罗马尼亚IMO国家队选拔考试1999
- 格式:pdf
- 大小:86.96 KB
- 文档页数:5
第一届imo数学竞赛试题答案第一届国际数学奥林匹克竞赛(IMO)是在1959年在罗马尼亚举行的。
由于时间跨度较长,具体的试题和答案可能需要通过历史资料查询。
不过,我可以提供一个示例答案,以展示IMO题目的类型和解答风格。
假设第一届IMO中有一道题目如下:题目:证明对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots +n^2 \) 的和等于 \( \frac{n(n + 1)(2n + 1)}{6} \)。
解答:我们可以使用数学归纳法来证明这个公式。
基础情况:当 \( n = 1 \) 时,左边的和为 \( 1^2 = 1 \),右边的表达式为\( \frac{1(1 + 1)(2 \times 1 + 1)}{6} = \frac{6}{6} = 1 \)。
因此,当 \( n = 1 \) 时,等式成立。
归纳步骤:假设对于某个正整数 \( k \),等式成立,即:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k + 1)(2k + 1)}{6} \]我们需要证明当 \( n = k + 1 \) 时,等式仍然成立:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 + (k + 1)^2 = \frac{(k +1)((k + 1) + 1)(2(k + 1) + 1)}{6} \]根据归纳假设,我们可以将左边的和替换为:\[ \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \]接下来,我们简化这个表达式:\[ \frac{k(k + 1)(2k + 1) + 6(k + 1)^2}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6k^2 + 12k + 6}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6(k^2 + 2k + 1)}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6(k + 1)^2}{6} \]可以看到,这个表达式与我们想要证明的等式右边相等,因此等式对于 \( n = k + 1 \) 也成立。
IMO历届试题2010年第51届国际奥林匹克数学竞赛(IMO)试题及答案1.△ABC的内心为I,三角形内一点P满足∠PBA+∠PCA=∠PBC+∠PCB.求证,AP ≥AI,而且等号当且仅当P=I时成立.证:∠PBC+∠PCB= 12(∠ABC+∠ACB)=∠IBC+∠ICB,故∠PBI=∠PCI,从而P,B,C,I四点共圆.但由内外角平分线相垂直知B,C,I与BC 边上的旁切圆心T 共圆,且IT是这个圆的直径,IT的中点O为圆心.由于A,I,T共线(∠BAC的平分线),且P在圆周上,AP+PO≥AO=AI+IO,PO=IO,故AP≥AI.等号当且仅当P为线段AO与圆周的交点即P=I时成立.2.正2006 边形P 的一条对角线称为好的,如果它的两端点将P 的边界分成的两部分各含P的奇数条边.P的边也是好的.设P被不在P的内部相交的2003 条对角线剖分为三角形.试求这种剖分图中有两条边为好的等腰三角形个数的最大值.解:对于剖分图中的任一三角形ABC,P的边界被A,B,C分为3段,A-B段所含P 的边数记作m(AB).由于m(AB)+ m(BC)+ m(CA)=2006,故等腰三角形若有两条好边,它们必是两腰.称这样的等腰三角形为好三角形.考虑任一好三角形ABC(AB=AC).A-B 段上若有别的好三角形,其两腰所截下的P 的边数为偶数.由于剖分图中的三角形互不交叉,而A-B 段上P 的边数为奇数,故A-B 段上必有P的一边α不属于更小的腰段,同理A-C段上也有P的一边β不属于更小的腰段,令△ABC 对应于{α,β}.由上述取法,两个不同的好三角形对应的二元集无公共元,因此好三角形不多于20062=1003 个.设P=A1A2…A2006,用对角线A1A2k+1(1≤k≤1002)及A2k+1A2k+3(1≤k≤1001)所作的剖分图恰有1003 个好三角形.因此,好三角形个数的最大值是1003.3.求最小实数M ,使得对一切实数 a ,b ,c 都成立不等式2222222222|()()()|()ab a b bc b c ca c a M a b c -+-+-++≤解:222222()()()ab a b bc b c ca c a -+-+-()()()()a b b c c a a b c =----++.设a b x b c y c a z a b c s -=-=-=++=,,,,则22222221()3a b c x y z s ++=+++.原不等式成为22222()9||(0)M x y z s xyzs x y z +++++=≥.x y z ,,中两个同号而与另一个反号.不妨设 x y ,≥0.则2221||()2z x y x y x y =+++,≥,2()4x y xy +≥.于是由算术-几何平均不等式222222223()(())2x y z s x y s +++++≥=22222111(()()())222x y x y x y s ++++++6223414())42()||162||8x y s x y s xyzs +=+≥(≥即9232M =时原不等式成立.等号在21s x y ===,,2z =-,即::(23):2:(23)a b c =+-时达到,故所求的最小的9232M =.4.求所有的整数对(x y ,),使得212122x x y +++=.解:对于每组解(x y ,),显然0x ≥,且()x y -,也是解.0x =时给出两组解(02)±,.设x y ,>0,原式化为12(21)(1)(1)x x y y ++=+-.1y +与1y -同为偶数且只有一个被4整除.故3x ≥,且可令12x y m ε-=+ ,其中m 为正的奇数,1ε=±.代入化简得2212(8)x m m ε--=-.若1ε=,2801m m -=≤,.不满足上式.故必1ε=-,此时22212(8)2(8)x m m m -+=--≥,解得3m ≤.但1m =不符合,只有3m =,4x =,23y =.因此共有4组整数解(02)(423)±±,,,.5.设()P x 为n 次(n >1)整系数多项式,k 是一个正整数.考虑多项式()(((())))Q x P P P x = ,其中 P 出现k 次.证明,最多存在 n 个整数t ,使得()Q t t =.证:若Q 的每个整数不动点都是 P 的不动点,结论显然成立.设有整数0x 使得00()Q x x =,00()P x x ≠.作递推数列 1()(012)i i x P x i +== ,,.它以 k 为周期.差分数列1(12)i i i x x i -∆=-= ,,的每一项整除后一项.由周期性及10∆≠,所有||i ∆ 为同一个正整数u .令121111min{}m k m m m m m m x x x x u x x x x x x -++-==-=-= ,,,,,.数列的周期为 2.即0x 是 P 的2-周期点.设 a 是P 的另一个2-周期点,() b P a =(允许b =a ).则0a x -与1b x -互相整除,故01||||a x b x -=-,同理01||||b x a x -=-.展开绝对值号,若二者同取正号,推出01x x =,矛盾.故必有一个取负号而得到01a b x x +=+.记01x x C +=,我们得到:Q 的每个整数不动点都是方程 ()P x x C +=的根.由于P 的次数n 大于 1,这个方程为n 次.故得本题结论.6.对于凸多边形P 的每一边b ,以b 为一边在P 内作一个面积最大的三角形.证明,所有这些三角形的面积之和不小于P 的面积的两倍.证:过P 的每个顶点有唯一的直线平分P 的面积,将该直线与P 的边界的另一交点也看作 P 的顶点(允许若干个相继顶点共线).每两条面积平分线都交于 P 内.P 可 看成一个 2n 边形122-12n n A A A A ,每条对角线i i n A A +是P 的面积平分线(i =1,2,…,n ,2i n i A A +=).