呋喃噻吩吡咯的反应
- 格式:ppt
- 大小:452.00 KB
- 文档页数:29
1、葡萄糖在水中存在链形和环状各种形式,其中_____的浓度最高。
1. D. 呋喃糖2.链形葡萄糖3.β-D-(+)-吡喃葡萄糖4.α-D-(+)-吡喃糖2、1.2.3.4.3、下列分子在气相时碱性最强的是()1. B. (CH3CH2)2NH2. (CH3CH2)3N3. PhNH24. CH3CH2NH24、下列化合物中,____不属于甾体化合物。
()1.维生素D2.麦角固醇3.胆固醇4.维生素A5、下列化合物中酸性最强的是____。
1.2.3.4.6、下列化合物中,()不能与水以任何比例混合。
1. C. 乙酸乙酯2. N,N-二甲基甲酰胺3.乙酸4.乙醇7、吲哚的芳香亲电取代反应主要在______上发生。
1.苯环的C-72.杂环的C-33.苯环的C-54.杂环的C-28、命名下列杂环化合物()1. 1,3-二甲基吡咯2. 1,3-二甲基吡啶3. 3,5-二甲基吡咯4. 3,5-二甲基吡啶9、下列基团中____可用于保护氨基1. PMBM2. Fmoc3. THP(四氢吡喃基)4.硅保护基,例如三乙基硅基(TES)10、1. E.2.3.4.11、下列化合物中,____不属于吲哚环系生物碱。
()1.番木鳖碱2.利血平3.吗啡4.马钱子碱12、羧基被苯甲基保护的二肽常用______将保护基除去。
1.稀碱水解2.高温水解3. Pd-C催化氢化4.温和酸性水解法13、1.2.3.4.14、下列化合物中酸性最强的是____。
1.环戊二烯2.乙烯3.乙烷4.乙炔15、苯炔中碳碳三键的碳原子为()杂化。
1. sp2. sp23. sp34. sp416、吡啶的亲电取代反应主要发生在____位。
1. C-22. C-33. N4. C-417、营养上必须的维生素(vitamin)A1,是一个油性的物质,在蛋黄及鱼肝油内都存有这个物质,它是一个_1.四2.二3.三4.单18、下列哪种方法可用于分析C-端氨基酸单元()。
一、烷、烯、炔一、烷烃、烯烃、炔烃的结构特征1、烷烃包括开链烷烃和环状烷烃,通式分别为C n H2n+2和C n H2n。
C-C和C-H都是单键。
2、烯烃的结构,烯烃具有一个不饱和度,与单环烷烃是同分异构体。
3、炔烃的结构,炔烃具有两个不饱和度。
二、烷烃、烯烃、炔烃的重要反应1、烷烃:自由基反应机理的卤化取代反应:链的引发、链的增长和链的终止。
注意:a、反应活性:F2、Cl2、Br2、I2,选择性:Br2、Cl2。
b、自由基的稳定性三级、二级、一级、甲基。
所以卤化反应有选择性。
选择性顺序为:叔氢、仲氢、伯氢。
(1)、与X2和HX可发生1,2-和1,4-加成,后者又称为共轭加成。
1,2-加成是速率控制的反应,1,4-加成是平衡控制的反应。
(2)、D-A反应特点:反应是经环状过渡态进行的协同成环反应,具有立体选择性。
而且是反应是可逆的。
在较高温度下,产物经逆反应生成共轭二烯烃和相应的不饱和亲二烯烃。
富电子的共轭二烯和缺电子的亲二烯体有利于正常的D-A反应的进行。
当烯烃双键上连有吸电子的取代基时是有利于反应的进行。
而且在反应完成时,主要生成内型加成产物。
