全等三角形的概念与性质经典练习题分类汇编
- 格式:doc
- 大小:178.50 KB
- 文档页数:3
全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB AND【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.NC D EB M A F E DCBA O ED CBA【例5】 (北京市、天津市数学竞赛试题)如图所示,ABC ∆是边长为1的正三角形,BDC∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【例6】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°, 求证:AD 平分∠CDE板块二、全等与角度【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =, 求BDC ∠.DCB A NM D CB AC EDBADCBA NMC【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.【例10】 在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【例11】 (日本算术奥林匹克试题) 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.【例12】 (河南省数学竞赛试题) 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【例13】 (北京市数学竞赛试题) 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.全等三角形证明经典20题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBDADBCM CA B即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2 又∵CD=DE∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC3. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD又∵AE=AB ,AD=AD∴⊿AED ≌⊿ABD (SAS ) ∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C4. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明:在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE ,CDB ABA CDF2 1 E所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC所以△ADC ≌△AFC (SAS ) 所以AD =AF所以AE =AF +FE =AD +BE5. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。
八年级数学上册《第十二章全等三角形》同步练习题及答案(人教版)1、全等三角形的概念:(1)能够完全重合的两个三角形叫做全等三角形。
(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
2、全等三角形的性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等。
3、三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。
(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。
(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。
(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。
(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。
一、单选题1.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=()A.95°B.120°C.55°D.60°2.如图,点B、F、C、E在一条直线上,AB∥DE,AC∥DF,那么添加下列一个条件后,仍无法判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.BF=EC3.如图,已知,要说明,还需从下列条件①,②,③,④中选一个,则正确的选法个数是()A.1个B.2个C.3个D.4个4.如图,将两块直角三角尺的直角顶点O叠放在一起,若∠AOD=130°,则∠BOC的度数为()A.40°B.45°C.50°D.60°5.如图,AB=AD,∠BAC=∠DAC=25°,则∠BCA的度数为()A.25°B.50°C.65°D.75°6.如图,方格纸中有四个相同的正方形,则∠1+∠2+∠3为()A.90°B.120°C.135°D.150°7.如图,是的平分线,D,E,F分别是射线、射线、射线上的点,连接.若添加一个条件使,则这个条件可以为()A.B.C.D.8.如图,已知的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则的面积是()A.64 B.48 C.32 D.42二、填空题9.如图,已知∠ACB=∠DBC,请增加一个条件,使△ABC≌△DCB,你添加的条件为.10.如图,AC=DB,AO=DO,则、两点之间的距离为.11.如图,点在等边三角形内部, AD=AE ,若,则需添加一个条件:.12.如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是.13.如图,在中,AB=AC,分别过点B、C作经过点A的直线的垂线段、CE,若厘米,厘米,则的长为.三、解答题14.如图,在△ABC中,AC=BC,直线l经过点C,过A、B两点分别作直线l的垂线AE、BF,垂足分别为E、F,AE=CF,求证:∠ACB=90°15.如图,已知DE⊥AE,DF⊥AF,且DE=DF,B、C分别是AE、AF上的点,AB=AC求证:DB=DC16.如图,点B,F,C,E在一条直线上,FB=CE,AB//ED,AC//FD,交于O,求证:OA=OD.17.如图,在中,点D是线段上一点,以为腰作等腰直角,使于点G,交于点F.求证:.18.如图,在四边形ABCD中,AD∥BC,点E为对角线BD上一点,∠A=∠BEC,且AD=BE.(1)△ABD和△ECB全等吗?请说明理由;(2)若∠BDC=65°,求∠ADB的度数.参考答案1.B2.B3.C4.C5.D6.C7.A8.C9.AC=BD(答案不唯一)10.5511.或或或等12.213.14厘米14.证明:在Rt△ACE和Rt△CBF中∴Rt△ACE≌Rt△CBF(HL)∴∠EAC=∠BCF∵∠EAC+∠ACE=90°∴∠ACE+∠BCF=90°∴∠ACB=180°-90°=90°.15.解:∵DE⊥AE,DF⊥AF,且DE=DF∴AD平分∠FAE∴∠CAD=∠BAD又AD=AD,AB=AC∴△ACD≌△ABD∴DB=DC.16.证明:∴∵∴∵∴在和中∴∴在和中∴∴.17.证明:∵∴∵,即∴∴∵∴∴∵∴.18.(1)解:△ABD和△ECB全等,理由如下:∵AD∥BC∴∠ADB=∠CBE在△ADB和△EBC中∴△ADB≌△EBC(ASA);(2)解:∵△ADB≌△EBC ∴BC=BD∴∠BDC=∠BCD=65°∴∠DBC=50°∴∠ADB=50°.。
八上数学全等三角形章节复习及经典例题【知识梳理】一、全等三角形1.概念能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形。
2.全等三角形的性质①全等三角形的对应边相等、对应角相等。
②全等三角形的周长相等、面积相等。
③全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3.全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4.证明两个三角形全等的基本思路:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSS HL AAS SAS ASA AAS ASA AAS找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边二、角的平分线:1.(性质)角的平分线上的点到角的两边的距离相等.2.(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题(1)要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”【例题精讲】例1.如图,在ABC ∆中, 90=∠C ,D 、E 分别为AC 、AB 上的点,且AD=BD,AE=BC,DE=DC.求证:DE ⊥AB 。