设i i n A A +与11i i n A A +++交于 i O (i n i O O +=),由面积关系得到,11()()i i i i i n i n S O A A S O A A ++++=△△,11i i i i i i n i i n O A O A O A O A ++++= ,故i i n i iO A O A +和11i i n i i O A O A +++中必有一个不小于 1,于是以 1i i A A +为一边在 P 内作的面积最大的三角形的面积11111()max{()()}2()i i i n i i i n i i i i i S A A S A A A S A A A S O A A +++++++≥△,△≥△.对于每条有向线段i i n A A +,P 内部的每一点T 或在它的左侧或在它的右侧.由于T 在11n A A + 和12111n n n A A A A +++= 的相反侧,故必有i 使得T 在i i n A A + 和11i i n A A +++的相反侧,从而T在1i i i O A A +△或1i i n i n O A A +++△中.即211ni i i i O A A P +=⊇ △.于是221111()2()2()nnii i i i i i S A AS O A A S P ++==∑∑≥△≥P 中同一边上的各个1()i i S A A +之和就是该边上的面积最大的内接三角形面积.。
第四十届(1999年)
罗马尼亚 布加勒斯特(Bucharest ,Romania )
1. 找出所有满足下列要求的由平面上至少三点组成的有限集合S :
对于任意两个在S 中的不同的点A 和B ,线段AB 的垂直平分线是S 的一条对称轴。
(爱沙尼亚)
2. 设n 为一个给定的整数,n ≥2。
(a) 判断使得以下不等式对于所有实数x 1,…,x n ≥0都成立的最小常数C :
42211()i j i j i i j n i n x x x x C x ≤<≤≤≤⎛⎫+≤ ⎪⎝⎭
∑∑。
(b) 对于这个常数C ,判断何时等号成立。
(波兰)
3. 给定一个n ×n 的棋盘,n 是给定的偶数。
这个棋盘被分成n 2个小方格。
如果这个棋盘中的两个不同的小方格有一个公共边就说它们是相邻的。
N 个棋盘上的小方格按某种方式被标记,使得棋盘上的每个方格(标记的和未标记的)至少与一个被标记的方格相邻。
找出N 的最小的可能值。
(白俄罗斯)
4. 找出满足条件的正整数对(n ,p ):p 是质数;n 不超过2p ;(p -1)n 能被n p -1整除。
(中国台湾)
5. 两个圆G 1和G 2在圆G 内,且分别与G 相切于不同的点M 和N 。
G 1通过G 2的圆心。
通过G 1和G 2的交点的直线交G 于点A 和B 。
(俄罗斯)
6. 找出所有函数f :R→R ,使对于所有实数x 、y 都有f (x -f (y ))=f (f (y ))+xf (y )+f (x )-1。
(日本)。
第一届(1959年)罗马尼亚 布拉索夫(Bra şov ,Romania )1. 求证314421++n n 对每个自然数 n 都是最简分数。
(波兰)2. 设A x x x x =--+-+1212,试在以下3种情况下分别求出x 的实数解: a)2=A ;b)A =1;c)A =2。
(罗马尼亚)3. a 、b 、c 都是实数,已知关于 cos x 的二次方程0cos cos 2=++c x b x a试用 a,b,c 作出一个关于 cos 2x 的二次方程,使它的根与原来的方程一样。
当a =4,b =2,c =-1 时比较 cos x 和 cos 2x 的方程式。
(匈牙利)4. 试作一直角三角形使其斜边为已知的c ,斜边上的中线是两直角边的几何平均值。
(匈牙利)5. 在线段AB 上任意选取一点M ,在AB 的同一侧分别以 AM 、MB 为底作正方形AMCD 、 MBEF ,这两个正方形的外接圆的圆心分别是 P 、Q ,设这两个外接圆又交于 M 、N 。
a) 求证:AF 、BC 相交于N 点;b) 求证:不论点M 如何选取,直线MN 都通过定点S ;c) 当M 在A 与B 之间变动时,求线段PQ 的中点的轨迹。
(罗马尼亚)6. 两个平面P 、Q 的公共边为 p ,A 为P 上给定一点,C 为Q 上给定一点,并且这两点都不在直线p 上。
试作一等腰梯形ABCD (AB 平行于CD ),使得它有一个内切圆,并且顶点B 、D 分别落在平面P 和Q 上。
(捷克斯洛伐克)第二届(1960年)罗马尼亚 锡纳亚(Sinaia ,Romania )1. 找出所有具有下列性质的三位数N :N 能被11整除且商等于N 的各位数字的平方和。
(保加利亚)2. 寻找使下式成立的实数x :(匈牙利)()92211422+<+-x x x3. 直角三角形ABC 的斜边BC 的长为a ,将它分成n 等份(n 为奇数),令α为从A 点向中间的那一小段线段所张的锐角,从A 到BC 边的高长为h ,求证:(罗马尼亚)()a n nh 14tan 2-=α4. 已知从A 、B 两点引出的高线长h a 、h b 以及从 A 引出的中线长m a ,求作三角形ABC 。
imo试题及答案1. IMO试题1题目:请证明对于任意正整数 \( n \),\( n^3 + 2 \) 总是可以被3整除。
答案:设 \( n \) 为任意正整数。
- 情况1:\( n \) 是3的倍数,即 \( n = 3k \)(\( k \) 为整数)。
\( n^3 + 2 = (3k)^3 + 2 = 27k^3 + 2 \),显然 \( 27k^3 \) 是3的倍数,所以 \( n^3 + 2 \) 也是3的倍数。
- 情况2:\( n \) 不是3的倍数,即 \( n = 3k + 1 \) 或 \( n = 3k + 2 \)(\( k \) 为整数)。
- 如果 \( n = 3k + 1 \),则 \( n^3 + 2 = (3k + 1)^3 + 2 = 27k^3 + 27k^2 + 9k + 1 + 2 = 3(9k^3 + 9k^2 + 3k) + 3 \),显然 \( 9k^3 + 9k^2 + 3k \) 是整数,所以 \( n^3 + 2 \) 是3的倍数。
- 如果 \( n = 3k + 2 \),则 \( n^3 + 2 = (3k + 2)^3 + 2 = 27k^3 + 54k^2 + 36k + 8 + 2 = 3(9k^3 + 18k^2 + 12k + 3) + 1 \),显然 \( 9k^3 + 18k^2 + 12k + 3 \) 是整数,所以 \( n^3 + 2 \) 是3的倍数。
因此,对于任意正整数 \( n \),\( n^3 + 2 \) 总是可以被3整除。
2. IMO试题2题目:给定一个圆,圆心为 \( O \),半径为 \( r \)。
从圆上一点 \( A \) 向圆内作切线 \( AB \) 和 \( AC \),连接 \( B \) 和\( C \) 两点。
求 \( BC \) 的长度。
答案:设 \( O \) 为圆心,\( r \) 为半径,\( A \) 为圆上一点,\( B \) 和 \( C \) 分别为切线 \( AB \) 和 \( AC \) 与圆的切点。
第41届1. 圆Γ1和圆Γ2相交于点M和N。
设l是圆Γ1和圆Γ2的两条公切线中距离M较近的那条公切线。
l与圆Γ1相切于点A,与圆Γ2相切于点B。
设经过点M且与l平行的直线与圆Γ1还相交于点C,与圆Γ2还相交于点D。
直线CA和DB相交于点E;直线AN和CD相交于点P;直线BN和CD相交于点Q。
求证:EP=EQ。
2. 设a,b,c是正实数,且满足abc=1。
求证:(a- 1 + 1/b)(b - 1 + 1/c)(c - 1 + 1/a) ≤ 1。
3. 设n≥2为正整数。
开始时,在一条直线上有n只跳蚤,且它们不全在同一点。
对任意给定的一个正实数λ,可以定义如下的一种“移动”:(1). 选取任意两只跳蚤,设它们分别位于点A和点B,且A位于B的左边;(2). 令位于点A的跳蚤跳到该直线上位于点B右边的点C,使得BC/AB=λ。
试确定所有可能的正实数λ,使得对于直线上任意给定的点M以及这n只跳蚤的任意初始位置,总能够经过有限多个移动之后令所有的跳蚤都位于M的右边。
4. 一位魔术师有一百张卡片,分别写有数字1到100. 他把这一百张卡片放入三个盒子里,一个盒子是红色的,一个是白色的,一个是蓝色的。