二、芳烃与芳香杂环化合物一、苯的结构、休克尔规则与芳香性1、苯的结构2、休克尔规则与芳香性(1)芳香性的特点a、具有较大的C/H比b、键长趋于平均化c、具有特殊的稳定性的d、难加成e、易取代f、难氧化(2)非苯系芳香性体系要满足休克尔规则要点:a、单环的化合物具有共轭的离域体系b、共平面或近似于平面c、共轭的π电子数符合4n+2规则,n值必须为整数。
3、具有一个杂原子的五元环、六元环芳香杂环呋喃、吡咯、噻吩和吡啶。
一般说来,杂原子与碳原子的电负性愈接近,其相应的五元芳香的杂环的芳香性愈强。
其共轭能力也愈大。
二、芳环上的取代反应1、苯环上的亲电取代反应芳环上的亲电取代反应主要包括卤化、磺化、消化和付-克反应。
反应通式可表示为:2、苯环上的亲核取代反应由于在芳环中π电子云密度相对较大,亲核试剂难于向芳环进攻,发生相应的亲核取代反应。
取代反应1. 甲烷的氯代反应生成的一氯甲烷还会继续被氯代, 生成二氯甲烷、三氯甲烷和四氯化碳四种产物的混合物。
工业上把这种混合物作为溶剂使用。
CH3-Cl + Cl2——> CH2Cl2 + HCl 二氯甲烷CH2Cl2 + Cl2 ——> CHCl3 + HCl 三氯甲烷CHCl3 + Cl2 ——> CCl4 + HCl 四氯化碳2. 环烷烃的自由基取代反应条件:光照或高温或在过氧化物存在下3. 苯的亲电取代反应苯环π电子的高度离域形成一个富电子体系, 对亲电子试剂能起提供电子的作用,易发生亲电取代反应。
(1)卤代反应苯在三卤化铁或铁粉等催化剂作用下, 与氯和溴作用, 分别生成氯苯和溴苯以及卤化氢。
(2)硝化反应苯与混酸作用,生成硝基苯(3) 磺化反应苯与发烟硫酸作用,室温下就能生成苯磺酸。
苯与浓硫酸共热也能生成苯磺酸。
磺化反应可逆,苯磺酸与过热水蒸汽作用时又水解,脱去磺酸基生成苯。
有些芳香族类药物难溶于水,常通过磺化反应在分子中引进磺酸基,增强其水溶性(4)烷基化和*酰基化反应当烷基大于两个碳原子时发生碳链异构化作用产物不止一种当苯环上已连有硝基磺酸基等吸电子基时,不发生该反应4. 烷基苯侧链上的卤代反应烷基苯在光照或加热条件下,与氯或溴作用,在烷基侧链上发生自由基取代反应, 主要生成α-H(或称苄基氢)被卤原子取代的产物。
5.萘的亲电取代反应多发生在α位6. 卤代烷的亲核取代反应7.酚的亲电取代反应(1)卤代反应苯酚水溶液与溴水作用, 立即生成2,4,6-三溴苯酚白色沉淀。
反应非常灵敏,可用于部分酚类化合物的检验。
(2)硝化反应苯酚与稀硝酸反应可生成邻硝基苯酚和对硝基苯酚:(30~40%) (15%)若选择低温和低极性溶剂,苯酚与硝酸反应主要生成对硝基苯酚。
o-硝基苯酚(26%) p-硝基苯酚(61%)(3)磺化反应苯酚与硫酸反应, 在25℃时主要生成邻羟基苯磺酸(受速率控制);在100℃时主要生成对羟基苯磺酸(受平衡控制)。
西南大学网络与继续教育学院课程代码: 1095 学年学季:20192单项选择题1、命名下列化合物().苯甲腈.苯乙腈.乙腈.甲腈2、....3、如何除去苯中含有的少量杂质吡咯()。
.用浓硫酸处理反应体系,吡咯会因为聚合而被破坏,聚合物可以通过过滤除去.用稀硫酸处理反应体系,吡咯会因为聚合而被破坏,聚合物可以通过过滤除去.用浓硫酸处理反应体系,吡咯很容易与浓硫酸发生磺化反应而溶解在浓硫酸中,从苯中离出去。
