下表:⑵再用帕氏公式编制四种蔬菜的销售量总指数和价格总指数;⑶比较两种公式编制出来的销售量总指数和价格总指数的差异。
解:设销售量为q,价格为p,则价值量指标、数量指标、质量指标三者关系为:销售额=销售量×价格qp = q×p于是,对已知表格标注符号,并利用Excel计算各综合指数的构成元素如下:于是代入相应公式计算得:⑴用拉氏公式编制总指数为:四种蔬菜的销售量总指数 10002124104.16% , 2039.2q q p L q p===∑∑四种蔬菜的价格总指数 0102196.8107.73%2039.2p q p L q p===∑∑⑵ 用帕氏公式编制总指数:四种蔬菜的销售量总指数为 11012281103.83% 2196.8q q p P q p===∑∑四种蔬菜的价格总指数为 1112281107.39%2124pq p P q p===∑∑ ⑶ 比较两种公式编制出来的销售量总指数和价格总指数,可见:拉氏指数>帕氏指数 在经济意义上,拉氏指数将同度量因素固定在基期。
销售量总指数说明消费者为保持与基期相同的消费价格,因调整增减的实际购买量而导致实际开支增减的百分比;价格总指数说明消费者为购买与基期相同数量的四种蔬菜,因价格的变化而导致实际开支增减的百分比。
帕氏指数将同度量因素固定在计算期。
销售量总指数说明消费者在计算期购买的四种蔬菜,因销售量的变化而导致实际开支增减的百分比;价格总指数说明消费者在计算期实际购买的四种蔬菜,因价格的变化而导致实际开支增减的百分比。
●2.依据上题的资料,试分别采用埃奇沃斯公式、理想公式和鲍莱公式编制销售量指数;然后,与拉氏指数和帕氏指数的结果进行比较,看看它们之间有什么关系。
解:采用埃奇沃斯公式编制销售量指数为:1011011101()()212422814405103.9896%2039.22196.84236q q pp q p q p E q pp q p q p++==+++===+∑∑∑∑∑∑采用理想公式编制销售量指数为:103.994869%q F ===采用鲍莱公式编制销售量指数为:1011000111()()22104.16%103.83%104.00%2q q q q p q p B L P q p q p =+=++==∑∑∑∑与拉氏销售量指数和帕氏销售量指数的结果进行比较,它们之间的关系是: q q q q q L B F E P >>>>即拉氏销售量指数最大,鲍莱销售量指数次大,理想销售量指数居中,埃奇沃斯销售量指数较小,帕氏销售量指数最小。
第2章 2.1一、单项选择题1、统计整理主要是对()的整理。
A、历史资料B、分析资料C、原始资料D、综合资料2、企业按资产总额分组() A、只能使用单项式分组 B、只能使用组距式分组 C、可以单项式分组,也可以用组距式分组 D、无法分组3、划分连续变量的组限时,相邻的组限必须()A、重叠 B、相近 C、不等 D、间断4、在编制等距数列时,如果全距等于60,组数为6,为统计运算方便,组距取()。
A、9.3B、9C、6D、105、某连续变量数列,其末组为开口组,下限为500,又知其相邻组的组中值为480,则末组的组中值为()。
A、 520B、510C、500D、4906、组距、组限、组中值之间关系是()。
A、组中值=(上限+下限)÷2B、组距=(上限-下限)÷2C、组中值=(上限+下限)×2D、组限=组中值÷27、次数分配数列是() A、按数量标志分组形成的数列 B、按品质标志分组形成的数列 C、按统计指标分组所形成的数列 D、按数量标志和品质标志分组所形成的数列8、次数分布和次数密度分布相同的是()。
A、变量数列B、组距数列C、等距数列D、异距数列9、次数分布的类型主要决定于() A、统计总体所处的条件 B、社会经济现象本身的性质C、分组标志的选择D、分组界限的确定10、对职工的生活水平状况进行分组研究,正确地选择分组标志应当用()A、职工月工资总额的多少B、职工人均月收入额的多少C、职工家庭成员平均月收入额的多少D、职工的人均月岗位津贴及奖金的多少11、将统计表分为总标题、横行标题、纵栏标题和指标数值四部分是()。
A、从构成要素看B、从内容上看C、从作用上看D、从性质上看12、指出下列哪种分组是按品质标志分组()A、企业按职工人数多少分组B、企业按经济类型分组C、企业按资金拥有量分组D、企业按设备拥有量分组13、分配数列有两个组成要素,它们是()A、一个是单位数,另一个是指标数B、一个是指标数,另一个是分配次数C、一个是分组,另一个是次数D、一个是总体总量,另一个是标志总量14、采用不等距分组编制变量数列是因为()A、现象是均匀变动的B、现象变动是不均匀的C、在标志值中没有极端值D、在标志值中有极端值15、主词经简单分组而编制的统计表是()A、简单表B、调查表C、分组表D、复合表16、统计分组技术根据统计研究的目的,按照一个或几个分组标志()。
第八章 对比分析与统计指数思考与练习一、选择题:1.某企业计划要求本月每万元产值能源消耗率指标比去年同期下降5%,实际降低了%,则该项计划的计划完成百分比为( d )。
a. %b. %c. %d. %2.下列指标中属于强度相对指标的是( b )。
a..产值利润率 b.基尼系数c. 恩格尔系数d.人均消费支出 3.编制综合指数时,应固定的因素是(c )。
a .指数化指标 b.个体指数 c.同度量因素 d.被测定的因素4.指出下列哪一个数量加权算术平均数指数,恒等于综合指数形式的拉氏数量指标指数(c )。
a .1010p q p q k q ∑∑;b.1111p q p q k q ∑∑;c.000p q p q k q ∑∑; d.101p q p q k q ∑∑5.之所以称为同度量因素,是因为:(a )。
a. 它可使得不同度量单位的现象总体转化为数量上可以加总;b. 客观上体现它在实际经济现象或过程中的份额;c. 是我们所要测定的那个因素;d. 它必须固定在相同的时期。
6.编制数量指标综合指数所采用的同度量因素是(a ) a . 质量指标 b .数量指标 c .综合指标 d .相对指标7.空间价格指数一般可以采用( c )指数形式来编制。
a .拉氏指数 b.帕氏指数 c.马埃公式 d.平均指数 二、问答题:1.报告期与基期相比,某城市居民消费价格指数为110%,居民可支配收入增加了20%,试问居民的实际收入水平提高了多少解:(1+20%)/110%-100%=%-100%=%2.某公司报告期能源消耗总额为万元,与去年同期相比,所耗能源的价格平均上升了20%,那么按去年同期的能源价格计算,该公司报告期能源消耗总额应为多少解:÷(1+20%)=24万元3.编制综合指数时,同度量因素的选择与指数化指标有什么关系同度量因素为什么又称为权数它与平均指数中的权数是否一致解:(略)4.结构影响指数的数值越小,是否说明总体结构的变动程度越小一般说来,当总体结构发生什么样的变动时,结构影响指数就会大于1。