每个盒子里至少都放入了一张卡片。
一位观众从三个盒子中挑出两个,再从这两个盒子里各选取一张卡片,然后宣布这两张卡片上的数字之和。
知道这个和之后,魔术师便能够指出哪一个是没有从中选取卡片的盒子。
问共有多少种放卡片的方法,使得魔术总能够成功?(两种方法被认为是不同的,如果至少有一张卡片被放入不同颜色的盒子)5. 确定是否存在满足下列条件的正整数n:n恰好能够被2000个互不相同的质数整除,且2n+1能够被n整除。
6. 设AH1,BH2,CH3是锐角三角形ABC的三条高线。
三角形ABC的内切圆与边BC, CA, AB 分别相切于点T1, T2, T3,设直线l1,l2,l3分别是直线H2H3, H3H1, H1H2关于直线T2T3, T3 T1, T1T2的对称直线。
Romanian Olympiad 1998IMO Team Selection Tests1st Test -March 27,19981.A word of length n is an ordered sequence x 1x2...x n ,where x i is a letter of the alphabet {a,b,c }.Denote by A n the set of words of length n which do not contain any block x i x i +1,i =1,2,...,n −1,of the form aa or bb and by B n the set of words of length n in which none of the subsequences x i x i +1x i +2,i =1,2,...,n −2,contains all the letters a,b,c .Prove that |B n +1|=3|A n |.Vasile Pop2.The volume of a parallelepiped is 216cm 3and its total area is 216cm 2.Prove that the parallelepiped is a cube.Bogdan Enescu3.Let m ≥2be an integer.Find the smallest positive integer n ,n >m ,such that for any partition with two classes of the set {m,m +1,...,n }at least one of the classes contains three numbers a,b,c (not necessarily different)such that a b =c .Ciprian Manolescu4.Consider in the plane a finite set of segments such that the sum of their lengths is less than √2.Prove that there exists an infinite unit square grid covering the plane such that the lines defining the grid do not intersect any of the segments.Vasile PopWork time:4hours.TeX (c)2003Valentin Vornicu -MathLinks.ro2nd Test -April 25,19981.We are given an isosceles triangle ABC such that BC =a and AB =AC =b .The variable points M and N are given by the conditions M ∈(AC ),N ∈(AB )anda 2·AM ·AN =b 2·BN ·CM.The straight lines BM and CN intersect in P .Find the locus of the variable point P .Dan Brˆa nzei2.All the vertices of a convex pentagon have both coordinates integer numbers.Prove that the area of the pentagon is less than 52.Putnam Contest3.Find all positive integers x,n such that x n +2n +1is a divisor of x n +1+2n +1+1.Laurent ¸iu PanaitopolWork time:4hours.TeX (c)2003Valentin Vornicu -MathLinks.ro3rd Test -May 1,19981.Let n ≥2be an integer.Show that there exists a subset A ⊂{1,2,...,n }such that (i)the number of elements in A is at most 2 √n +1;(ii){|x −y |:x,y ∈A,and x =y }={1,2,...,n }.Radu Todor2.An infinite arithmetic progression whose terms are positive integers contains the square of an integer and the cube of an integer.Prove that it contains the sixth power of an integer.ISL 19973.Prove that for any positive integer n the polynomial f (x )=(x 2+x )2n+1is irreducible in Z [X ].Marius Cavachi Work time:4hours.TeX (c)2003Valentin Vornicu -MathLinks.ro4th Test-May22,19981.Let ABC be an equilateral triangle and n≥2be an integer.Denote by A the setof n−1straight lines which are parallel to BC and divide the surface of the triangle ABC into n polygons having the same area and denote by P the set of n−1lines parallel to BC which divide the triangle ABC into n polygons all having the same perimeter.Prove that the intersection A∩P is the emptyset.Laurent¸iu Panaitopol2.Let n≥3be a prime number and a1<a2<···<a n be integers.Prove thata1,a2,...,a n is an arithmetic progression if and only if there exists a partition of the set N0={0,1,2,...