.用稀硫酸处理反应体系,吡咯很容易与稀硫酸发生磺化反应而溶解在稀硫酸中,从苯中离出去。
4、........5、()是最常用的淀粉鉴定试剂。
.茚三酮. 2,4-二硝基氟苯.碘.异硫氰酸苯酯6、命名下列化合物().戊二酸酐.反丁烯二酸酐.丁二酸酐.顺丁烯二酸酐7、下列化合物中,碱性最强的是()。
....8、下列化合物中,()可以用作化学合成染料。
....9、蛋白质的基本组成单位是()。
.氨基酸.脱氧核糖核酸.核糖核酸.葡萄糖10、()是一切糖类甜味剂中甜味最大的单糖。
. D-木糖. D-半乳糖.D-果糖. D-葡萄糖11、....12、....13、....14、下列化合物中,()不能与水形成氢键。
.甲胺.二甲胺.甲烷.三甲胺15、....16、命名下列化合物(). 2-甲基呋喃. 1-甲基四氢呋喃. 2-甲基四氢呋喃. 1-甲基呋喃17、....18、写出对氨基苯乙酮的结构()....19、....20、....21、....22、()和亚硝酸或亚硝酸盐及过量的酸在低温下反应可生成芳香重氮盐。
.芳香铵盐.芳香三级胺.芳香一级胺.芳香二级胺23、为何酰胺熔沸点比分子量相近的酯高()。
.范德华力. A and B.分子间氢键作用.分子间静电作用24、下列氨基酸中,()不属于必需氨基酸。
.蛋氨酸.异亮氨酸.精氨酸.赖氨酸25、两个或两个以上的异戊二烯分子以头尾相连的方式结合起来的化合物称为______。
.生物碱.甾体化合物.萜类化合物.蛋白质26、....27、....28、下列基团中____不能用来保护羟基. THP(四氢吡喃基).对甲氧基苄氧基甲基p-MeOC6H4CH2OCH2―简写为PMBM .硅保护基,例如三乙基硅基(TES).苄基29、下列反应中,()不属于周环反应。
常见吲哚合成反应汇总旧文重发,温故知新一、2-叠氮基-3-芳基丙烯酸酯环合合成2-羧酸吲哚衍生物通过叠氮基乙酸酯与芳香醛缩合可以得到 2-叠氮基-3-芳基丙烯酸酯,其加热环合生成吲哚2-羧酸酯衍生物,一般而言只有富电子的芳环(带推电子苯环,呋喃,噻吩,吡咯)可通过该方法环合。
由于反应放出氮气,在环合时一定要严格控制2-叠氮基-3-芳基丙烯酸酯滴加速度及反应瓶敞口,否则很容易喷发出来。
(Hemetsberger indole synthesis)二、Bartoli吲哚合成反应1989年,意大利化学家G. Bartoli等人报道了取代硝基苯和过量的格氏试剂在低温下反应,然后在水溶液中后处理得到取代吲哚,邻取代的硝基苯产率很高。
由邻取代的硝基苯(或亚硝基苯)和烯基格氏试剂制备7-取代吲哚的反应被称为Bartoli吲哚合成法。
在这反应被开发之前,其实有很多用于合成吲哚骨架的类似反应,如Leimgruber-Batcho吲哚合成,在这些反应中,确唯独没有一种能够合成7位取代吲哚的反应,此反应是制备 7-取代吲哚的较好方法。
Bartoli 吲哚合成的优点在于这个反应可以在碳环和杂环上都引入取代基。
三、Batcho–Leimgruber吲哚合成反应邻硝基甲苯类化合物和甲酰胺缩醛(如DMFDMA)缩合得到trans-β-二烷基胺基-2-硝基苯乙烯,接着还原得到吲哚类化合物的反应。
此反应原料邻硝基甲苯(衍生物)易得,反应条件温和,产率较高,因此常用作Fischer吲哚合成的替代方法。
