表面与胶体化学—胶体的基本性质(三)
- 格式:ppt
- 大小:705.50 KB
- 文档页数:12
1、胶体的基本特性特有的分散程度;粒子大小在1nm~100nm之间多相不均匀性:在超级显微镜下可观察到分散相与分散介质间存在界面。
热力学不稳定性;粒子小,比表面大,表面自由能高,是热力学不稳定体系,有自发降低表面自由能的趋势,即小粒子会自动聚结成大粒子。
2、胶体制备的条件:分散相在介质中的溶解度须极小必须有稳定剂存在3、胶体分散相粒子大小分类分子分散系统胶体分散系统粗分散系统二、1、动力学性质布朗运动、扩散、沉降光学性质是其高度分散性与不均匀性的反映电学性质主要指胶体系统的电动现象丁达尔实质:胶体中分散质微粒散射出来的光超显微镜下得到的信息(1)可以测定球状胶粒的平均半径。
(2)间接推测胶粒的形状和不对称性。
例如,球状粒子不闪光,不对称的粒子在向光面变化时有闪光现象。
(3)判断粒子分散均匀的程度。
粒子大小不同,散射光的强度也不同。
(4)观察胶粒的布朗运动、电泳、沉降和凝聚等现象观察到胶粒发出的散射光,可观察布朗运动电泳沉降凝聚,只能确定质点存在和位置(光亮点),只能推测不能看到大小和形状2、胶体制备的条件溶解度稳定剂3、溶胶的净化渗析法、超过滤法4、纳米颗粒粒径在1-100之间纳米颗粒的特性与粒子尺寸紧密相关,许多特性可表现在表面效应和体积效应两方面。
5、布朗运动使胶粒克服重力的影响,6、I反比于波长λ的四次方7、溶胶产生各种颜色的原因;溶胶中的质点对可见光产生选择性吸收。
溶胶对光吸收显示特定波长的补色不吸收显示散射光的颜色agcl&agbr光透过浅红垂直淡蓝雾里黄灯减散,入射白光散射光中蓝紫色光散射最强天蓝是太阳散射光,早傍晚红色是透射光有宇散射作用8、9、胶粒带电原因:吸附、电离、同晶置换(晶格取代)、摩擦带电。
10、胶团结构:一定量难溶物分子聚结成中心称为胶核、然后胶核选择性的吸附稳定剂中的一种离子,形成紧密吸附层;由于正、负电荷相吸,在紧密层外形成反号离子的包围圈,从而形成了带与紧密层相同电荷的胶粒;胶粒与扩散层中的反号离子,形成一个电中性的胶团。
胶体化学的理论与方法胶体化学是研究胶体系统的结构、稳定性、相互作用以及溶剂动态等现象的一门学科,它对于探究物质的基本性质和应用具有重要的意义。
本文将介绍胶体化学的理论与方法,从而了解胶体系统的特性和应用。
一、胶体化学的基本理论1. 分散相和连续相在胶体系统中,一般存在分散相和连续相两种物质。
分散相是指在连续相中形成均匀分布的微小颗粒,它们通常具有比连续相小得多的尺寸(1-1000 nm)。
连续相是指环绕在分散相周围的其它物质,如水或空气等。
大多数情况下,分散相的浓度很低,只有几个百分之一至几个百分之千。
2. 溶液和悬浊液溶液是指分子或离子相互作用形成的均匀混合物,其中分子或离子的直径一般小于1 nm。
溶液的一般特征是透明。
而悬浊液是指分散相直径大于1 nm的分散体在溶剂中形成的混合物,一般是呈现浑浊状态,且不易过滤。
在悬浊液中,分散体往往是不可见的,需要用专门的仪器才能观察到。
3. 表面现象和胶体稳定性表面现象是指固体、液体相之间的分界面上所产生的各种现象,如表面张力等。
对于胶体系统,表面现象的产生可能影响到胶体的状态和性质。
在溶液中,分散相不断地与连续相发生相互作用,这会导致胶体系统的不稳定性,如聚集和沉降等现象。
因此,人们一般采用各种方法来维持胶体的稳定性,如电荷屏障、化学吸附或凝胶状态等。
这些方法可以使分散体在溶液中形成互动屏障,从而防止不必要的聚集或沉降。
二、胶体化学的研究方法1. 光散射法光散射法是一种观察分散体的方法,而且可以确定颗粒的大小分布。
该方法通常采用激光束照射样品,当激光束中的光线与分散体中的颗粒相遇时,就会散射出光子。
由于颗粒大小的不同,它们对光的散射效果也会有所不同。
因此,通过测量样品中散射光子的分布情况,就可以推测颗粒的大小和分布范围。
2. 动态光散射法动态光散射法能够通过光的散射效果,得到分散体的动态性质,比如分散体的迁移速度和扩散系数等。