}with classes A1,A2,...,A n such that a i+A i=a j+A j,for all i,j,where a+A={a+x:x∈A}for a number a and a set of numbers A.Vasile Pop3.Let n be a positive integer and P n be the set of integer polynomials of the forma n x n+a n−1x n−1+···+a1x+a0,where|a i|≤2,for all i=0,n.Find,for each positive integer k,the number of elements in the setA n(k)={f(k):f∈P n}.Marian AndronacheWork time:4hours.TeX(c)2003Valentin Vornicu-MathLinks.ro5th Test-May23,19981.Find all functions u:R→R which have the property that there exists a increasing or decreasing function f:R→R such thatf(x+y)=f(x)u(y)+f(y),∀x,y∈R.Vasile Pop 2.Find all the positive integers k which fulfill the following condition:if f is an integer polynomial such that0≤f(a)≤k for all a∈{0,1,2,...,k+1}then f(0)=f(1)=···=f(k+1).ISL1997 3.The lateral surface of a cylinder of revolution is divided by n−1planes parallel to the base and m parallel generators into mn cases(n≥1,m≥3).Two cases will be called neighboring cases if they share a common side.Prove that it is possible to write a real number in each case such that the number is equal with the sum of the numbers written in the neighboring cases,and not all the numbers written are zero, if and only if there exist integers k,l such that n+1does not divide k andcos 2lπm+coskπn+1=12.Ciprian ManolescuWork time:4hours.TeX(c)2003Valentin Vornicu-MathLinks.ro。
imo数学奥林匹克历届试题IMO(International Mathematical Olympiad)是国际数学奥林匹克竞赛的英文简称,是世界范围内最具影响力的数学竞赛之一。
自1959年起,IMO每年都在不同国家举办,每个国家都会派出一支由高中生组成的代表队参赛。
这场竞赛旨在挑战学生的数学智力、培养他们的创新思维和解决问题的能力。
在这篇文章中,我们将回顾IMO数学奥林匹克的历届试题,展示一些经典问题的解决方法。
1. 第一届IMO(1959年)题目:证明当n为整数时,n^2 + n + 41为素数。
解析:我们可以通过代入不同的整数n来验证这个结论。
当n=1时,结果为43,为素数;当n=2时,结果为47,同样为素数。
我们可以继续代入更多的整数,发现每次结果都是素数。
虽然这种代入法不能证明对于所有的整数n都成立,但是通过大量的例子验证,我们可以有很高的信心认为这个结论是成立的。
2. 第十届IMO(1968年)题目:证明不等式(1+1/n)^n < 3,其中n是大于1的整数。
解析:我们可以通过数学归纳法证明这个不等式。
首先,当n=2时,不等式成立:(1+1/2)^2 = 2.25 < 3。
假设当n=k时不等式成立,即(1+1/k)^k < 3。
我们需要证明当n=k+1时,不等式也成立。
通过观察(1+1/k)^k,我们可以发现随着k的增大,(1+1/k)^k的值趋近于e,其中e是自然对数的底数。
而e约等于2.71828,小于3。
因此,当n=k+1时,(1+1/(k+1))^(k+1) < (1+1/k)^k < 3。
根据数学归纳法原理,我们可以得出对于所有的n大于1的整数,不等式(1+1/n)^n < 3成立。
3. 第二十二届IMO(1981年)题目:设a、b、c是一个正数的三个边长,证明不等式(a^2 + b^2)/(a+b) + (b^2 + c^2)/(b+c) + (c^2 + a^2)/(c+a) ≥ a + b + c。
《数学奥林匹克报》Mathematical Olympiad Express 1999 第 14 届IMO 中国国家队选拔考试1999 年 4 月 1 日 8∶00~12∶30 一、 对于满足条件 x1 + x2 +……+ xn =1 的非负实数 x1 , x2 ,……, xn 。
求∑(x5 j =14 j− x j 5 ) 的最大值。
(张筑生供题),二、试求满足以下条件的全部质数 p :对任一质数 q < p ,若 则不存在大于 1 的整数 ,使得 三、(李成章供题)设 S = {1, 2, 整除 。
(潘承彪供题),15} ,从 中取出 n 个子集 A1 , A2 ,……, An ,满足下列条件:(1) Ai =7, i =1,2,……, n ; (2) Ai ∩ A j ≤3,1≤ i < j ≤ n ; (3)对 S 的任何三元子集 M ,存在某个 Ak ,使得 M ⊂ Ak 。
求这样一组子集个数 n 的最小值。
1999 年 4 月 2 日 8∶00~12∶30 四、某圆分别与凸四边形 ABCD 的 AB、BC 两边相切于 G,H 两点,与对角线 AC 相交于 E,F 两点, 问 ABCD 应满足怎样的充要条件,使得存在另一圆过 E,F 两点,且分别与 DA,DC 的延长线相切? 证明你的结论。
(裘宗沪供题) 五、给定正整数 m ≥2,试证:(1)存在整数 x1 , x2 ,……, x2 m 使得(*) xi xm +i = xi +1 xm +i −1 + 1 ,i =1,2,……, m 。
(2)对任何适合条件(*)的整数组 x1 , x2 ,……, x2 m ,可构造出满足 yk ym + k = yk +1 ym + k −1 + 1 , k =0,±1,±2,……的整数序列: ……, y− k ,……, y−2 , y−1 , y0 , y1 , y2 ,……, yk ,……, 使 yi = xi , i =1,2,……, 2m (许以超供题) 六、 对于 1, ……, 的每一排列 T = ( x1 , x2 , 2, 10 试求:(1) S (T ) 的最大值与最小值; (2)使 S (T ) 达到最大值的所有排列 T 的个数; (3)使 S (T ) 达到最小值的所有排列 T 的个数。
Romanian Olympiad 2004IMO Team Selection Tests1st Test -April 7,20041.Let a 1,a 2,a 3,a 4be the sides of an arbitrary quadrilateral of perimeter 2s .Prove that4i =11a i +s ≤29 1≤i<j ≤41 (s −a i )(s −a j ).When does the equality hold?Calin Popescu2.Let {R i }1≤i ≤n be a family of disjoint closed rectangular surfaces with total area 4such that their projections of the Ox axis is an interval.Prove that there exist a triangle with vertices in n i =1R i which has an area of at least 1.Dan Ismailescu3.Find all one-to-one mappings f :N →N such that for all positive integers n the following relation holds:f (f (n ))≤n +f (n )2.Cristinel Mortici4.Let D be a closed disc in the complex plane.Prove that for all positive integers n ,and for all complex numbers z 1,z 2,...,z n ∈D there