电子技术实验报告 射极输出器
- 格式:pdf
- 大小:166.64 KB
- 文档页数:3
射极输出器教案范文教案:射极输出器的教学方法一、教学目标1.了解射极输出器的原理和工作方式;2.掌握射极输出器的性质和特点;3.能够分析和计算射极输出器的电路参数。
二、教学内容1.射极输出器的定义和原理1.1射极输出器的基本概念1.2射极输出器的工作原理2.射极输出器的特点和性质2.1射极输出器的放大特性2.2射极输出器的输出电阻和电压放大倍数2.3射极输出器的负载能力和效率3.射极输出器的电路分析和计算3.1射极输出器的等效电路模型3.2射极输出器的直流工作点的确定3.3射极输出器的交流工作分析3.4射极输出器的计算方法和实例分析1.导入新知识通过实例或现象引入射极输出器的定义和原理。
2.理论讲解2.1详细介绍射极输出器的定义和原理,包括它在电子设备中的应用;2.2分析射极输出器的放大特性,如电压放大倍数和输出电阻等;2.3解释射极输出器的负载能力和效率。
3.实验演示3.1设计简单的射极输出器电路实验,展示其工作原理;3.2在实验中观察和记录射极输出器的电路参数,如电流、电压;3.3讨论实验结果,分析实验现象。
4.练习与讨论4.1提供射极输出器的相关问题,让学生回答并进行讨论;4.2引导学生分析射极输出器电路的特性并进行计算。
5.拓展活动5.1学生自主设计和构建射极输出器电路;5.2学生进行实际的测量和分析,对比理论计算结果。
6.小结与反思归纳总结射极输出器的重要概念和性质,并进行教学反思。
1.电子实验箱、电源和多用表;2.教案活页、讲义以及相关参考书籍;3.供学生练习用的习题和实验报告。
五、教学评价1.学生的课堂参与情况;2.学生对射极输出器的理解程度;3.学生的实验设计和分析能力。
六、教学反思射极输出器作为常见的电子元器件,在电子技术领域有着重要的应用。
通过本节课的教学,学生能够全面了解射极输出器的原理和特点,并掌握如何分析和计算射极输出器的电路参数。
通过实验演示和练习,学生能够更加深入地理解射极输出器的工作方式和性质。
电子技术实验报告实验名称:单级放大电路系别:班号:实验者:学号:实验日期:实验报告完成日期:目录一、实验目的 (3)二、实验仪器 (3)三、实验原理 (3)(一)单级低频放大器的模型和性能 (3)(二)放大器参数及其测量方法 (4)四、实验容 (5)1、搭接实验电路 (5)2、静态工作点的测量和调试 (6)3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (6)4、放大器上限、下限频率的测量 (7)5、电流串联负反馈放大器参数测量 (8)五、思考题 (8)六、实验总结 (8)一、实验目的1.学会在面包板上搭接电路的方法;2.学习放大电路的调试方法;3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法;4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能;5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。
二、实验仪器1.示波器 1台2.函数信号发生器 1台3. 直流稳压电源 1台4.数字万用表 1台5.多功能电路实验箱 1台6.交流毫伏表 1台三、实验原理(一)单级低频放大器的模型和性能1. 单级低频放大器的模型单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。
从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。
若反馈信号的极性与原输入信号的极性相反,则为负反馈。
根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。
负反馈是改变房卡器及其他电子系统特性的一种重要手段。
负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。