还原方法一般通过加氢,但当分子内有敏感官能团(比如:Br,I都可或烯烃等)存在时可通过化学还原如:NH2NH2-RaneyNi, 铁粉,TiCl3, 锌粉还原得到吲哚。
四、Bischler–Möhlau吲哚合成反应α-芳胺基酮和过量的芳香胺环化得到2-芳基吲哚的反应。
五、Cadogan–Sundberg吲哚合成Cadogan反应是指邻硝基苯乙烯1或邻硝基芪类化合物和亚磷酸三酯或三烷基膦反应生成氮宾2,接着环化生成吲哚3的反应。
单杂环化合物的化学性质一、五元单杂环的化学性质(呋喃,噻吩,吡咯) (一)酸碱性1、吡咯N 的孤e 参与共轭,碱性↓↓,显弱酸性,可与强碱成盐:+ KOH (S)N K -++ H 2ON H2、吡咯的酸性介于醇酚间:醇<吡咯<酚:N HOHK a =×1.3 10-101 10-181 10-15××CH 3CH 2OH3、吡咯与前面所学各类含氮化合物碱性的比较:季铵碱 > 脂肪胺 > 氨 > 苯胺 > 尿素 > 酰胺 > 吡咯 > 酰亚胺例题:NHN HNH 2三者碱性强弱排序?解:吡咯中N 的孤对电子完全参与共轭;苯胺中N 的孤对电子不完全参与共轭(N 是接近于sp2的sp3杂化);四氢吡咯属于环状仲胺,拥有孤对电子。
因此有碱性顺序:N HNH NH 2<<(K b =×3.8 10-10 2 10-4)2.5 10-14××(二)亲电取代N H O(四溴吡咯)N H Br 2BrBr Br Br, 0℃EtOH Br 2OBrS Br 2HOAcSBr, 0℃,1、呋喃、噻吩、吡咯均为富e 体系,亲电活性>苯,且进入α位;2、硝/磺化时:不可用强酸(了解,不要求掌握):因杂原子遇强酸能质子化,破坏大π键显示共轭二烯性质,易聚合、氧化 ;可改用非质子性试剂。
3、亲电取代反应活性:吡咯>呋喃>噻吩>苯: 分析:(1)五元单杂环是富电子体系,电荷密度高于苯,因此苯的反应活性最小;(2)噻吩中S 的轨道匹配性最差,给电子能力在三个单杂环中最弱;(3)O 的电负性比N 大,因此呋喃环的电荷密度小于吡咯,活性比吡咯小。
(三)加成1、呋喃、噻吩、吡咯芳香性<苯,因此较苯易加成;2、产物失去芳香性,性质类似脂杂环。
N S OHH 2N HH 2H 2H 2H 2N HOS SMoS 2(噻吩能使Pd 中毒)二、六元单杂环的化学性质(吡啶) (一)碱性1、吡啶N 孤e 不参与共轭,因此显碱性:NH Cl -N ++ HCl2、N 孤e 处于sp2杂化轨道,因而碱性↓,碱性介于氨和苯胺之间:CH 3NH 2NH 3NNH 2pK b3.384.768.809.423、与各类含氮化合物碱性比较:季铵碱> 脂胺>氨>吡啶>苯胺>尿素>酰胺>吡咯>酰亚胺(二)亲电取代吡啶属于缺电子体系,环上ρe ↓,因此亲电活性↓,<苯,进入β位:NNBrNO 24SO 3H NN20%71%33%(三)加成(还原)吡啶芳香性<苯,因此比苯易加成(还原),产物为环状仲胺,碱性↑。
/yjhx/16/right4_11.htm呋喃、噻吩和吡咯→ 结构与芳香性呋喃、噻吩与吡咯结构相似,都是由一个杂原子和四个碳原子结合构成的化合物。
从结构上它们可以看做是由O、S、NH分别取代了1,3-环戊二烯(也称为茂)分子中的CH后得到的化合物。
但从化学性质上看,它们与环戊二烯并无多少相似之处,倒是与苯非常类似。
