当 0 时,称为零均值白噪声; 当 0,2 1称为标准白噪声。
31
例2.3 Poisson过程和Poisson白噪声
如果连续时的随机过程满足 (1) N(0) 0 ,且对任何的t>s≧0和非负整数k,
P ( N ( t ) N ( s ) k ) (( t s ) ) k e x p [ ( t s ) ] ,其 中 是 正 数 k !
n X1,X2,
观测样本:随机序列各随机变量的观测样本。 个有序观
测值 x1,x2,x3 xn
一次实现或一条轨道:时间序列的一组实际观测。 时间序列分析的任务:数学建模,解释、控制或预报。
5
二.时间序列的分解
X t T t S t R t,t 1 ,2 ,
趋势项{T t } ,季节项{ S t } ,随机项{ R t } 注:1.单周期季节项:S(ts)S(t), t 只需要 S1,S2, SS
由季节项和随机项组成, 季节项估计 可由该数据的每个季节平均而得.
{
S
t
}
3. 随机项估计即为
方法一:分段趋势法
1 趋势项(年平均)
8
减去趋势项后,所得数据{Xt Tˆt}
9
2、季节项 {Sˆt }
10
3.随机项的估计 R ˆt x t T ˆt S ˆt,t 1 ,2 , ,2.4
11
方法二:回归直线法
(2){N(t)}有独立增量性:对任何n>1和 0 t0 t1 tn 随机变量 N ( tj) N ( tj 1 ) ,j 1 ,2 ,3 , n
相互独立,则称{N(t)}是一个强度为λ的Poisson过程。 数学期望和方差分别为
E [N ( t) ]t,v a r (N ( t) )t