实验三射极输出器一、实验目的掌握射极输出器的电路特点进一步学习放大器各项参数测量方法了解射极输出器的应用二、实验原理射级输出器的电路输出信号不是从三极管的集电极取出,而是取自发射级和地之间。
对于交流信号,集电极成为输入信号和输出信号的公共端,故该电路实际上是一个共集电极电路。
共集电极电路的输入电阻大,输出电阻小,所以常用来实现阻抗的转换。
输入电阻大,可使流过信号源的电流减小;输出电阻小,即带负载能力强;故常用于多级放大电路的输入级和输出级。
图3-1 射级输出器实验电路图三、实验内容与步骤检查电路无误后接通12V电源,然后按电路图接线。
1.在放大器的第一级接入信号电压,由信号发生器提供f=1000Hz,Ui=10mV 的交流信号,用示波器观察放大器的输出端(空载)波形。
调节Rp使输出波形幅值最大且不失真(后级不接)。
测量放大器第一级空载输出电压,求出放大倍数。
输出电压:1.351mv,放大倍数:1.351/10=1倍。
2.接入负载电阻10k,观察输出电压波形,测量输出电压,求带负载时第一级放大倍数。
输出电压:0.743mv,放大倍数:1倍3.用射级输出器代替第一级负载电阻10k,测量两级空载总的输出电压,计算两级(空载)总的放大倍数输出电压:0.943mv,放大倍数:1倍。
4.在射级输出器输出端再接入10k负载电阻,测量此时两级放大器的总的输出电压,计算放大倍数。
输出电压:0.716mv,放大倍数:1倍。
5.保持输入信号f=1000Hz,U i=10mV不变,改变Rp 使Ic 分别等于1.2V、1.5V、1.7V、2V等,分别测量相对应的第一级空载输出电压,计算放大倍数,观察放大倍数随Ic变化的情况。
四实验仪器和仪表虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表五实验报告要求按实验步骤整理实验结果。
列出第三步项测试表格,然后画出Ic-Au 曲线。
讨论放大器电压放大作用与哪些因素有关?1.信号源内阻rs;2.负载电阻RL;3.晶体管电流放大倍数4.集电极外接电阻Rc;5.基极偏置电流Ib。
实验七 射极输出器一、实验目的1.掌握射极输出器的特点。
2.进一步学习放大器各项参数的测试方法。
3.了解“自举”电路在提高射极输出器的输入电阻中的作用。
二、实验原理 1.射极输出器的特点1)输出电压U0与输入电压Ui 同相2)输入电阻高3)输出电阻低2.实验原理: 实验原理图如图7-1所示。
图7-1 典型的射极输出器引入“自举”电路可使阻值较小的基极直流偏置电阻Rb1和Rb2对信号源呈现相当大的交流输入电阻。
具有“自举”电路的射极输出器如图7-2所示。
其等效电路如图7-3。
图7-2 带有“自举”的射极输出器图7-3 带有“自举”的射极输出器等效电路 由图可见Ui 升高,U 0也升高,通过R b3使U B 相应抬高,即用输出电压的上升去“举高”自己的基极电压,所以称为“自举”电路。
由于U 0与U I 同相,则R b3两端的电压就很小,因而流过R b3的电流I R 也很小。
即R b3的分流作用大大减弱,相当于Ui 看进去R b3的等效输入电阻被大大提高。
三、实验设备、部件与器件1.+12直流电源2.函数信号发生器3.双踪示波器(另配)4.交流毫伏表5.直流电压表6.频率计7.3DG6×1 电阻器、电容及插线若干。
四、实验内容1.按图7-1连接电路(该电路需学生利用实验台面板上的元件自行搭接)。
注意:a与a′连接,b与b′断开,使其处于无自举状态。
2.静态工作点的调整接通+12V电源,在B点加入f=1KHz正弦信号Ui(Ui大于100mV),输出端用示波器监视,反复调整RW及信号源的输出幅度,使在示波器的屏幕上得到一个最大不失真输出波形。
然后置Ui=0,用直流电压表测量晶体管各电极对地电位,将测得数据记入表7-1。
表7-1在下面整个测试过程中应保持R W值不变(即I E不变)。