该方法的原理是测量样品散射光子的湿润时间,由此就能得到分散体的生成速率和尺寸。
胶体: 指具有高度分散的分散体系(亦是研究对象),分散相可以是一相和多相,粒子大小通常为10-7~10-9m之间.胶体的研究内容:表面现象、分散体系、高分子溶液。
表面能δ:恒温恒压下,可逆地增加单位表面积,环境对体系所做的功,单位J·m-2。
表面张力δ:单位长度液体表面的收缩力,单位N·m-1(或mN·m-1)l aplace方程:球面,则R1=R2=R,ΔP=2σR 柱面,则R1=R,R2=∞,ΔP=σ/R 球形气泡,且R1=R2=RΔP=4σ/R表面过剩:界面相与体相的浓度差。
接触角:固液气三相交点处作气液界面的切线,此切线与固液交界线之间的夹角θ。
Gibbs吸附公式:(双组分体系)固体表面张力:新产生的两个固体表面的表面应力之和的一半。
固体表面能:指产生一平方厘米新表面所消耗的等温可逆功。
Laugmuir理论:假设被吸附分子间无作用力,因而分子脱附不受周围分子的影响。
只有碰撞在空间表面的分子才有可能被吸附(单分子层吸附)。
固体表面是均匀的,各处吸附能相同。
BET理论的基本假设:①固体表面是均匀的,同层分子(横向)间没有相互作用,分子在吸附和脱附时不受周围同层分子的影响。
②物理吸附中,固体表面与吸附质之间有范德华力,被吸附分子间也有范德华力,即吸附是多分子层的。
影响溶液中吸附的因素:吸附剂:溶质、溶剂三者极性的影响;温度:溶液吸附也是放热过程,一般T上升,吸附下降;溶解度:吸附与溶解相反,溶解度越小,越易被吸附;同系物的吸附规律一般随C-H链的增长吸附有规律的增加和减少。
Trube规则;吸附剂的孔隙大小;吸附剂的表面化学性质,同一类吸附剂由于制备条件不同,表面活性相差很大,吸附性能也会有很大差异;混合溶剂的影响,色谱法中使用混合溶剂,洗提效果比单纯溶剂好,若自极性相同的混合溶剂中吸附第三组份,等温线界于两单等温线之间;若自极性不相同的混合溶剂中吸附第三组份,吸附量比任何单一溶剂中少,混合溶剂极性一致或不一致情况不同;多种溶质的混合溶液;9、盐的影响,盐的存在通过影响溶质的活度系数、溶解度、溶质的电离平衡而影响吸附。
胶体与界面化学的基本原理胶体与界面化学是研究物质界面的重要学科,其中胶体学研究的是微米级别上液体分散系统的稳定性、形态、动力学,界面化学研究的是物质界面上的化学过程。
本文将探讨胶体的定义、性质、分类以及界面化学原理等方面。
一、胶体的定义与性质胶体是指两相(即固体、液体或气体)间的一种形态,其中一种相通过分散成微小粒子的形式均匀分散在另一种相中。
胶体的一般特性如下:1、粒子尺寸:胶体的尺寸范围一般为1-1000纳米。
2、稳定性:胶体的物理性质(如电荷、表面性质等)使其形成稳定的系统,避免粒子凝聚沉降。
3、光学性质:胶体可以表现出折射、透明度等光学性质,如煤油是胶体,因为它可以产生烟雾。
4、电性质:胶体中的粒子带有电荷,可以表现出与电场相关的性质。
5、化学性质:由于其表面性质的存在,胶体可以表现出与环境中其他分子的化学反应,如催化反应等。
二、胶体的分类根据胶体中分散相的物质性质和分散介质的性质,胶体可以分为以下几类:1、溶胶:溶胶是指分散相为分子(亦称为分子溶液),分散介质为液体,如酒精和水的混合物。
2、胶体溶液:胶体溶液是指分散相为聚合物,分散介质为液体,如天然胶或橡胶溶液。
3、乳液:乳液是指分散相为液体,分散介质为液体,如牛奶、酸奶等。
4、凝胶:凝胶是指不易流动的胶体,其中分散相一般是聚合物,分散介质为液体,如煤油。
5、气溶胶:气溶胶是指分散相为固体或液体,分散介质为气体,如雾、烟雾、霉菌等。
三、界面化学的基本原理界面化学是研究物质界面的化学过程,主要是两相(如油水分界面)之间物理和化学反应的研究。
界面活性剂是使界面分子在界面上形成一层膜较集的化合物,使界面能量降低而使得体系稳定的物质。
界面化学的原理主要有以下几点:1、界面能:界面能是指分界面两侧之间的能量差,即表面张力。
界面分子本身存在形成一层膜的趋势,因此其能量会比波动的分子间间隔大。
