统计检验力与效果大小
- 格式:ppt
- 大小:2.53 MB
- 文档页数:46
实验统计测量名词解释汇总前两天出了普心和社心的名词解释,那很多偏理科性质的同学着急了,有木有实验统计测量的呀,这不就出来啦~总的来说,对于实验统计测量的考察还是以计算为主,但对于名词解释和简答也是不可忽视的呦~也不要太担心,这个不会有社心那么长啦,还是比较短小精悍的,大家记得背起来呦~统计心理学名词解释1.【描述统计】主要研究如何整理心理与教育科学实验或调查得来的大量数据,描述一组数据的全貌,表达一件事物的性质,包括统计图表、集中量数、差异量数、相对量数和相关量数等。
2.【推断统计】是根据局部数据的特征(样本统计量)推测总体情况(总体参数)的方法,包括推断统计的数学基础、参数估计、假设检验、方差分析、非参检验、回归分析等。
3.【变量】就是指心理与教育实验、观察、调查中想要获得的数据。
数据获得前用“X”表示,即一个可以取不同数值的物体的属性或事件,其数值具有不确定性,因而被称为变量。
比如,头发的颜色,它是头发的一个属性,可以取棕色、黄色、红色、灰色等不同的值。
一旦确定了某个值,就称这个值为某一变量的观测值,也就是具体数据。
4.【集中量数】就是描述一组数据集中程度的统计指标,主要有算数平均数、中数和众数等。
5.【差异量数】就是描述一组数据分散程度的统计指标,主要有全距、四分位差、离差、平均差、方差和标准差等。
6.【标准分数】又称为基分数或Z分数,是以标准差为单位表示一个原始分数在团体中所处位置的相对量数。
离平均数有多远,即表示为原始分数在平均数以上或以下几个标准差的位置,从而明确该分数在团体中的相对地位的量数。
它是一个原始分数与平均数之差除以标准差所得的商数,无实际单位。
7.【积差相关】也就是Pearson相关,又称积矩相关,它是揭示两个变量线性相关方向和程度最常用和最基本方法,其中 rxy 是积差相关系数。
8.【肯德尔W系数】又称肯德尔和谐系数,是表示多列等级变量相关程度的一种方法,适用于两列以上的等级变量,常用符号W表示。
《统计学》简答题及参考答案1.简述总体、样本、个体三者的关系,试举例说明。
答:(1)所谓总体就是统计研究客观现象的全体,它是由所有具有某种共同性质的事物所组成的集合体,有时也称为母体。
(2)所为样本,就是从总体中抽取的一部分个体所组成的集合,也称为子样。
(3)组成总体的每个个别事物称为个体,也称为总体单位。
总体与个体的关系:1.总体的容量随着个体数的增减可变大变小。
2. 随着研究目的的不同,总体中的个体可以发生变化。
3. 随着研究范围的变化,总体和个体的角色可以变换。
样本和总体的关系: 1.总体是所要研究的对象,而样本则是所要观测的对象,样本是总体的代表和缩影。
2.样本是用来推断总体的。
3.总体和样本的角色是可以改变的。
2.简述标志与指标的区别与联系。
答:标志与指标的区别主要有两个方面:(1)说明的对象不同。
标志说明个体的特征,指标说明总体的特征。
(2)表现形式不同。
标志既有只能用文字来表现的品质标志,又有用数量来表现的数量标志,而指标是用数值来表现的。
联系也有两个方面:(1)统计指标的指标值是由各单位的标志值汇总或计算得来的;(2)随着研究目的不同,标志与指标与之间可以相互转化。
3.简述时点指标与时期指标的特点。
答:时期指标的特点:(1)可加性;(2)指标值的大小与所属时间的长短有直接关系;(3)指标值采用连续统计的方式获得。
时点指标的特点:(1)不可加性;(2)指标数值的大小与时点间隔的长短一般没有直接关系;(3)指标值采用间断统计的方式获得。
4.什么是数量指标和质量指标?答:数量指标也称总量指标,它是反映现象总体某一方面绝对数量特征的指标,表明现象所达到的总规模、总水平或工作总量。