全等三角形题库(70题)一、解答题(本大题共70小题,共560.0分)1.如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD.AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何.【答案】解:(1)∵BE、CF分别是AC、AB两边上的高,∴∠AFC=∠BFC=∠BEC=∠BEA=90°∴∠BAC+∠ACF=90°,∠BAC+∠ABE=90°,∠G+∠GAF=90°,∴∠ABE=∠ACF.在△ABD和△GCA中,{BD=AC∠ABE=∠ACF AB=CG,∴△ABD≌△GCA(SAS),∴AD=GA,(2)结论:AG⊥AD.理由:∵△ABD≌△GCA(SAS),∴∠BAD=∠G,∴∠BAD+∠GAF=90°,∴AG⊥AD.【解析】(1)先由条件可以得出∠ABE=∠ACF,就可以得出△ABD≌△GCA,就有AD= GA,∠BAD=∠G;(2)结论:AG⊥AD.由(1)可以得出∠GAD=90°,进而得出AG⊥AD.本题考查了全等三角形的判定及性质的运用、直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,学会利用等量代换证明垂直,属于中考常考题型.2.如图,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;【答案】解:作DM⊥AF于M,EN⊥AF于N,∵BC⊥AF,∴∠BFA=∠AMD=90°,∵∠BAD=90°,∴∠1+∠2=∠1+∠B=90°,∴∠B=∠2,在△ABF与△DAM中,{∠BFA=∠AMD ∠B=∠2AB=AD,∴△ABF≌△DAM(AAS),∴AF=DM,同理,△ACF≌△EAN(AAS),AF=EN,∴EN=DM,∵DM⊥AF,EN⊥AF,∴∠GMD=∠GNE=90°,在△DMG与△ENG中,{∠DMG =∠ENG ∠DGM =∠EGN DM =EN, ∴△DMG≌△ENG(AAS),∴DG =EG ,即点G 是DE 的中点.【解析】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.作DM ⊥AF 于M ,EN ⊥AF 于N ,根据余角的性质得到∠B =∠2,根据全等三角形的性质得到AF =DM ,同理AF =EN ,求得EN =DM ,由全等三角形的性质得到DG =EG ,于是得到点G 是DE 的中点.3. 如图,将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想.【答案】解:猜想:DE +BF =EF.证明:延长CF ,作∠4=∠1,如图:∵将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF = 12∠DAB ,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠FAE ,在△AGB 和△AED 中,{∠4=∠1AB =AD ∠ABG =∠ADE, ∴△AGB≌△AED(ASA),∴AG =AE ,BG =DE ,在△AGF 和△AEF 中,{AG =AE ∠GAF =∠EAF AF =AF, ∴△AGF≌△AEF(SAS),∴GF =EF ,∴DE +BF =EF .【解析】本题考查了全等三角形的判定与性质,解题的关键是作辅助角,将DE 和BF 放在一起,便于数量关系的猜想和证明.通过延长CF ,将DE 和BF 放在一起,便于寻找等量关系,通过两次三角形全等证明,得出结论.4. 已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD≌△ACE ;②直接判断结论BC =DC +CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.【答案】解:(1)①∵△ABC 和△ADE 是等边三角形,∴∠BAC =∠DAE =60°,AB =BC =AC ,AD =DE =AE .∴∠BAC −∠DAC =∠DAE −∠DAC ,∴∠BAD=∠EAC.在△ABD和△ACE中{AB=AC∠BAD=∠EAC AD=AE,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中{AB=AC∠BAD=∠EAC AD=AE,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;【解析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE;②由△ABD≌△ACE就可以得出BC= DC+CE;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE= AE,进而就可以得出△ABD≌△ACE,就可以得出BC+CD=CE.本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.5.已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.【答案】(1)证明:如图1,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,∵∠CBE+∠ADC=180°,∠CDF+∠ADC=180°,∴∠CBE=∠CDF,在△BCE和△DCF中,{∠CBE=∠CDF∠CEB=∠CFD=90°CE=CF,∴△BCE≌△DCF(AAS)∴BC=DC;(2)解:AD−AB=2BE,理由如下:如图2,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,AE=AF,∵∠ABC+∠ADC=180°,∠ABC+∠CBE=180°,∴∠CDF=∠CBE,在△BCE和△DCF中,{∠CBE=∠CDF∠CEB=∠CFD=90°CE=CF,∴△BCE≌△DCF(AAS),∴DF=BE,∴AD=AF+DF=AE+DF=AB+BE+DF=AB+2BE,∴AD−AB=2BE;(3)解:如图3,在BD上截取BH=BG,连接OH,∵BH=BG,∠OBH=∠OBG,OB=OB在△OBH和△OBG中,{BH=BG∠OBH=∠OBG OB=OB,∴△OBH≌△OBG(SAS)∴∠OHB=∠OGB,∵AO是∠MAN的平分线,BO是∠ABD的平分线,∴点O到AD,AB,BD的距离相等,∴∠ODH=∠ODF,∵∠OHB=∠ODH+∠DOH,∠OGB=∠ODF+∠DAB,∴∠DOH=∠DAB=60°,∴∠GOH=120°,∴∠BOG=∠BOH=60°,∴∠DOF=∠BOG=60°,∴∠DOH=∠DOF,在△ODH和△ODF中,{∠DOH=∠DOF OD=OD∠ODH=∠ODF,∴△ODH≌△ODF(ASA),∴DH=DF,∴DB=DH+BH=DF+BG=2+1=3.【解析】(1)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,证明△BCE≌△DCF,根据全等三角形的性质证明结论;(2)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,AE=AF,证明△BCE≌△DCF,得到DF=BE,结合图形解答即可;(3)在BD上截取BH=BG,连接OH,证明△OBH≌△OBG,根据全等三角形的性质得到∠OHB=∠OGB,根据角平分线的判定定理得到∠ODH=∠ODF,证明△ODH≌△ODF,得到DH=DF,计算即可.本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.6.如图,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2.(1)求证:△ABC≌△ADE;(2)找出图中与∠1、∠2相等的角(直接写出结论,不需证明).【答案】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,在△BAC和△DAE中{AB=AD∠BAC=∠DAE AC=AE,∴△ABC≌△ADE(SAS);(2)解:∵△ABC≌△ADE,∴∠B=∠D,∵∠AMB=∠DMF,∴∠1=∠MFD,∵∠MFD=∠NFC,∴∠1=∠NFC,∴与∠1、∠2相等的角有∠NFC,∠MFD.【解析】(1)根据等式的性质可得∠BAC=∠DAE,然后利用SAS判定△ABC≌△ADE;(2)利用三角形内角和定理可得∠1=∠MFD,再由对顶角相等可得∠1=∠NFC.此题主要考查了全等三角形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.7.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB.②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD−BE;(3)当直线MN绕点C旋转到图(3)的位置时,请写出DE,AD,BE之间的等量关系.【答案】解:(1)①∵AD⊥MN,BE⊥MN,∴∠ADC=∠ACB=90°=∠CEB,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴CE=AD,CD=BE,∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS);∴CE=AD,CD=BE,∴DE=CE−CD=AD−BE;(3)当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE−AD.理由如下:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS),∴CE=AD,CD=BE,∴DE=CD−CE=BE−AD.【解析】本题属于三角形综合题,主要考查了全等三角形的判定与性质的综合应用,解题时注意:全等三角形的对应边相等,同角的余角相等,解决问题的关键是根据线段的和差关系进行推导,得出结论.(1)①根据AD⊥MN,BE⊥MN,∠ACB=90°,得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB;②根据全等三角形的对应边相等,即可得出CE=AD,CD=BE,进而得到DE=CE+CD=AD+BE;(2)先根据AD⊥MN,BE⊥MN,得到∠ADC=∠CEB=∠ACB=90°,进而得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB,进而得到CE=AD,CD=BE,最后得出DE=CE−CD=AD−BE;(3)DE=BE−AD,与(2)同理,即可证明:DE=BE−AD.8.