这一差异形成了表面张力,是使体系向能量最小化方向发展的主要因素。
材料物理化学教案中的材料的表面活性与胶体性质在材料物理化学教案中,材料的表面活性与胶体性质是非常重要的概念。
本文将探讨这两个概念,并且分析它们在材料科学中的应用。
一、材料的表面活性表面活性是指材料在其界面上的吸附和反应能力。
在材料的原子、分子尺度上,表面与体相之间存在着巨大的差异,这就导致了材料在表面的活性。
材料的表面活性可以通过表面张力和界面张力来表征。
1. 表面张力表面张力是指液体表面分子间的相互作用力。
液体的分子内部存在着强相互吸引的力,而表面上的分子只能和周围的分子发生相互作用,所以表面分子受到的吸引力比内部的分子受到的力要大,这就导致了液体表面上的分子比内部分子更加紧密,形成了一个薄膜。
这个现象被称为表面张力。
表面张力的大小与液体的种类、温度等因素有关。
通常来说,表面张力越大,液体越难于扩展和湿润其他物体的表面,如水滴在蜷曲的薄玻璃管内。
而表面张力越小,液体越容易扩展和湿润其他物体的表面,如水滴在平面玻璃上的形态。
2. 界面张力界面张力是指两种物质接触面上的分子间相互作用力。
当两种不相溶的物质接触在一起时,它们的分子间的相互作用力很弱,所以两种物质的界面上的分子之间会存在着不平衡的力,导致它们趋向于减小接触面积,形成一个临时的界面张力。
界面张力的存在使得液滴能够成球状,如水滴在空气中的形态,因为球形能够最小化液体与气体界面的接触面积,进而减小界面张力。
二、材料的胶体性质胶体是指由两种或两种以上的物质组成,其中一种物质以微细粒子(分散相)悬浮于另一种物质(分散介质)中。
在胶体中,分散相的粒子通常具有纳米级或亚微米级的尺寸。
胶体的粒子尺寸介于溶液和悬浮液之间,这使得胶体具有独特的物理和化学性质。
根据分散相和分散介质的性质,胶体可以分为固体胶体、液体胶体和气体胶体。
胶体的性质与其表面积有关。
胶体的粒子越小,其表面积就越大,这使得胶体具有较高的活性和较强的吸附能力。
因此,胶体在多个领域有着广泛的应用,例如生物医学、材料科学、环境工程等。
胶体与表面化学知识点整理-图文第一章胶体的制备和性质一、什么是胶体?1.胶体体系的重要特点之一是具有很大的表面积。
通常规定胶体颗粒的大小为1-100nm(直径)2.胶体是物质以一定分散程度存在的一种特殊状态,而不是一种特殊物质,不是物质的本性。
胶体化学研究对象是溶胶(也称憎液溶胶)和高分子溶液(也称亲液溶胶)。
气溶胶:云雾,青烟、高空灰尘液溶胶:泡沫,乳状液,金溶胶、墨汁、牙膏固溶胶:泡沫塑料、沸石、冰淇淋,珍珠、水凝胶、红宝石、合金二、溶胶的制备与净化1.溶胶制备的一般条件:(1)分散相在介质中的溶解度必须极小(2)必须有稳定剂存在2.胶体的制备方法:(1)分散法:研磨法:用机械粉碎的方法将固体磨细(产品细度1-74μm)胶溶法(解胶法):仅仅是将新鲜的凝聚胶粒重新分散在介质中形成溶胶,并加入适当的稳定剂。
(目前制备纳米材料和超微细粉的方法)超声波分散法:让分散介质动起来。
主要用来制备乳状液(即分散介质是液体的体系)。
好处是不与溶液接触。
④电弧法:用于制备金属水溶胶。
金溶胶多用于美容。
(2)凝聚法:化学凝聚法物理凝聚法:A、更换溶剂法(溶解度是减小的):利用物质在不同容剂中的溶解度的显著差别,制备溶胶,而且两种溶剂要能完全互溶。
(与萃取区别)B、蒸汽骤冷法:制备碱金属的苯溶胶。
3.溶胶的净化:简单渗析法,电渗析,超过滤法三.溶胶的运动性质1.扩散:胶粒从高浓度向低浓度迁移的现象,此过程为自发过程根本原因在于存在化学位。
dmdcDAdtd某,此为Fick第一扩散定律,式中dm/dt表示单位时间通过截面A扩散的物质数量,D为扩散系数,单位为m/,D越大,质点的扩散能力越大。
扩散系数D与质点在介质中运动时阻力系数f之间的关系为:D为气体常数)若颗粒为球形,阻力系数f=6r(式中,为介质的黏度,r为质点的半径)故D2RT(NA为阿伏加德罗常数;RNAfRT1,此式即为Eintein第一扩散公式NA6r浓度梯度越大,质点扩散越快;就质点而言,半径越小,扩散能力越强,扩散速度越快。