质量指标是反映现象总体内在对比关系或总体间对比关系的指标,表明现象所达到的相对水平、平均水平、工作质量或相互依存关系。
5.如何设计统计数据收集方案?答:一般而言,统计数据收集方案应包括以下内容:(1)数据收集目的(2)数据及其类型(2)数据收集对象和观测单位(3)观测标志和调查表(4)数据收集方式与方法(5)数据所属时间和数据收集期限(6)数据收集地点(7)数据收集的组织6.什么叫统计分组?统计分组应遵循什么原则答:统计分组就是根据统计研究的目的和事物本身的特点,选择一定的标志(一个或几个)将研究现象总体划分为若干性质不同的组的一种统计研究。
心理学研究效应大小统计功效计算解析在心理学研究中,准确理解和应用效应大小(Effect Size)与统计功效(Statistical Power)的计算是至关重要的。
这两个概念不仅对于研究结果的解读和评估具有关键意义,还能为研究设计的优化提供有力的依据。
首先,让我们来搞清楚什么是效应大小。
简单来说,效应大小就是衡量两个或多个组之间差异程度的一个指标。
比如说,我们研究一种新的教学方法是否能提高学生的考试成绩,那么通过比较使用新方法和传统方法的学生成绩差异,这个差异的大小就是效应大小。
常见的效应大小指标包括Cohen's d、η² 等。
Cohen's d 主要用于衡量两组均值之间的差异。
假设我们有两组数据,一组是控制组的成绩,另一组是实验组(使用新教学方法)的成绩。
通过计算两组均值之差除以合并标准差,就能得到 Cohen's d 值。
这个值越大,说明两组之间的差异越显著。
η² 则常用于方差分析中,它表示由某个因素引起的方差占总方差的比例。
例如,在研究不同学习环境对学生注意力的影响时,如果η² 较大,就意味着学习环境这个因素对学生注意力的影响较为明显。
接下来,再谈谈统计功效。
统计功效可以理解为当确实存在差异(即效应存在)时,我们能够正确检测到这种差异的概率。
想象一下,假如我们进行一项实验,实际上新的治疗方法是有效的,但由于样本量太小或者其他因素,导致我们没有检测到这种效果,这就是统计功效不足。
统计功效的高低受到多个因素的影响。
其中,最主要的因素包括效应大小、样本量、显著性水平(α)和检验类型。
效应大小越大,统计功效就越高。
这就好比差异越明显,我们越容易发现它。
样本量越大,统计功效也会增加。
因为更多的数据能提供更准确的信息,减少抽样误差的影响。
显著性水平通常设定为 005,如果我们把这个标准放宽松,比如设定为 01,统计功效会提高,但同时犯第一类错误(即错误地拒绝了真的零假设)的概率也会增加。
统计功效与效应大小华中师范大学心理学院刘华山一、统计功效(检验功效,效力,Power)统计功效指某检验能够正确地拒绝一个错误的虚无假设的能力。
用1-β表示。
或说:当总体实际上存在差异,应该拒绝虚无假设时,正确地拒绝虚无假设的概率,或不犯β错误的概率。
在实验设计中,统计功效反映了假设检验能够正确侦查到真实的处理效应的能力。
统计功效的大小取决于四个条件:1.两总体差异。
2.显著性标准α。
显著性标准α越大,则β错误越小,从而统计功效1-β越大。
3.检验的方向:当两总体差异一定,对于同样的显著性标准α,单侧检验比双侧检验的统计功效要大。
4.样本容量。
样本容量越大,样本平均数分布的标准误越小,分布曲线越瘦削,统计功效越大。
二、效应量 (Effect Size,ES )效应量,反映处理效应大小的度量。
其实,两样本平均数的差异就是一个效应量。
效应量表示两个总体分布的重叠程度。
ES越大,表示两总体重叠的程度越小,效应越明显。
三、效应量检验的功能1.效应量有助于我们判断统计上显著差异是否有实际的意义。
2.有些效应量,如相关系数,点二列相关系数的平方r pb2,η2,可以反映自变量解释因变量变异的百分比。