如图,已知∠AOB=∠COD=90°,AB=CD,OA=OC.求证:(1)△AOB≌△COD(2)DE=BF.【答案】证明:(1)∵∠AOB=∠COD=90°,∴在Rt△AOB和Rt△COD中,{AB=CDOA=OC,∴Rt△AOB≌Rt△COD(HL),即△AOB≌△COD;(2)∵△AOB≌△COD∴OD=OB,∠A=∠C,∵∠AOB=∠COD=90°∴∠AOB−∠EOF=∠COD−∠EOF,即∠AOE=∠COF在△AOE和△COF中,{∠AOE=∠COF OA=OF∠A=∠C,∴△AOE≌△COF(ASA),∴OE=OF,∵OD=OB,∴OD−OE=OB−OF,即DE=BF.【解析】(1)根据题意,利用HL定理可以证明结论成立;(2)根据(1)中的结论,再根据三角形全等的性质和判定,可以证明结论成立.本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求结论需要的条件,利用数形结合的思想解答.9. 以点A 为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD ,CE .(1)试说明:BD =CE ;(2)延长BD 交CE 于点F ,求∠BFC 的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.【答案】解:(1)∵△ABC 、△ADE 是等腰直角三角形,∴AB =AC ,∠BAD =∠EAC =90°,AD =AE ,∵在△ADB 和△AEC 中,{AD =AE ∠DAB =∠EAC AB =AC,∴△ADB≌△AEC(SAS),∴BD =CE .(2)∵△ADB≌△AEC ,∴∠ACE =∠ABD ,而在△CDF 中,∠BFC =180°−∠ACE −∠CDF ,又∵∠CDF =∠BDA ,∴∠BFC =180°−∠DBA −∠BDA =∠DAB =90°.(3)BD =CE 成立,且两线段所在直线互相垂直,即∠BFC =90°.理由如下:∵△ABC 、△ADE 是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠EAD =90°,∵∠BAC +∠CAD =∠EAD +∠CAD ,∴∠BAD =∠CAE ,∵在△ADB 和△AEC 中,{AD =AE ∠DAB =∠EAC AB =AC,∴△ADB≌△AEC(SAS),∴BD =CE ,∠ACE =∠DBA ,【解析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,对应角相等.也考查了等腰直角三角形的性质.(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可以得到∠BFC= 180°−∠ACE−∠CDF=180°−∠DBA−∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠CAB=90°.10.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.【答案】证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵{AE=AB∠EAC=∠BAF AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°−∠ABF−∠BDM=180°−90°=90°,所以EC⊥BF.【解析】(1)先求出∠EAC=∠BAF,然后利用“边角边”证明△ABF和△AEC全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得∠AEC=∠ABF,设AB、CE相交于点D,根据∠AEC+∠ADE=90°可得∠ABF+∠ADM=90°,再根据三角形内角和定理推出∠BMD=90°,从而得证.本题考查了全等三角形的判定与性质,根据条件找出两组对应边的夹角∠EAC=∠BAF 是证明的关键,也是解答本题的难点.11.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,{AB=AD∠BAC=∠DAE AC=AE,(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,{BF=GF∠AFB=∠AFG AF=AF,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,{∠GCA=∠DCA ∠CGA=∠CDA AG=AD,∴△CGA≌△CDA(AAS),∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【解析】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.(1)根据题意和题目中的条件可以找出△BAC≌△DAE的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.12.如图1,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,作FG⊥BC于点G;(1)求证:BE=CG(2)探究线段BE、EN、DN间的等量关系,并说明理由;(3)如图2,当点E运动到BC的中点时,若AB=6,求MN的长.【答案】(1)证明:∵EF⊥AE,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°∴∠GEF=∠BAE,又∵FG⊥BC,∴∠ABE=∠EGF=90°,在△ABE与△EGF中,{∠ABE=∠EGF ∠BAE=∠GEF AE=EF,∴△ABE≌△EGF(AAS),∴AB=EG,∴BE=CG.(2)解:结论:EN=BE+DN.理由:如图1中,延长EB到K,使得BK=DN.∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠D=∠ABC=∠ABK=90°,∵DN=BK,∴△ADN≌△ABK(SAS),∴AK=AN,∠BAK=∠DAN,∵EA=EF,∠AEF=90°,∴∠EAF=45°,∴∠KAE=∠BAK+∠BAE=∠DAN+∠BAE=45°,∴∠EAK=∠EAN=45°,∵AE=AE,∴△EAK≌△EAN(SAS),∴EN=EK,∵EK=BK+BE=DN+BE,∴EN=BE+DN.(3)解:如图2中,作FK⊥AB于K,交CD于J.∵BE=CE=3,∴FG=BE=CG=3,∵AB//CD,∴∠FKB=∠FJC=90°,∵∠G=∠JCG=90°,∴四边形FGCJ是矩形,∵CG=FG,∴四边形FGCJ是正方形,CG=FG=3,∵EC=CG,CM//FG,∴CM=12FG=32,∴JM=CJ−CM=32,∵四边形BGFK是矩形,∴FK=BG=9,BK=FG=AK=3,∵JN//AK,∴NJAK =FJFK,∴NJ3=39,∴NJ=1,∴MN=NJ+JM=1+32=52.【解析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等即可解决问题.(2)结论:EN=BE+DN.如图1中,延长EB到K,使得BK=DN.构造全等三角形解决问题即可.(3)如图2中,作FK⊥AB于K,交CD于J.分别求出NJ,JM即可解决问题.此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.13.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60゜,则∠AFB=________;(2)如图2,若∠ACD=α,则∠AFB=_____________(用含α的式子表示);(3)将图2中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),如图3.试探究∠AFB与α的数量关系,并予以证明.【答案】解:(1)120°;(2)180°−α;(3)∠AFB=180°−α,证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB,∴△ACE≌△DCB,∴∠AEC=∠DBC,∴∠AFB=∠AEC+∠CEB+∠EBD=∠DBC+∠CEB+∠EBC=∠CEB+∠EBC=180°−∠ECB=180°−α,即∠AFB=180°−α.【解析】本题考查了全等三角形的性质和判定,三角形外角性质,三角形的内角和定理(1)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;(2)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;(3)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CEB+∠CBE,根据三角形内角和定理求出即可.【解答】解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE=∠CDA+∠DAE+∠BAE=∠CDA+∠DAC=180°−60°=120°,故答案为:120°;(2)解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE=∠CDA+∠DAE+∠BAE=180°−∠ACD=180°−α,故答案为:180°−α;(3)见答案.14.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为_______,AE、BD所在直线的位置关系为________;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由.