exists a z ∈D such that z n =z 1·z 2···z n .Dan Marinescu,Dan Schwarz,Barbu BerceanuWork time:4hours.TeX (c)2004Valentin Vornicu -MathLinks.roRomanian Olympiad2004IMO Team Selection Tests2nd Test-May1,20041.A disk is partitioned in2n equal sectors.Half of the sectors are colored in blue, and the other half in red.We number the red sectors with numbers from1to n in counter-clockwise direction,and then we number the blue sectors with numbers from1to n in clockwise direction.Prove that one canfind a half-disk which contains sectors numbers with all the numbers from1to n.2.Let a,b be two positive integers,such that ab=1.Find all the integer values that f(a,b)can take,wheref(a,b)=a2+ab+b2ab−1.3.Let a,b,c be3integers,b odd,and define the sequence{x n}n≥0by x0=4,x1=0,x2=2c,x3=3b and for all positive integers n we havex n+3=ax n−1+bx n+cx n+1.Prove that for all positive integers m,and for all primes p the number x p m is divisible by p.C˘a lin Popescu4.LetΓbe a circle,and let ABCD be a square lying inside the circleΓ.Let C a be acircle tangent interiorly toΓ,and also tangent to the sides AB and AD of the square, and also lying inside the opposite angle of∠BAD.Let A be the tangency point of the two circles.Define similarly the circles C b,C c,C d and the points B ,C ,D respectively.Prove that the lines AA ,BB ,CC and DD are concurrent.Work time:4hours.TeX(c)2004Valentin Vornicu-MathLinks.roRomanian Olympiad 2004IMO Team Selection Tests3rd Test -May 2,20041.Let n ≥2be a positive integer and X a set with n elements.Let A 1,A 2,...,A 101be subsets of X such that the reunion of any 50of them has more than 5051n elements.Prove that among these 101subsets there exist 3subsets such that any two have a common element.Gabriel Dospinescu (aka Harazi)2.Prove that for all positive integers n,m ,with m odd,the following number is an integer 13m n m k =03m 3k (3n −1)k .C˘a lin Popescu3.Let I be the incenter of the non-isosceles triangle ABC and let A ,B ,C be the tangency points of the incircle with the sides BC,CA,AB respectively.The lines AA and BB intersect in P ,the lines AC and A C in M and the lines B C and BC intersect in N .Prove that the lines IP and MN are perpendicular.Kvant Magazine4.Let n ≥2be an integer and let a 1,a 2,...,a n be real numbers.Prove that for any non-empty subset S ⊂{1,2,3,...,n }we havei ∈S a i 2≤ 1≤i ≤j ≤n(a i +···+a j )2.Gabriel Dospinescu (aka Harazi)Work time:4hours.TeX (c)2004Valentin Vornicu -MathLinks.roRomanian Olympiad2004IMO Team Selection Tests4th Test-May24,20041.Let m≥2be an integer.A positive integer n has the property that for any positiveinteger a which is co-prime with n,we have a m−1≡0(mod n).Prove that n≤4m(2m−1).Marian Andronache and Gabriel Dospinescu2.Let O be a point in the plane of the triangle ABC.A circle C which passes through Ointersects the second time the lines OA,OB,OC in P,Q,R respectively.The circle C also intersects for the second time the circumcircles of the triangles BOC,COA and AOB respectively in K,L,M.Prove that the lines P K,QL and RM are concurrent.***3.Some of the n faces of a polyhedron are colored in black such that any two black-colored faces have no common vertex.The rest of the faces of the polyhedron are colored in white.Prove that the number of common sides of two white-colored faces of the polyhedron is at least n−2.C˘a lin PopescuWork time:4hours.TeX(c)2004Valentin Vornicu-MathLinks.roRomanian Olympiad 2004IMO Team Selection Tests5th Test -May 25,20041.Three circles K 1,K 2,K 3of radii R 1,R 2,R 3respectively,pass through the point O and intersect two by two in A,B,C .The point O lies inside the triangle