3.在同一个实验中,如果有几个自变量,可以根据效应量大小对自变量的重要性排序。
4.原分析的基础。
在元分析中,将各个不同的相关研究进行概括分析的基础便是各个不同研究的效应量。
5. 效果量的计算还为改进研究设计、 提高检验能力提供了根据。
APA 出版手册第五版要求报告差异检验结果时一般要报告SE 值。
四、效应量和统计功效前述检验功效与两总体差异(或说处理效应大小)、样本容量、显著性水平、检验的方向性四个因素有关。
而两总体差异大小、两样本分布的重叠恰恰是与效应量有关的概念。
可见,效应量和统计功效有关。
统计功效受效应量的制约。
在检验方向、样本容量、显著性水平固定的条件下,效应量与检验功效有对应关系。
见下表。
【独立样本】表 在0.05水平下假设检验的功效样本容量效应大小0.2 0.5 0.8 单尾 10 0.11 0.29 0.53 20 0.15 0.46 0.80 30 0.19 0.61 0.92 40 0.22 0.72 0.97 50 0.26 0.80 0.99 100 0.41 0.97 1.00 双尾 10 0.07 0.18 0.39 20 0.09 0.33 0.69 30 0.12 0.47 0.86 40 0.14 0.60 0.94 50 0.17 0.70 0.94 1000.290.941.00五、独立样本t 检验的效应大小.1,1除d s Cohen'.122112121221——,其中以两样本自由度之和本离差平方和之和即两样算术平方根,合成方差是两个样本合成方差的,而—n df n df df df ss ss S S S X X p p P==++==例?在大学一年级新生中选取10名双性化学生和20名非双性化学生,对他们施测自尊量表。
方差分析的统计检验力和效果大小的常用方法比较本文对用方差分析统计检验力和效果大小进行估计的几种不同方法作了简要的介绍和比较。
标签:方差分析的效果大小;方差分析的统计检验力1 方差分析的统计检验力和效果大小的含义关于统计检验力(The power of a statistical test)的含义,美国著名心理统计学家J.Cohen曾指出:“当虚无假设为假时…,关于虚无假设的统计检验力是指导致拒绝虚无假设的概率。
”[1]关于效果大小(effect size,ES)的含义,J.Cohen在同一本专著中指出:“当虚无假设为假时…,它总是在一定程度上的虚假。
效果大小(effect size,ES)是指某个特定总体中的某种特殊的非零的数值。
这个数值越大,就表明由研究者所处理的研究现象所造成的效果越大…效果大小本身可以被视为是一种参数:当虚无假设为真时,效果大小的值为零;当虚无假设为假时,效果大小为某种非零的值。
因此,可以把效果大小视为某种与虚无假设分离程度的指标。
”[1]最近几年,我国心理学界也有越来越多的学者注意到这一领域研究成果的重要性并加以介绍和评述:如权朝鲁对“效果量的意义及测定方法”作了简要述评[2];胡竹菁曾以平均数差异显著性检验为例,对实验数据进行假设检验后继续对其统计检验力和效果大小进行估计的基本原理和方法作了简要介绍[3]。
甘怡群[4]、舒华[5]等也在各自主编的教科书中有专门论述统计检验力的章节。
本文拟以单因素和两因素完全随机实验设计的方差分析为例,对方差分析后的统计检验力进行估计的几种不同方法作一简要介绍和比较。
在心理统计学中,方差分析(即F检验)中的虚无假设一般是H0:μ1=μ0=…=μk,其备择假设则是指H a:μ1,μ2,…μk不完全相等,方差分析的统计检验力(power of test,即1-β)的含义与平均数差异显著性检验的统计检验力1-β的含义在实质上都是一样的,都是指在虚无假设H0为假(备择假设H a为真)时,正确拒绝H0的概率。