【答案】解:(1)AE=BD,AE⊥BD;(2)结论:AD=2CM+BD,理由:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠BDC=∠AEC=135°.∴∠ADB=∠BDC−∠CDE=135°−45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AD=DE+AE=2CM+BD.【解析】【分析】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.(1)结论:AE=BD,AE⊥BD.如图1中,延长AE交BD于点H,AH交BC于点O.只要证明△ACE≌△BCD(SAS),即可解决问题;(2)结论:AD=2CM+BD,只要证明△ACE≌△BCD(SAS),即可解决问题.【解答】解:(1)结论:AE=BD,AE⊥BD.理由:如图1中,延长AE交BD于点H,AH交BC于点O.∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°∴∠AHB=90°,∴AE⊥BD.故答案为AE=BD,AE⊥BD.(2)见答案.15.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,D在线段BC上,E是线段AD上一点.现以CE为直角边,C为直角顶点,在CE的下方作等腰直角△ECF,连接BF.(1)如图1,求证:∠CAE=∠CBF;(2)当A、E、F三点共线时,取AF的中点G,连接CG,求证:AE2+EF2=4CG2;(3)如图3,若AC=BC=3√3,∠BAD=15°,连接DF,当E运动到使得∠ACE=30°时,求△DEF的面积.【答案】(1)证明:∵△ABC,△ECF都是等腰直角三角形,∴CA=CB,CE=CF,∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∴△ACE≌△BCF(SAS),∴∠CAE=∠CBF;(2)解:延长AC至点H,使CH=AC,连接HF,BE.由(1)得:△ACE≌△BCF,∴AE=BF,且∠CAD=∠DBF,∵∠ADB=∠CAD+∠ACD=∠DBF+∠DFB,∴∠DFB=∠ACD=90°,∴BF2+EF2=BE2,易证△CEB≌△CFH,∴BE=HF=2CG,∴BF2+EF2=BE2=4CG2;(3)解:过点F作FH⊥BC于H,如图3所示:∵△ABC是等腰直角三角形,∠ACB=90°,AC=BC,∴∠BAC=∠ABC=45°,∵∠BAD=15°,∴∠CAE=45°−15°=30°,∴∠ACE=∠CAE=30°,∴AE=CE=CF,同(1)得:△ACE≌△BCF(SAS),∴BF=AE,∠ACE=∠BCF=30°,∴CF=BF,∴∠BCF=∠CBF=30°,∵FC=FB,FH⊥BC,∴CH=BH=12BC=3√32,FH=√33CH=32,CF=BF=2FH=3,∵∠CED=∠CAE+∠ACE=60°,∠ECD=90°−30°=60°,∴△ECD是等边三角形,∴EC=CF=CD=3,∴S△DEF=S△ECD+S△CDF−S△ECF=√34×32+12×3×32−12×3×3=9√3−94.【解析】(1)证明△ACE≌△BCF(SAS),即可解决问题;(2)延长AC至点H,使CH=AC,连接HF,BE,由(1)得△ACE≌△BCF,进而得到BF2+ EF2=BE2,易证△CEB≌△CFH,即可解决问题;(3)过点F作FH⊥BC于H,如图3所示,同(1)得△ACE≌△BCF,再证明△BCF是底角为30°的等腰三角形,再求出CH,FB,CF的长,然后根据S△DEF=S△ECD+S△CDF−S△ECF 计算即可.本题属于三角形综合题,考查了等腰直角三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.16.平面直角坐标系中,A(a,0),B(b,b),C(0,c),且满足:√a−4+(2b−a−c)2+|b−c|=0,E、D分别为x轴和y轴上动点,满足∠DBE=45°.(1)求A、B、C三点坐标;(2)如图1,若D为线段OC中点,求E点坐标;(3)当E,D在x轴和y轴上运动时,试探究CD、DE和AE之间的关系.【答案】解:(1)∵√a−4+(2b−a−c)2+|b−c|=0,∴a=4,b=c,2b−a−c=0,∴b=4,c=4,∴点A(4,0),点B(4,4),点C(0,4);(2)如图1,将△BCD绕点B逆时针旋转90°得到△BAH,∵点A(4,0),点B(4,4),点C(0,4),∴OA=OC=BC=AB=4,∵D为线段OC中点,∴CD=DO=2,∵将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∴BD=BH,∠CBD=∠HBA,CD=AH=2,∵∠DBE=45°,∴∠CBD+∠EBA=45°,∴∠EBA+∠ABH=45°=∠HBE=∠DBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∵OH=OA+AH=4+2=6,∴DE=EH=6−OE,∵DE2=OD2+OE2,∴(6−OE)2=4+OE2,∴OE=8,3,0);∴点E坐标为(83(3)如图1,若点E在x轴正半轴,点D在y轴正半轴上,由(2)可知:DE=EH,AH=CD,∴DE=AE+AH=AE+CD,如图2,点E在x轴负半轴,点D在y轴正半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴AE=AH+EH=CD+DE;如图3,点E在x轴正半轴,点D在y轴负半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴CD=AH=AE+EH=AE+DE.【解析】(1)由非负性可求a,b,c的值,即可求解;(2)将△BCD绕点B逆时针旋转90°得到△BAH,可得BD=BH,∠CBD=∠HBA,CD= AH=2,由“SAS”可证△DBE≌△HBE,可得DE=EH,由勾股定理可求OE的长,即可求E点坐标;(3)分三种情况讨论,由旋转的性质,全等三角形的性质可求解.本题是四边形综合题,考查了非负性,正方形的性质,旋转的性质,全等三角形的判定和性质,利用分类讨论思想解决问题是本题的关键.17.如图,在锐角三角形AOB中,分别以OA、OB为腰在△AOB外作等腰直角三角形OAE和等腰直角三角形OBD.(1)如图1,连接BE、AD,求证:BE=AD.(2)如图2,以O为原点、AB边上的高OC所在的直线为y轴.建立平面直角坐标系,连接ED与y轴交于点F.①若A点坐标为(n,m),请用n、m表示;E点的坐标(________,________)及D点的横坐标为________.②△AOB的面积S△AOB与△EOD的面积S△EOD有什么数量关系?请写出你的结果,并给出证明.【答案】解:(1)∵△OAE、△OBD均为等腰直角三角形,∴OD=OB,OA=OE,∠DOB=∠AOE=90°.∴∠EOA+∠AOB=∠BOD+∠AOB,即∠EOB=∠AOD.在Rt△EOB和Rt△AOD中,∴Rt△EOB≌Rt△AOD.∴BE=AD.(2)①m;−n;−m.②S△AOB=S△EOD,证明如下:如图所示:过点B作BN⊥OA,垂足为N,过点D作DM⊥OE,垂足为M.∵∠EOD+∠DOM=180°,∠EOD+∠NOB=180°,∴∠DOM=∠NOB.在△OBN和△ODM中,∴△OBN≌△ODM.∴MD=BN.又∵AO=OE,∴12AO⋅BN=12OE⋅DM,即S△AOB=S△EOD.【解析】【分析】本题主要考查三角形全等的性质与判定,等腰直角三角形的性质与判定,点的坐标的确定等知识的综合运用.(1)依据等腰直角三角形的性质可得到OD=OB,OA=OE,∠DOB=∠AOE=90°,然后依据等式的性质可证明∠EOB=∠AOD,接下来,依据SAS可证明Rt△EOB≌Rt△AOD,最后,依据全等三角形的性质可得到BE=AD.(2)①过点E作EG⊥y轴,垂足为G,过点D作DH⊥x轴,垂足为H.先证明∠OEG=∠AOC,然后再证明△OEG≌△AOC,依据全等三角形的性质可得到OG=AC,EG=OC,从而可得到点E的坐标,接下来再证明△ODH≌△OBC.从而可得到OH=OC,故此可得到点D的横坐标;②过点B作BN⊥OA,垂足为N,过点D作DM⊥OE,垂足为M,先证明△OBN≌△ODM,从而可得到MD=BN,最后,依据三角形的面积公式求解即可.【解答】(1)见答案;(2)①如图所示:过点E作EG⊥y轴,垂足为G,过点D作DH⊥x轴,垂足为H.∵∠EOA=90°,∴∠EOG+∠AOC=90°.又∵∠EOG+∠OEG=90°,∴∠OEG=∠AOC.在△OEG和△AOC中,∴△OEG≌△AOC.∴OG=AC,EG=OC.∵A(n,m)∴E(m,−n).∵∠DOH+∠HOB=90°,∠HOB+∠BOC=90°,∴∠DOH=∠BOC.在△ODH和△OBC中,∴△ODH≌△OBC.∴OH=OC.∴点D的横坐标为−m.故答案为:m;−n;−m;②见答案.18.已知,△ABC是等边三角形,D是直线BC上一点,以D为顶点做∠ADE=60°.DE交过C且平行于AB的直线于E,求证:AD=DE;当D为BC的中点时,(如图1)小明同学很快就证明了结论:他的做法是:取AB的中点F,连结DF,然后证明△AFD≌△DCE.从而得到AD=DE,我们继续来研究:(1)如图2、当D是BC上的任意一点时,求证:AD=DE(2)如图3、当D在BC的延长线上时,求证:AD=DE(3)当D在CB的延长线上时,请利用图4画出图形,并说明上面的结论是否成立(不必证明).