ABC .Let A 1,B 1,C 1be the intersection points of the lines AO,BO,CO with the sides BC,CA,AB of the triangle ABC .Let α=OA 1AA 1,β=OB 1BB 1and γ=OC 1CC 1and let R be the circumradius of the triangle ABC .Prove thatαR 1+βR 2+γR 3≥R.Dinu S ¸erb˘a nescu2.On a chess table n ×m we call a move the following succesion of operations(i)choosing some unmarked squares,any two not lying on the same row or column;(ii)marking them with 1;(iii)marking with 0all the unmarked squares which lie on the same line and column with a square marked with the number 1(even if the square has been marked with 1on another move).We call a game a succession of moves that end in the moment that we cannot make any more moves.What is the maximum possible sum of the numbers on the table at the end of a game?BkMO 2004Shortlist3.Let p be a prime number and f ∈Z [X ]given byf (x )=a p −1x p −2+a p −2x p −3+···+a 2x +a 1,where a i = i p is the Legendre symbol of i with respect to p (i.e.a i =1if i p −12≡1(mod p )and a i =−1otherwise,for all i =1,2,...,p −1).a)Prove that f (x )is divisible with (x −1),but not with (x −1)2iffp ≡3(mod 4);b)Prove that if p ≡5(mod 8)then f (x )is divisible with (x −1)2but not with(x −1)3.C˘a lin PopescuWork time:4hours.TeX (c)2004Valentin Vornicu -MathLinks.ro。
1999年数学奥林匹克竞赛获奖名单1999年的数学奥林匹克竞赛(International Mathematical Olympiad, 简称 IMO)是一场精彩的数学盛宴。
本次比赛吸引了来自世界各地的年轻数学天才参与,他们通过解决复杂的数学问题来展示他们的才华。
在这场比赛中,参赛者们需要充分展示他们在数学领域的深厚知识和解题能力。
他们需要在一定的时间内解决六道难题,包括代数、几何和组合数学等多个领域的问题。
在1999年的数学奥林匹克竞赛中,有许多优秀的选手表现出色,并成功获得了奖项。
以下是获奖名单:金牌得主:1. Reid Barton - 美国2. Laurentiu Panaitopol - 罗马尼亚3. Sébastien Loisel - 法国4. Goran Škoda - 克罗地亚5. Richard Montgomery - 美国6. Chengdong Bai - 中国银牌得主:1. Gabriel Carroll - 美国2. Robert Barrington Leigh - 加拿大3. Gabriel Dospinescu - 罗马尼亚4. Le Van Thanh - 越南5. Nicolae Radu - 罗马尼亚6. Hong Deng - 中国铜牌得主:1. Krzysztof Barański - 波兰2. Oleg Golberg - 以色列3. Eugenia Malinnikova - 俄罗斯4. Stephen Muirhead - 英国5. Mihnea Ignat - 罗马尼亚6. Renyuan Xu - 中国这些获奖选手在竞赛中展现了卓越的数学才能。
他们的成功不仅代表了个人的努力和智慧,也是他们所代表国家在数学领域的光荣。
这些年轻的数学家们通过数学奥林匹克竞赛的舞台,展示了他们的才华和激情,为全球数学研究和教育事业做出了重要的贡献。
1999年数学奥林匹克竞赛的获奖名单是对这些参赛者们优秀表现的认可和肯定。
Romanian IMO/BMO Team Selection TestsApril2005Romanian IMO TST2005Day I1.Solve the equation3x=2x y+1in positive integers.2.Let n≥1be an integer and let X be a set of n2+1positive integers such that inany subset of X with n+1elements there exist two elements x=y such that x|y.Prove that there exists a subset{x1,x2,...,x n+1}∈X such that x i|x i+1for all i=1,2,...,n.3.Prove that if the distance from a point inside a convex polyhedra with n faces to thevertices of the polyhedra is at most1,then the sum of the distances from this point to the faces of the polyhedra is smaller than n−2.Working time:4hoursTranslated by Valentin Vornicu–MathLinks.roRomanian IMO TST 2005Day II4.Prove that in any convex polygon with 4n +2sides (n ≥1)there exist two consecutive sides which form a triangle of area at most 16nof the area of the polygon.5.Let m,n be co-prime integers,such that m is even and n is odd.Prove that the following expression does not depend on the values of m and n :12n +n −1 k =1(−1)[mk n ] mk n .6.A sequence of real numbers {a n }n is called a bs sequence if a n =|a n +1−a n +2|,for all n ≥0.Prove that a bs sequence is bounded if and only if the function f given by f (n,k )=a n a k (a n −a k ),for all n,k ≥0is the null function.Working time:4hoursTranslated by Valentin Vornicu –MathLinks.roRomanian IMO TST 2005Day III7.Let A 0A 1A 2A 3A 4A 5be a convex hexagon inscribed in a circle.Define the points A 0,A 2,A 4on the circle,such thatA 0A 0 A 2A 4,A 2A 2 A 4A 0,A 4A 4 A 2A 0.Let