3.测量电压放大倍数AV接入负载R L=2KΩ,在B点加f=1KHz正弦信号U i,调节输入信号幅度,用示波器观察输出波形U O,在输出最大不失真情况下,用交流毫伏表测U i、U L值。
1. 理解射极输出器的基本原理和工作方式;2. 学习如何正确搭建射极输出器电路;3. 测试射极输出器的放大性能和频率响应;4. 掌握射极输出器在实际电路中的应用。
二、实验原理射极输出器(Emitter Follower)是一种常见的晶体管放大电路,其基本原理是利用晶体管的电流放大作用,将输入信号放大并从发射极输出。
射极输出器具有以下特点:1. 输入阻抗高,输出阻抗低;2. 电压放大倍数接近于1;3. 输出电压与输入电压同相;4. 电流放大作用明显。
射极输出器电路如图1所示,其中晶体管Q1为NPN型,R1为基极偏置电阻,R2为发射极电阻,R3为集电极负载电阻,V1为直流稳压电源。
三、实验器材1. 晶体管C9013(NPN型)2. 准直二极管1N41483. 电阻10K、100K、1K、100Ω4. 直流稳压电源5. 示波器6. 信号发生器7. 万用表8. 实验板1. 搭建射极输出器电路,按照图1所示连接电路。
2. 使用万用表测量晶体管各电极对地电位,记录数据。
3. 使用信号发生器输出正弦波信号,频率为1kHz,幅度为1V。
4. 使用示波器观察输入端和输出端的波形,记录数据。
5. 调节R2电阻,观察输出波形的变化,记录数据。
6. 测试射极输出器的电压放大倍数、输入阻抗、输出阻抗等参数。
五、实验结果与分析1. 输入端和输出端波形观察结果:输入端为正弦波信号,输出端为与输入端同相的正弦波信号,电压放大倍数接近于1。
2. 晶体管各电极对地电位测量结果:基极对地电位约为0.7V,发射极对地电位约为0.2V,集电极对地电位约为5V。
3. 射极输出器参数测试结果:- 电压放大倍数:约为0.9- 输入阻抗:约为100KΩ- 输出阻抗:约为50Ω六、实验结论1. 射极输出器具有电压放大倍数接近于1、输入阻抗高、输出阻抗低的特点,在实际电路中具有广泛的应用。
2. 通过搭建射极输出器电路并测试其性能,加深了对射极输出器原理的理解。
射极输出器实验报告射极输出器实验报告引言:射极输出器是一种常见的电子设备,广泛应用于放大电路和信号处理领域。
本实验旨在通过搭建射极输出器电路并进行实际测试,深入了解其工作原理和性能特点。
一、实验目的本实验的主要目的有以下几点:1. 理解射极输出器的基本原理和工作方式;2. 学习如何正确搭建射极输出器电路;3. 测试射极输出器的放大性能和频率响应。
二、实验器材和方法1. 实验器材:信号发生器、示波器、电阻、电容、二极管、射极输出器芯片等。
2. 实验方法:a. 按照电路图搭建射极输出器电路;b. 连接信号发生器和示波器,调节信号发生器的频率和幅度;c. 测量输入信号和输出信号的幅度,并记录数据;d. 根据实验数据分析射极输出器的放大性能和频率响应。
三、实验过程和结果1. 搭建射极输出器电路:根据实验要求,我们按照电路图搭建了射极输出器电路,并确保连接正确无误。
2. 信号发生器设置:我们将信号发生器连接到电路的输入端,并设置合适的频率和幅度,以便测试射极输出器的性能。
3. 示波器测量:我们将示波器连接到电路的输出端,观察并记录输入信号和输出信号的波形和幅度。
4. 数据分析:根据实验数据,我们计算了射极输出器的放大倍数和频率响应,并进行了进一步的分析。
四、实验结果分析1. 放大性能:通过实验数据的分析,我们得出了射极输出器的放大倍数,即输出信号幅度与输入信号幅度之比。
这个值可以反映射极输出器的放大性能。
我们发现,在一定范围内,射极输出器的放大倍数基本稳定,符合预期。
2. 频率响应:我们还测试了射极输出器在不同频率下的输出幅度变化情况。
通过绘制频率-幅度曲线,我们可以清晰地看到射极输出器的频率响应特性。
实验结果表明,在一定范围内,射极输出器的频率响应较为平坦,能够对各种频率的信号进行有效放大。
五、实验总结通过本次实验,我们深入了解了射极输出器的工作原理和性能特点。
实验结果表明,射极输出器具有较好的放大性能和频率响应,适用于各种信号处理和放大电路。