【答案】(1)证明:在AB上截取AF=DC,连接FD,如图2所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠BFD=60°,∴∠AFD=120°,又∵AB//CE,∴∠DCE=120°=∠AFD,而∠EDC+∠ADE=∠ADC=∠FAD+∠B∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中{∠FAD=∠CDE AF=CD∠AFD=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE;(2)证明:在BA的延长线上截取AF=DC,连接FD,如图3所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠F=60°,又∵AB//CE,∴∠DCE=60°=∠F,而∠FAD=∠B+∠ADB,∠CDE=∠ADE+∠ADB,又∵∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,{∠FAD=∠CDEAF=CD∠F=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE;(3)解:AD=DE仍成立.理由如下:在AB的延长线上截取AF=DC,连接FD,如图4所示:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠FAD+∠ADB=60°,又∵AF=DC,∴BF=BD,∵∠DBF=∠ABC=60°,∴△BDF是等边三角形,∴∠AFD=60°,又∵AB//CE,∴∠DCE=∠ABC=60°,∴∠AFD=∠DCE,∵∠ADE=∠CDE+∠ADB=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,{∠FAD=∠CDE AF=CD∠AFD=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE.【解析】(1)在AB上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(2)在BA的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形得出∠F=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(3)在AB的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD= 60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论.本题是三角形综合题目,考查了全等三角形的判定与性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解题的关键.19.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时,如图1,线段CE、BD的位置关系为______,数量关系为______;②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由;(2)如图3,如果AB≠AC∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE ⊥BC ?小明通过(1)的探究,猜想∠ACB =45°时,CE ⊥BC.他想过点A 做AC 的垂线,与CB 的延长线相交,构建图2的基本图案,寻找解决此问题的方法.小明的想法对吗?如不对写出你的结论;如对按此方法解决问题并写出理由.【答案】垂直 相等【解析】解:(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE =BD .理由:如图1,∵∠BAD =90°−∠DAC ,∠CAE =90°−∠DAC ,∴∠BAD =∠CAE .又BA =CA ,AD =AE ,∴△ABD≌△ACE (SAS)∴∠ACE =∠B =45°且CE =BD .∵∠ACB =∠B =45°,∴∠ECB =45°+45°=90°,即CE ⊥BD .故答案为:垂直,相等;②都成立∵∠BAC =∠DAE =90°,∴∠BAC +∠DAC =∠DAE +∠DAC ,∴∠BAD =∠CAE在△DAB 与△EAC 中,{AD =AE ∠BAD =∠CAE AB =AC∴△DAB≌△EAC(SAS),∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD(2)小明的想法对的当∠ACB =45°时,CE ⊥BD理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB=45°,∠AGC=90°−∠ACB,∴∠AGC=90°−45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,{AC=AG∠DAG=∠EAC AD=AE∴△GAD≌△CAE(SAS),∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥BC(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.本题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解.20.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B、C作过点A的直线的垂线BD、CE,垂足为D、E.求证:(1)△ABD≌△CAE;(2)DE=BD+CE.【答案】证明:(1)∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∵∠BAC=90°,∴∠DAB+∠DBA=∠DAB+∠EAC,∴∠DBA=∠EAC;在△ABD与△CAE中,∵{∠DBA=∠EAC ∠BDA=∠AEC AB=AC,∴△ABD≌△CAE(AAS),(2)由(1)得:△ABD≌△CAE,∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE.【解析】证明∠DBA=∠EAC,这是解决该题的关键性结论;证明△ABD≌△CAE,得到BD=AE,AD=CE,即可解决问题.该题主要考查了全等三角形的判定及其性质的应用问题;准确找出命题中隐含的等量关系,是证明全等三角形的关键.21.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE= BD+CE是否成立?如成立;请你给出证明;若不成立,请说明理由.【答案】证明:(1)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.【解析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出∠CAE=∠ABD是解题关键.(1)根据BD⊥直线l,CE⊥直线l得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD= CE,于是DE=AE+AD=BD+CE;(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°−α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案.22.如图①,已知CA=CB,CD=CE,∠ACB=∠DCE=ɑ,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含ɑ的式子表示∠AMB的度数(3)当ɑ=90°时,AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.【答案】解:(1)如图①,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,{CA=CB;∠ACD=∠BCECD=CE,∴△ACD≌△BCE(SAS),∴BE=AD;(2)如图①,∵△ACD≌△BCE,∴∠CAD=∠CBE,∵△ABC中,∠BAC+∠ABC=180°−α,∴∠BAM+∠ABM=180°−α,∴△ABM中,∠AMB=180°−(180°−α)=α;(3)△CPQ为等腰直角三角形.证明:如图②,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,{CA=CB∠CAP=∠CBQ AP=BQ,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.【解析】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的判定以及三角形内角和定理的综合应用.等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解题时注意掌握全等三角形的对应边相等,对应角相等的运用.(1)由CA=CB,CD=CE,∠ACD=∠BCE,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP=∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.23.据图回答问题(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE= BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,。