the lines A 0A 3and A 2A 4intersect in A 3,the lines A 2A 5and A 0A 4intersect inA 5and the lines A 4A 1and A 0A 2intersect in A 1.Prove that if the lines A 0A 3,A 1A 4and A 2A 5are concurrent then the lines A 0A 3,A 4A 1and A 2A 5are also concurrent.8.Let ABC be a triangle,and let D ,E ,F be 3points on the sides BC ,CA and AB respectively,such that the inradii of the triangles AEF ,BDF and CDE are equal with half of the inradius of the triangle ABC .Prove that D ,E ,F are the midpoints of the sides of the triangle ABC .9.Let P be a polygon (not necessarily convex)with n vertices,such that all its sides and diagonals are less or equal with 1in length.Prove that the area of the polygonis less than √32.Working time:4hoursTranslated by Valentin Vornicu –MathLinks.roRomanian IMO TST2005Day IV10.Let a∈R−{0}.Find all functions f:R→R such that f(a+x)=f(x)−x for allx∈R.Dan Schwartz 11.On the edges of a convex polyhedra we draw arrows such that from each vertex atleast an arrow is pointing in and at least one is pointing out.Prove that there existsa face of the polyhedra such that the arrows on its edges form a circuit.Dan Schwartz 12.Let n≥0be an integer and let p≡7(mod8)be a prime number.Prove thatp−1 k=1k2np−12=p−12.C˘a lin Popescu13.a)Prove that there exists a sequence of digits{c n}n≥1such that or each n≥1nomatter how we interlace k n digits,1≤k n≤9,between c n and c n+1,the infinite sequence thus obtained does not represent the fractional part of a rational number.b)Prove that for1≤k n≤10there is no such sequence{c n}n≥1.Dan SchwartzWorking time:4hoursTranslated by Valentin Vornicu–MathLinks.roRomanian IMO TST2005Day V14.On a2004×2004chess table there are2004queens such that no two are attackingeach other1.Prove that there exist two queens such that in the rectangle in which the center of the squares on which the queens lie are two opposite corners,has a semiperimeter of 2004.15.Let n≥2be an integer.Find the smallest real valueρ(n)such that for any x i>0,i=1,2,...,n with x1x2···x n=1,the inequalityn i=11x i≤ni=1x r iis true for all r≥ρ(n).16.Let N={1,2,...}.Find all functions f:N→N such that for all m,n∈N thenumber f2(m)+f(n)is a divisor of(m2+n)2.17.We consider a polyhedra which has exactly two vertices adjacent with an odd numberof edges,and these two vertices are lying on the same edge.Prove that for all integers n≥3there exists a face of the polyhedra with a number of sides not divisible by n.Working time:4hoursTranslated by Valentin Vornicu–MathLinks.ro1two queens attack each other if they lie on the same row,column or direction parallel with on of the main diagonals of the table。
Romanian Olympiad2001IMO Team Selection Tests1st Test-April12,20011.Show that if a,b,c are complex numbers such that(a+b)(a+c)=b(b+c)(b+a)=c(c+a)(c+b)=athen a,b,c are real numbers.Mihai Cipu 2.a)Let f,g:Z→Z be one to one mappings.Show that the function h:Z→Z, defined by h(x)=f(x)g(x),for all x∈Z,cannot be a surjective function;b)Let f:Z→Z be a surjective function.Show that there exist surjective functions g,h:Z→Z such that f(x)=g(x)h(x),for all x∈Z.Ion Savu3.The sides of a triangle have lengths a,b,c.Prove that(−a+b+c)(a−b+c)+(a−b+c)(a+b−c)+(a+b−c)(−a+b+c)≤√abc(√a+√b+√c).Mircea Becheanu4.Three schools have200students each.Every student has at least one friend in eachschool(if the student a is a friend of the student b then b is a friend of a).It is known that there exists a set E of300students(among the600)such that for any school S and any two students x,y∈E which are not in the school S,the number of friends in S of x and of y are not the same.Prove that one canfind a student in