例如,呋喃、噻吩、吡咯这三个化合物都非常容易在环上发生亲电取代反应,而不太容易发生加成反应。
这说明用上述三个结构来代表这三个化合物存在着某种片面性。
按照杂化理论的观点,呋喃、噻吩、吡咯分子中四个碳原子和一个杂原子间都以sp杂化轨道形成σ键,并处于同一平面上,每一个原子都剩一个未参与杂化的p轨道(其中碳原子的p轨道上各有一个电子,杂原子的p轨道上有两个电子)。
这五个p轨道彼此平行,并相互侧面重叠形成一个五轨道六电子的环状共轭大π键,π电子云分布于环平面的上方与下方(见图16-1),其π电子数符合休克尔的4n+2规则(n=1)。
这三个化合物所形成的共轭体系与苯非常相似,所以它们都具有类似的芳香性。
但是,这三个化合物所形成的共轭体系与苯并不完全一样,主要表现在以下两处:(1)键长平均化程度不一样。
苯的成环原子种类相同,电负性一样,键长完全平均化(六个碳碳键的键长均为140pm),其电子离域程度大,π电子在环上的分布也是完全均匀的。
这三个化合物都有杂原子参与成环,由于成环原子电负性的差异,使得它们分子键长平均化的程度不如苯,电子离域的程度也比苯小,π电子在各杂环上的分布也不是很均匀,所以呋喃、噻吩、吡咯的芳香性都比苯弱。
三种杂环分子中共价键的长度如下:另外,由于这三个杂环所含杂原子的电负性也各不相同,各环系中电子云密度的分布也不一样,所以它们之间的芳香性有差异。
氧是三个杂原子中电负性最大的,呋喃环π电子的离域程度相对较小,所以其芳香性最差;硫的电负性小于氧和氮,与碳接近,噻吩环上的电子云分布比较均匀,π电子离域程度较大,因此其芳香性最强,与苯差不多;氮的电负性介于氧和硫之间,吡咯环的芳香性也介于呋喃和噻吩之间。
第十四章β-二羰基化合物宇文皓月一、 命名下列化合物:三、试用化学方法区别下列各组化合物:解:分别加入饱和亚硫酸氢钠水溶液,3-丁酮酸生成晶体,而丙二酸不克不及。
四、下列各组化合物,那些是互变异构体,那些是共振杂化体?互变异构体五、完成下列缩合反应: 六、完成下列反应式: 七、写出下列反历程:八、以甲醇,乙醇为原料,用丙二酸酯法合成下列化合物:1.α-甲基丁酸3. 3-甲基己二酸4.1,4-环己烷二甲酸5.环丙烷甲酸共振杂化体互变异构解:反应历程:九、以甲醇、乙醇以及无机试剂为原料,经乙酰乙酸乙酯合成下列化合物:(1) 3-乙基-2-戊酮(2)α-甲基丙酸(3)γ-戊酮酸(4) 2,7-辛二酮(5)甲基环丁基甲酮十、某酮酸经硼氢化钠还原后,依次用溴化氢,碳酸钠和氰化钾处理后,生成腈。
腈水解得到2-甲基戊二酸。
试推测此酮酸的结构,并写出各步反应式。
解:十一、某酯类化合物A(C5H10O2),用乙醇钠的乙醇溶液处理,得到另一个酯B(C8H14O3),B能使溴水褪色,将B用乙醇钠的乙醇溶液处理后,再与碘乙烷反应,又得到另一个酯C(C10H18O3).C和溴水在室温下不反应。
把C用稀碱水解再酸化,加热,即得一个酮D(C7H14O),D不发生碘仿反应。
用锌汞齐还原则生成3-甲基己烷,试推测A,B,C,D的结构,并写出各步反应式。