全等三角形的性质(3个考点八大题型)【题型01:全等图形的概念】【题型02:全等三角形的对应元素的判断】【题型03:全等三角形的性质-求长度】【题型04:全等三角形的性质-求角度】【题型05:全等三角形的性质-判断结论】【题型06:全等三角形的性质-探究线段和角度之间的关系】【题型07:全等三角形的性质-动点问题】【题型08:全等三角形的性质-证明题】【题型01:全等图形的概念】1.下列各组图形中,是全等图形的是()A.B.C.D.2.下列各组图形中,属于全等图形的是()A.B.C.D.3.下列叙述中错误的是()A.能够完全重合的两个图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.平移、翻折、旋转前后的图形全等4.下列各选项中的两个图形属于全等图形的是()A.B.C.D.【题型02:全等三角形的对应元素的判断】5.(2022秋•荆州月考)如图,四边形ABCD≌四边形A′B′C′D′,若∠B=90°,∠C=60°,∠D′=105°,则∠A′= °.6.(2022春•南阳期末)如图,四边形ABCD≌四边形A'B′C'D',若∠A=110°,∠C=60°,∠D′=105°,则∠B= .7.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′= ,∠A= ,B′C′= ,AD= .8.如图,△ABC 中,点A(0,1),点C(4,3),如果要使△ABD 与△ABC 全等,那么符合条件的点 D 的坐标为 .【题型03:全等三角形的性质-求长度】9.如图,A,B,C三点共线,D,E,B三点共线,且△ABD≌△EBC,AB=5,BC=12,则DE长为()A.5B.6C.7D.810.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,若测得∠A=∠D=90°,AB=3,DG=1,AG=2,则梯形CFDG的面积是( )A.5B.6C.7D.811.如图,点B、C、D在同一直线上,若△ABC≌△CDE,DE=3,BD=10,则AB等于()A.5B.6C.7D.812.如图,△ABC≌△DEC,B、C、D在同一直线上,且CE=6,AC=8,则BD长()A.12B.14C.16D.1813.如图,△ABC≌△DEF,BC=7,则EF的长为()A.7B.5C.3D.214.如图,△ABC≌△DEC,点E在AB上,AC与DE相交于点F,BC=6,BE=3.则△EBC的周长为()A.15B.16C.17D.1215.如图所示,△ABC≌△DEF,AD=8,AE=2,则AB的长是()A.10B.8C.6D.416.如图,已知△AEC≌△ADB,若AB=5,AD=3,则BE的长为()A.5B.4C.3D.2【题型04:全等三角形的性质-求角度】17.已知下图中的两个三角形全等,则∠α等于()A.72°B.58°C.60°D.50°18.如图,△ABC≌△ADE,∠B=30°,∠E=115°,则∠BAC的度数是()A.35°B.30°C.45°D.25°19.如图,点D,E分别在线段AB,AC上,BE与CD相交于点N.若△ABE≌△ACD,且∠A=65°,∠C=25°,则∠AEB的度数为( )A.80°B.90°C.100°D.105°20.如图,△ABC≌△A′B′C,若∠B=25°,∠A=70°,∠A′CB=45°,则∠B′CB的度数为()A.25°B.30°C.35°D.40°21.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,若∠D=79°,∠CAB=41°,则∠DBC的度数为()A.19°B.20°C.41°D.60°22.如图,AB⊥CD,△ABC≌△ADE,∠C=53°,则∠D=()A.47°B.35°C.37°D.53°23.如下图,已知△ABC≌△DBE,点D恰好在AC的延长线上,∠DBE=20°,∠BDE=41°.则∠BCD的度数是()A.60°B.62°C.61°D.63°24.如图,△ABC≌△AED,点E在线段BC上,∠1=56°,则∠BAE的度数为()A.34°B.56°C.62°D.68°25.如图,△ABC≌△DBE,∠ABC=80∘,∠E=35∘,则∠D的度数为()A.80∘B.35∘C.65∘D.115∘【题型05:全等三角形的性质-判断结论】26.如图,△ABD≌△EBC,AB=12,BC=5,A、B、C三点共线,则下列结论中:①CD⊥AE;②AD⊥CE;③ED=8;④∠EAD=∠ECD;正确的有( )A.1个B.2个C.3个D.4个27.如图,△ABC≌△CDA,AB与CD,BC与DA是对应边,则下列结论错误的是()A.∠BAC=∠DCA B.AB∥DCC.∠BCA=∠DCA D.BC∥DA28.如图,已知△ABC≌△AED,则下列边或角的关系正确的是()A.∠C=∠D B.∠CAB=∠AED C.AC=ED D.BC=AE29.如图,已知△OAB≌△OA1B1,AB与A1O交于点C,AB与A1B1交于点D,则下列说法错误的是( )A.∠A=∠A1B.AO=COC.OB=OB1D.∠AOC=∠A1DC30.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是().A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠ABD=∠CBD D.AD∥BC,且AD=CB31.如图,若△ABC≌△DCB,则下列结论错误的是()A.∠A=∠D=90°B.S△ABC=S△DCBC.CD∥AB D.AC=DB【题型06:全等三角形的性质-探究线段和角度之间的关系】32.如图所示,已知AD⊥BC于点D,△ABD≌△CFD.(1)若BC=10,AD=7,求BD的长.(2)试判断AB和CF的关系,并说明理由33.已知:如图所示,AC平分∠BAD,CE⊥AB于点E,CF⊥AD交AD的延长线于点F,在AB 上有一点M,且CM=CD.(1)若AF=12,DF=4,求AM的长.(2)试说明∠CDA与∠CMA的关系.34.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)直接写出AB,AC,AE之间的等量关系.35.△ABC在中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN 于点E.(1)当直线MN绕点C旋转到图1的位置时,猜想线段DE、AD与BE有怎样的数量关系?请写出这个关系,并加以证明;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD―BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系不必证明.36.阅读理解:课外兴趣小组活动时,老师提出了如下问题:在△ABC中,AB=7,AC=3,求BC边上的中线AD的取值范围.(1)小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD到Q使得DQ=AD;②再连接BQ,把AB、AC、2AD集中在△ABQ中;③利用三角形的三边关系可得4<AQ<10,则AD的取值范围是___________.感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)请写出图1中AC与BQ的位置关系并证明;(3)思考:已知,如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°,试探究线段AD与EF的数量和位置关系,并加以证明.37.(1)如图1,△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2=__________;(2)如图2,在△ABC中,∠A=40°,剪去∠A后成为四边形,则∠1+∠2=__________;(3)如图2,根据(1)和(2)的求解过程,请归纳∠1+∠2与∠A的关系是______________;(4)若没有剪去∠A,而是将∠A折成如图3的形状,试探究∠1+∠2与∠A的关系,并说明理由.【题型07:全等三角形的性质-动点问题】38.如图,在△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点.如果点P 在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上以a厘米/秒的速度由C点向A点运动.当△BPD与△CQP全等时,a的值为()A.3B.4C.4或6D.2或339.如图,∠A=∠B=90°,AB=60,E、F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为()A.18B.70C.88或62D.18或7040.如图,在Rt△ABC中,AC=6,BC=8,AB=10.点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B向终点B运动,同时点Q从点B出发,以每秒3个单位长度的速度沿折线B﹣C﹣A向终点A运动,点P,Q都运动到各自的终点时停止.设运动时间为t(秒),直线l经过点C,且l∥AB,过点P,Q分别作直线l的垂线段,垂足为E,F.当△CPE与△CQF全等时,t的值不可能是( )A.2B.2.8C.3D.641.如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,当P、Q两点同时出发t分钟后△CAP全等于△PBQ,则此时t的值是()A.4B.6C.8D.1042.《姑苏繁华图》是清代苏州籍宫廷画家徐扬的作品,全长1241cm,如图,AB=12cm,∠A=∠B=60°,AC=BD=9cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上以x(cm/s)的速度由点B向点D运动,它们运动的时间为t(s),当△ACP 与△BPQ全等时,x的值是()A.2B.1或1.5C.2或1.5D.2或343.如图,在Rt△ABC中,∠C=90°,点M,N分别在AC的垂线AX与线段AC上移动,MN=AB,AC=12cm,BC=6cm,若△ABC和以点M、N、A为顶点的三角形全等,则AN 的值为()A.12cm B.12cm或6cm C.11cm或7cm D.6cm【题型08:全等三角形的性质-证明题】44.如图,△ABD≌△CFD,且点B,D,C在一条直线上,点F在AD上,延长CF交AB于点E.(1)试说明:CE⊥AB.(2)若BD=3,AF=1,求BC的长.45.如图所示,△ABC≌△ADE,若∠BAD=100°,∠CAE=40°,求∠BAC的度数.46.如图,点D,A,E在同一条直线上,BD⊥DE于点D,CE⊥DE于点E,且△ABD≌△CAE,AD=2cm,BD=4cm.求:(1)DE的长;(2)∠BAC的度数.47.如图,A,E,C三点在同一直线上,且△ABC≌△DAE.(1)求证:DE=CE+BC;(2)猜想:当△ADE满足什么条件时DE∥BC?并证明你的猜想.48.如图所示,已知AD⊥BC于点D,△ABD≌△CFD.(1)若BC=10,AD=7,求BD的长;(2)求证:CE⊥AB.49.如图,已知△ABF≌△CDE.(1)若∠B=45°,∠DCF=25°,求∠EFC的度数;(2)若BD=10,EF=5,求BF的长.。