each school such that they are friend to each other.Antal Bege,actually this problem is an old Russian problem.Work time:4hours.TeX(c)2003Valentin Vornicu-MathLinks.ro2nd Test-May19,20011.Find all polynomials with real coefficients p(x)such thatp(x)·p(2x2−1)=p(x2)·p(2x−1),∀x∈R.Nicolai Nikolov2.The vertices A,B,C and D of a square lie outside a circle centered in M.LetAA ,BB ,CC and DD be tangents to the circle.We assume that the segments AA ,BB ,CC ,DD are the consecutive sides of a quadrilateral Q in which a circle is inscribed.Prove that Q has an axis of symmetry.3.Find the least positive integer n with the property that from any n radii in the samesharing a common origin,one can pick two,such that the angle between them is acute.Mihai B˘a lun˘a4.Prove that there arefinitely many positive integers that cannot be written as a sumof distinct squares.Radu Todor,ISL2000Work time:4hours.TeX(c)2003Valentin Vornicu-MathLinks.ro3rd Test-May25,20011.Let n be a positive integer and f(x)=a0+a1x+···+a m x m,with m≥2,a polynomialwith integer coefficients,such that(i)a2,a3,...,a m are all divisible by all the prime factors of n;(ii)a1and n are relatively prime.Prove that for any positive integer k,there exists a positive integer c k such that f(c k) is divisible by n k.Ion Savu2.Let p and q be two relatively prime positive integers.A subset S of the non-negativeintegers is called ideal if0∈S,and,for each element n∈S,the integers n+p and n+q belong to S.Determine the number of ideal subsets of the non-negative integers set.ISL2000Work time:4hours.TeX(c)2003Valentin Vornicu-MathLinks.ro4th Test-May26,20011.Find all pairs(m,n)of positive integers,with m,n≥2,such that a n−1is divisibleby m for each a∈{1,2,...,n}.Laurent¸iu Panaitopol2.Prove that there is no function f:(0,+∞)→(0,+∞)such that for all x,y>0wehavef(x+y)≥f(x)+yf(f(x)).Bulgarian Olympiad3.The tangents at A and B to the circumcircle of the acute triangle ABC intersect thetangent at C in the points D and E,respectively.The line AE intersects BC in P and the line BD intersects AC in R.Let S be the midpoint of the segment AP.Show that the angles∠ABQ and∠BAS are equal.ISL20004.Let P be a convex polyhedron,with vertices V1,V2,...,V p.The distinct vertices V iand V j are called neighbors if they belong to the same face of the polyhedron.In each vertex V i an integer number v i(0)is written and next,the sequences{v i(n)}n≥0 are defined as follows:v i(n+1)is the arithmetic mean of the numbers v j(n),for all vertices V j which are neighbors with V i.Prove that if all v i(n),1≤i≤p,n∈N,are integer numbers,then there exists a positive integer M and an integer k such that v i(n)=k,for all n≥M,and every i=1,p.Barbu BerceanuWork time:4hours.TeX(c)2003Valentin Vornicu-MathLinks.ro。
第三届罗马尼亚竞赛试题罗马尼亚数学竞赛是一项历史悠久的数学竞赛,旨在选拔和培养数学领域的优秀人才。
第三届罗马尼亚竞赛试题涵盖了多个数学领域,包括代数、几何、数论和组合等。
以下是一些可能的题目及其解答思路:# 代数题目:题目1:给定一个二次方程 \( ax^2 + bx + c = 0 \),其中 \( a \),\( b \),\( c \) 是实数,且 \( a \neq 0 \)。
求证:如果\( b^2 - 4ac < 0 \),则该方程无实数解。
解答思路:利用判别式 \( \Delta = b^2 - 4ac \) 来判断二次方程的解的性质。
当 \( \Delta < 0 \) 时,方程没有实数根。
# 几何题目:题目2:在直角三角形 \( ABC \) 中,角 \( C \) 是直角。
已知\( AB = c \),\( AC = b \),\( BC = a \)。
求证:\( a^2 + b^2= c^2 \)。
解答思路:利用勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
# 数论题目:题目3:证明对于任意正整数 \( n \),\( 2^n - 1 \) 总是奇数。
解答思路:利用归纳法证明,首先验证 \( n = 1 \) 的情况,然后假设 \( 2^k - 1 \) 是奇数,证明 \( 2^{k+1} - 1 \) 也是奇数。
# 组合题目:题目4:有 \( n \) 个不同的球和 \( m \) 个不同的盒子,每个盒子至少放一个球。
求所有不同的放球方式有多少种。
解答思路:这是一个经典的组合问题,可以通过考虑球的星号方法来解决。
将 \( n \) 个球和 \( n-1 \) 个隔板排列,然后计算排列的总数。
# 结尾:第三届罗马尼亚竞赛试题旨在挑战参赛者的数学思维和解决问题的能力。
通过解决这些题目,参赛者可以提高自己的数学素养,为未来的数学学习和研究打下坚实的基础。
希望所有参赛者都能在竞赛中取得优异的成绩。