解:A,B,C,D的结构及各步反应式如下:(完)第十五章硝基化合物和胺一、命名下列化合物:N, N-二甲基-4-亚硝基苯胺丙烯腈二、写出下列化合物的构造式:1, 间硝基乙酰苯胺 2,甲胺硫酸盐 3,N-甲基-N -乙基苯胺4,对甲基苄胺 5, 1,6-己二胺 6,异氰基甲烷7,β-萘胺 8,异氰酸苯酯三、用化学方法区别下列各组化合物:1,乙醇,乙醛,乙酸和乙胺2、邻甲苯胺 N-甲基苯胺 N,N-二甲基苯胺解:分别与亚硝酸钠+盐酸在低温反应,邻甲苯胺反应产品溶解,N-甲基苯胺生成黄色油状物, N,N-二甲基苯胺生成绿色固体。
吡啶吡咯呋喃噻吩结构式概述及解释说明1. 引言1.1 概述吡啶吡咯呋喃噻吩是一类重要的有机化合物,其结构式中包含了吡啶、吡咯、呋喃和噻吩等环状结构。
这些化合物具有许多特殊的性质和广泛的应用领域,因此引起了化学界的广泛关注。
1.2 文章结构本文将首先介绍吡啶、吡咯、呋喃和噻吩各自的结构式,然后概述了吡啶吡咯呋喃噻吩化合物的一般特点和重要性。
接着,我们将详细解释该类化合物的特殊性质,包括共轭体系及电子能级分析、光学性质和荧光特征,以及生物活性及医药领域中的应用展望。
最后,在结论部分总结了文章内容,并提出对未来研究方向的建议。
1.3 目的本文旨在全面介绍并深入解释吡啶吡咯呋喃噻吩化合物的结构式、特点和应用,以增进读者对于这类化合物在有机合成和相关领域中的重要性的理解。
同时,通过对其特殊性质的探讨,希望能为未来的研究提供启示,并为该类化合物在医药领域的应用提供有益信息。
2. 吡啶吡咯呋喃噻吩的结构式:2.1 吡啶的结构式吡啶是一种六元杂环化合物,由一个氮原子和五个碳原子组成。
其结构式通常用希腊字母"π"来表示芳香性,带有三个双键(共轭体系)。
吡啶的结构式如下所示:︿←N/\H - C C - H ←带有π电子的环2.2 吡咯的结构式吡咯也是一种六元杂环化合物,由两个氮原子和四个碳原子组成。
它可以看作是从吡啶中去除一个碳原子而得到的。
由于存在两个氮原子,吡咯具有比较特殊的性质和反应活性。
其结构式如下所示:︿/\H - C N ←环上带有π电子键│H - C H2.3 呋喃的结构式呋喃是一种五元杂环化合物,由一个氧原子和四个碳原子组成。
它具有较高的稳定性,并且在许多天然产物和药物中被广泛应用。
其结构式如下所示:︿/\H - C O ←带有π电子的环│H - C H2.4 噻吩的结构式噻吩是一种五元杂环化合物,由一个硫原子和四个碳原子组成。
类似于呋喃,噻吩也在天然产物和药物中具有重要作用。
有机期末考试复习题.(⼆)1 在室温下,下列有机物既能使⾼锰酸钾溶液褪⾊⼜能使溴的四氯化碳溶液褪⾊的是()(a)苯、(b)环丙烷、(c)环⼰烯2 .硝基苯进⾏硝化时,硝化剂应当是()(a)稀硝酸、(b)浓硝酸+浓硫酸、(c)发烟硝酸+浓硫酸+加热3.分离3—戊酮和2—戊酮加⼊下列那种试剂()(a)稀HCN (b)饱和NaHSO3 (c)浓NaOH 、(d)浓H2SO44.下列各异构体中,哪个的氯原⼦特别活泼,容易被羟基取代(和碳酸钠的⽔溶液共热)()(a)2,4—⼆硝基氯苯、(b)2,3—⼆硝基氯苯、(c)4—硝基氯苯5.. 在下列烯烃中,⽤作⽔果催熟剂的物质是()。
(a)⼄烯(b)丙烯(c)丁烯(d)异丁烯6. 在适当条件下1mo l丙炔与2mo l溴化氢加成,主要产物是()。
(a)(b)(c)(d)7. 下列物质中,不能溶于冷的浓硫酸中的是()。
(a)溴⼄烷(b)⼄醇(c)⼄醚(d)⼄胺8.. ⼄醛与下列那种试剂不能反应()。