14.3全等三角形的概念与性质(2)画三角形一、单选题1.利用基本作图,不能作出唯一三角形的是()A.已知三边B.已知两边及其夹角C.已知两角及其夹边D.已知两边及其中一边的对角【答案】D【分析】根据全等三角形的判定定理一一判断即可.【详解】A.根据SSS定理可知能作出唯一三角形,故本选项错误;B.根据SAS定理可知能作出唯一三角形,故本选项错误;C.根据ASA定理可知能作出唯一三角形,故本选项错误;D.根据已知两边及其中一边的对角不能作出唯一三角形,故本选项正确.故选D.【点睛】本题考查了全等三角形的判定定理,熟练掌握定理是解题的关键.2.根据下列已知条件,能画出唯一的△ABC的是( )A.AB=3,BC=4,∠C=40°B.AB=4,BC=3,∠A=30°C.∠C=90°,AB=6D.∠A=60°,∠B=45°,AB=4【答案】D【分析】根据全等三角形的判定方法,进行判断即可得到答案.【详解】解:当∠A=60°,∠B=45,AB=4时,根据“ASA”可判断△ABC的唯一性.故选D.【点睛】本题考查了作图——复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定.3.根据下列条件不能唯一画出△ABC的是( )A.AB=5,BC=6,AC=7 B.AB=5,BC=6,∠B=45︒C.AB= 5,AC=4,∠C= 90︒D.AB=5,AC=4,∠C=45︒【答案】D【分析】判断其是否为三角形,即两边之和大于第三边,两边之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形并不是唯一存在,可能有多种情况存在.【详解】解:A、AC 与BC两边之和大于第三边,∴能作出三角形,且三边知道能唯一画出∆ABC ;B、∠B 是AB ,BC 的夹角,故能唯一画出∆ABC ;C、根据HL可唯一画出∆ABC;D、∠C 并不是AB ,AC 的夹角,故可画出多个三角形.故选 D.【点睛】考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.4.按下列条件不能作出惟一三角形的是().A.已知两角夹边B.已知两边夹角C.已知两边及一边的对角 D.已知两角及其一角对边【答案】C试题分析:根据判定两个三角形全等的一般方法依次分析各项即可.A、B、D三个选项分别符合全等三角形的判定方法ASA,SAS,AAS,故能作出唯一三角形;C、只有涉及的两个三角形同为锐角三角形或者钝角三角形或者直角三角形时,才成立.故选C.考点:本题考查了全等三角形的判定点评:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.根据下列条件作出的三角形不唯一是()A.AB=6,∠A=60°,∠C=40° B.AB=5,BC=4,CA=6C.AB=5,AC=4,∠C=40° D.∠A=50°,AB=8,AC=6【答案】C【解析】试题解析:C.∠C并不是AB,AC的夹角,所以可画出多个三角形,故此选项错误;故选C.6.根据下列条件能作出唯一的三角形的是()A.AB=5,BC=7,∠A=30°B.AB=4,BC=7,CA=9C.∠A=60°,∠B=45°,∠C=75°D.∠C=90°,AB=8【答案】B试题解析:A. ∠A并不是AB,BC的夹角,所以可画出多个三角形,故此选项错误;B. 三边确定,则形状固定,所以可作唯一三角形,故此选项正确;C. 三个角相等的三角形有无数个,故此选项错误;D. 908C AB ∠==,, 可画出多个三角形,故此选项错误.故选B.7.如图,小王做试题时,不小心把题目中的三角形用墨水弄污了一部分,他想在一张白纸上作一个完全一样的三角形,然后粘贴在上面,他作图的依据是( )A .SSSB .SASC .ASAD .AAS【答案】C 试题解析:图中的三角形已知一条边以及两个角,则他作图的依据是ASA.故选C.二、解答题8.已知线段a ,b 和α∠,用尺规作ABC ∆,使AB a ,AC b =,2A α∠=∠(不写作法,保留作图痕迹并标明字母)【分析】首先作∠A=2α,再在∠A 的一边上截取AB=a ,AC=b ,连接BC ,即可得到ABC ∆【详解】解:尺规作图答案不唯一,例如:或ABC ∆即为所求作三角形【点睛】本题考查复杂作图,关键是掌握做一个角等于已知角的方法,属于中考常考题型.9.已知三角形的两角及夹边,求作这个三角形(保留痕迹,不写作法)已知:,αβ∠∠ , 线段c ,求作ABC ∆,使,,A B AB c αβ∠=∠∠=∠=【分析】根据作一个角等于已知与作线段等于已知线段的作法即可画出△ABC【详解】解:△ABC 为所求作【点睛】本题考查尺规作图,解题的关键熟练尺规作图的基本方法,本题属于基础题型.10.已知∠α,线段a ,b ,求作:△ABC ,使∠B =∠α,AB =2a ,BC =b .(要求:用直尺和圆规作图,保留作图痕迹,不写作法及证明)【分析】作∠MBN =∠α,然后在BM 、BN 上分别截取BA =2a ,BC =b ,从而得到△ABC .【详解】解:如图,△ABC 为所作.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).11.已知:如图,∠1,∠2和线段m .求作:△ABC ,使∠A =∠1,∠B =∠2,AB =2m .【分析】先作线段AB =2m ,再利用基本作图(作一个角等于已知角)作∠CAB =∠1,∠ABC =∠2,AC 与BC 相交于C ,则△ABC 为所作.【详解】如图,△ABC 为所求.【点睛】此题考查尺规作图能力,正确掌握角的作图方法是解题的关键.12.作图题:如图,已知,αβ∠∠,线段a ,求作ABC ∆,使,,A B AB a αβ∠=∠∠=∠=. (尺规作图,不写作法,保留作图痕迹).【分析】先作∠MAN=∠α,再截取AB=a ,然后作∠ABC=∠β交AM 于C ,则△ABC 满足条件.【详解】即为所求ABC【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法,正确掌握作一角等于已知角的方法是解题关键.13.如图,已知线段AB,利用尺规作图,作出一个以线段AB为边的等边三角形ABC.(保留作图痕迹,不写作法)【分析】分别以A和B两点为圆心,以AB为半径画弧,两弧相加的点即为C点,连接AC和BC,即可得出答案.【详解】解:【点睛】本题考查的是尺规作图,需要熟练掌握等边三角形的性质.。
第十一章:全等三角形一、基础知识1.全等图形的有关概念 (1)全等图形的定义能够完全重合的两个图形就是全等图形。
例如:图13-1和图13-2就是全等图形图13-1图13-2 (2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。
例如:图13-3和图13-4中的两对多边形就是全等多边形。
图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。
(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE ≌五边形A ’B ’C ’D ’E ’(这里符号“≌”表示全等,读作“全等于”)。
图13-5表示图形的全等时,要把对应顶点写在对应的位置。
(5)全等多边形的性质全等多边形的对应边、对应角分别相等。
A B DC E B ’A ’ C ’ D ’ E ’(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。
2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。
(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。
相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
21.三角形全等➢知识过关1.全等三角形:能够完全重合的两个三角形叫全等三角形.2.全等三角形的性质:全等三角形的_________相等,________相等.3.全等三角形的判定定理:(1)一般三角形有________,_________,________,_________(2)直角三角形还有___________4.角平分线的性质及判定(1)角平分线上的点到角两边的______相等.(2)角的内部到角两边的________相等的点在角的平分线上.➢考点分类考点1探究三角形的全等条件例1如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AD=DC B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED 考点2全等三角形的性质与判定例2如图,∠1=∠2,AB=AE,添加一个条件,使得△ABC≌△AED.考点3角平分线的性质及判定例3如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证:CE⊥AB;(2)已知BC=7,AD=5,求AF的长.➢真题演练1.如图,若△ABC≌△ADE,则下列结论中一定成立的是()A.AD=DC B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED 2.如图,△ABC≌△DEC,点E在线段AB上,∠B=75°,则∠BCE的度数为()A.30°B.35°C.40°D.45°3.如图,N,C,A三点在同一直线上,N,B,M三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM的度数等于()A.10°B.20°C.30°D.40°4.如图,在△ABC中,∠BCA=90°,CA=CB,AD为边BC边上的中线,CG⊥AD于G,交AB于F,过点B作BC的垂线交CG于点E.有下列结论:①△ADC≌△CEB;②DF =EF;③F为EG的中点;④∠ADC=∠BDF;⑤G为CF的中点.其中正确的结论有()个.A.4B.3C.2D.15.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论不正确的是()A.△ABD≌△ACE B.∠ACE+∠DBC=45°C.BD⊥CE D.∠BAE+∠CAD=200°6.如图,△ABC,△CDE是等边三角形,C为线段AE上一点,则以下五个结论正确的个数有()个.①△CEB≌△CDA②AD=BE③∠AOE=120°④CM=CN⑤OC平分∠BCDA.2B.3C.4D.57.如图,已知:AC=BC,DC=EC,∠ACB=∠ECD=90°,现有下列结论:①△BDC≌△AEC;②若∠EBD=38°,则∠AEB=128°;③BD=AE;④AE所在的直线⊥BD.其中正确的有()A.1个B.2个C.3个D.4个8.下列结论中,正确的有①对顶角相等;②两直线平行,同旁内角相等;③面积相等的两个三角形全等;④有两边和一个角分别对应相等的两个三角形全等;⑤钝角三角形三条高所在的直线交于一点,且这点在钝角三角形外部.()A.2个B.3个C.4个D.5个9.△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v为厘米/秒.10.如图,△ABC为等边三角形,F,E分别是AB,BC上的一动点,且AF=BE,连结CF,AE交于点H,连接BH.给出下列四个结论:△△AHF=60°;△若BH=HC,则AE平分△BAC;△S四边形BEHF>S△AHC;△若BH△CF,则CH=2HA.其中正确的结论有(填写所有正确结论的序号).11.如图,已知△ABF≌△CDE.(1)若∠B=40°,∠DCF=30°,求∠EFC的度数;(2)若BD=10,EF=4,求BF的长.12.如图,线段AD、BE相交于点C,且△ABC≌△DEC,点M、N分别为线段AC、CD的中点.求证:(1)ME=BN;(2)ME∥BN.➢课后作业1.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE,PF分别交AB,AC于点E,F(点E不与A,B重合),给出以下五个结论中正确的有()①△PF A≌△PEB;②EF=AP;③△PEF是等腰直角三角形;④S四边形AEPF=12S△ABC.A.1个B.2个C.3个D.4个2.如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D,E为BC边上的两点,且∠DAE=45°,连接EF,BF,下列结论:①△AED≌△AEF;②BF=CD;③BE+DC>DE;④BE2+DC2=DE2.其中正确的有()A.1个B.2个C.3个D.4个3.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=30°,如图,连接AC,BD交于点M,AC与OD相交于E,BD与OA相交于F,连接OM.则下列结论中:①AC=BD;②∠AMB=30°;③△OEM≌△OFM;④MO平分∠BMC.正确的个数有()A.1个B.2个C.3个D.4个4.已知:如图,△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BDC=∠AED;③AE=AD=EC;④S四边形ABCE=BF×EF.其中正确的个数是()A.1个B.2个C.3个D.4个5.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC;⑤若AF=2,则DE=4.其中正确的有()个.A.①②④B.①②④⑤C.①②⑤D.①②③⑤6.如图,在△ABC中,AC=BC,∠ACB=90°,M是AB边上的中点,点D、E分别是AC、BC边上的动点,DE与CM相交于点F且∠DME=90°.则下列5个结论:(1)图中共有两对全等三角形;(2)△DEM是等腰三角形;(3)∠CDM=∠CFE;(4)AD+BE =AC;(5)四边形CDME的面积发生改变.其中正确的结论有()个.A.2B.3C.4D.57.如图,B、C(O),E四点在同一条直线上,∠B=∠E=90°,AB=CE,请添加一个适当的条件,使得△ABC≌△OEF(只需写一个,不添加辅助线)8.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E,AD=11,DE=7,则BE的长为.9.如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.(1)当α=150°时,试判断△AOD的形状,并说明理由;(2)探究:当α为多少度时,△AOD是等腰三角形,请说明理由.10.已知,△ABC是等边三角形,点D、E分别是BC边、AB边上的点,且BE=CD,连接AD、CE交于点F,过A作AH⊥CE于H.(1)如图1,求证:∠BCE=∠CAD;(2)如图2,过点B作BG⊥AD于G.直接写出图中所有的全等三角形.11.如图,在Rt△ABC中,∠ACB=90°,AC=BC,AE⊥CE,BF⊥CE于点F.(1)求证:△AEC≌△CFB;(2)若AE=5,EF=7,求AB的长.12.如图,在等边△ABC的边AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点O.(1)求证:△ABD≌△CAE;(2)求∠BOE的度数.13.如图:AB=AC,AD=AE,∠CAB=∠EAD,F为BD和CE的交点.(1)求证:BD=CE;(2)连接AF,求证:AF平分∠BFE.14.如图,△ABC和△CDE均为等边三角形,且A,D,E在同一条直线上,连接BD,BE.(1)求证:BE=AD;(2)若∠DBE=90°,求证:AD=12 DE.15.如图,△ACD、△BCE都是等边三角形,BD分别与AE、AC相交于点M、N.(1)证明:BD=AE;(2)求∠AMN的度数.➢冲击A+如图1,半径为3的⊙O中任作一个圆内接△ABC,D为劣弧AC上一动点,连接DA,DB,DC且DB,AC相交于点E.(1)求证:△ADE∽△BCE;(2)如图2,当BD过圆心O时,有DE=1,∠AEB=60°,求此时AC的长;(3)如图3,当D运动到某一位置时,过E作直线垂直于BC,垂足为F,与AD边交于点G,恰有AG=EG,若AB+CD=8,且CD<AB,求此时CD的长.。
【知识梳理】【听课笔记】第十二章全三角形12.1 全等三角形
1.全等三角形的相关概念
(1)全等图形:能够的两个图形叫做全等形.
(2)全等三角形的定义:能够的两个三角形叫做全等三角形.
(3)对应顶点:全等三角形中互相重合的顶点叫做对应顶点.
(4)对应边:全等三角形中互相重合的边叫做对应边.
(5)对应角:全等三角形中互相重合的角叫做对应角.
2.全等三角形的特征
(1)全等三角形形状与大小完全相等,与位置无关;
(2)一个三角形经过平移、翻折、旋转可以得到与它全等的三角形;
3.全等三角形的性质
全等三角形的性质:全等三角形的对应角相等,对应边相等,对应“四线”相等,对应周长、面积也相等.
【范例分析】
【题型1】全等三角形的概念
1.如图,△ABC绕着点C逆时针旋转得到△DEC,则△ABC与△DEF的关系是什么?若点A与点D,点B与点E是对应顶点,写出这两个三角形的对应边和对应角.
【变式训练】
1.在下列各组图形中,是全等的图形是()
A B C D
2.下列说法正确的是()
A.形状相同的两个三角形全等
B.面积相等的两个三角形全等
C.完全重合的两个三角形全等
D.所有的等边三角形全等
3.下列命题中:(1)形状相同的两个三角形是全等形;(2)在两个全等三角形中,相等的角是对应角,相等的边是对应边;(3)全等三角形对应边上的高、中线及对应角平分线分别相等,其中说法正确的个数有()
A.3个
B.2个
C.1个
D.0个
4.如图,将△ABC沿AC对折,点B与点E重合,则全等的三角形有 .
5.如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其它对应边和对应角.
6.如图,△ACB≌△DFE,∠ABC与∠E是对应角,AB与DE是对应边.请写出其他对应边及对应角.
【题型2】全等三角形的性质
如图,若△ABC ≌△DEF ,回答下列问题:
(1)若△ABC 的周长为17cm ,BC=6cm ,DE=5cm ,则DF= cm.
(2)若∠A=50°,∠E=75°,求∠B 与∠ACB.
【变式训练】
1.若△ABC ≌△DEF ,且△ABC 的周长为100cm ,则△DEF 的周长为 ,若A 、B 分别与D 、E 对应,且AB =35cm ,DF =30cm ,则EF 的长为 .
2.如图,若△EFG ≌△NMH ,∠F 与∠M 是对应角,FH =1.1cm ,HM =
3.3cm ,则HG = cm.
3.如图,把△ABC 沿直线BA 翻折至△ABD ,那么△ABC 和△ABD 全等图形(填“是”或“不是”);若CB =5,则DB = ;若△ABC 的面积为10,则△ABD 面积为 .
4.如图,若△AEB ≌△DFC ,AE ⊥BC ,DF ⊥CB ,∠C =28°,则∠A= .
5.如图,若△ABC ≌△DEF , AB =DE ,∠B =50°,∠C =70°,∠E =50°,AC =2 cm. 求∠D 的度数及DF 的长.
6.如图,△ABC ≌△ADE ,∠DAC =60°,∠BAE =100°,BC 、DE 相交于点F.
求∠DFB 的度数.
第3题 F E D
C B A 第4题 第2题。