(d) HCl(a) HCN (b)(c)饱和NaHSO39. 下列化合物哪个不能发⽣碘仿反应()。
(a)(b)(c)(d)110. 检查煤⽓管道是否漏⽓,常⽤的⽅法是加⼊少量哪种物质:()(a):甲醛(b):低级硫醇C:⼄醛(d)甲醇11.下列哪些化合物能形成分⼦内氢键?( ) (a):邻氟苯酚(b):邻硝基苯酚 C:邻甲苯酚(d):对硝基苯酚12.下列化合物不能发⽣傅列德尔-克拉夫茨酰基化反应的有:( )。
(a):噻吩(b):9,10-蒽醌 C:硝基(d):吡啶13. 下列化合物中酸性最强的是( )。
CH3COOH (b)CH2C l COOH (c)CH2FCOOH (d)CH2BrCOOH14. 下列物质中,能使浓、热的⾼锰酸钾溶液褪⾊的是( ) (a)苯(b)甲苯(c)叔丁苯(d)萘15. ⾃由基反应的反应机理包括()这些阶段。
(a)链引发、(b)链增长、(c)链终⽌16. ⾃由基反应必须在()作⽤下发⽣。
有机人名反应 B需予科研家园资料整理Hofmann烷基化卤代烷与氨或胺发生烷基化反应,生成脂肪族胺类:由于生成的伯胺亲核性通常比氨强,能继续与卤代烃反应,因此本反应不可避免地产生仲胺、叔胺和季铵盐,最后得到的往往是多种产物的混合物。
用大过量的氨可避免多取代反应的发生,从而可得到良好产率的伯胺。
反应机理反应为典型的亲核取代反应(S N1或S N2)反应实例Hofmann消除反应季铵碱在加热条件下(100--200°C)发生热分解,当季铵碱的四个烃基都是甲基时,热分解得到甲醇和三甲胺:如果季铵碱的四个烃基不同,则热分解时总是得到含取代基最少的烯烃和叔胺:反应实例Hofmann重排(降解)酰胺用溴(或氯)在碱性条件下处理转变为少一个碳原子的伯胺:反应机理反应实例参见: Curtius 反应Lossen 反应Schmidt 反应Houben-Hoesch反应酚或酚醚在氯化氢和氯化锌等Lewis酸的存在下,与腈作用,随后进行水解,得到酰基酚或酰基酚醚:反应机理反应机理较复杂,目前尚未完全阐明反应实例Hunsdiecker反应干燥的羧酸银盐在四氯化碳中与卤素一起加热放出二氧化碳,生成比原羧酸少一个碳原子的卤代烃:X = Br , Cl , I反应机理反应实例Kiliani氰化增碳法糖在少量氨的存在下与氢氰酸加成得到 羟基腈,经水解得到相应的糖酸,此糖酸极易转变为内酯,将此内酯在含水的乙醚或水溶液中用钠汞齐还原,得到比原来的糖多一个碳原子的醛糖。
反应实例Knoevenagel反应含活泼亚甲基的化合物与醛或酮在弱碱性催化剂(氨、伯胺、仲胺、吡啶等有机碱)存在下缩合得到 不饱和化合物。
反应机理反应实例Knorr反应氨基酮与有 亚甲基的酮进行缩合反应,得到取代吡咯:反应实例Koble反应脂肪酸钠盐或钾盐的浓溶液电解时发生脱羧,同时两个烃基相互偶联生成烃类:如果使用两种不同脂肪酸的盐进行电解,则得到混合物:反应机理反应实例Koble-Schmitt反应酚钠和二氧化碳在加压下于125-150 ºC反应,生成邻羟基苯甲酸,同时有少量对羟基苯甲酸生成:反应产物与酚盐的种类及反应温度有关,一般来讲,使用钠盐及在较低的温度下反应主要得到邻位产物,而用钾盐及在较高温度下反应则主要得对位产物:邻位异构体在钾盐及较高温度下加热也能转变为对位异构体:反应机理反应机理目前还不太清楚。