初中代数第八章因式分解_5
- 格式:doc
- 大小:67.00 KB
- 文档页数:4
因式分解(超全方法)因式分解的常用方法多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强,研究这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。
初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法。
本文将在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍。
一、提取公因式法:ma+mb+mc=m(a+b+c)二、运用公式法:在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1) (a+b)(a-b) = a^2-b^2,a^2-b^2=(a+b)(a-b);2) a^2-b^2=(a+b)(a-b);3) (a+b)(a-ab+b) = a^2+b^2,a^2+b^2=(a+b)(a-ab+b);4) (a-b)(a+ab+b) = a^2-b^2,a^2-b^2=(a-b)(a+ab+b)。
下面再补充两个常用的公式:5) a+b+c+2ab+2bc+2ca=(a+b+c)^2;6) a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)。
练题:已知a,b,c是三角形ABC的三边,且a+b+c=ab+bc+ca,则三角形ABC的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形三、分组分解法一)分组后能直接提公因式例1、分解因式:am+an+bm+bn=m(a+b)+n(a+b)=(a+b)(m+n)例2、分解因式:2ax-10ay+5by-bx=2a(x-5y)-b(x-5y)=(2a-b)(x-5y)练题:分解因式1、a-ab+ac-bc2、xy-x-y+1二)分组后能直接运用公式例3、分解因式:x-y+ax+ay=(a+1)(x-y)例4、分解因式:a-2ab+b-c=(a-b)(1-2b)-c练题:分解因式3、x-x-9y-3y^2 4、x-y-z-2yz综合练:1) x+xy-xy-y=(x-y)(1+x)2) ax-bx+bx-ax+a-b=2(a-b)3) x+6xy+9y-16a+8a-1=(x+3y-4a+1)^24) a-6ab+12b+9b-4a=-(2a-3b)^2四、十字相乘法。
初中数学因式分解教案5篇初中数学因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。
重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。
习题类型以填空题为多,也有选择题和解答题。
教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。
分解因式要进行到每一个因式都不能再分解为止。
分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用写出结果。
(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根X1,X2,那么1、教学实例:学案示例2、课堂练习:学案作业3、课堂:4、板书:5、课堂作业:学案作业6、教学反思:初中数学因式分解教案篇2教学目标1、知识与技能会应用平方差公式进行因式分解,发展学生推理能力。
2、过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。
3、情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。
重、难点与关键1、重点:利用平方差公式分解因式。
因式分解知识点一:因式分解的概念及注意事项因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。
1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;知识点二:因式分解基本方法方法一·提公因式法1、提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幂指数大于1的整式.2、提公因式法分解因式,关键在于观察、发现多项式的公因式.3、找公因式的一般步骤(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.4、注意事项:多项式的公因式应是各项所共有的最高因式,公因式的系数原则上是不定的。
但对整系数的多项式,其公因式的系数一般取所有系数的最大公约数;对分数系数的多项式,其公因式的系数一般取所有分母的最小公倍数分之一;公因式的字母取各项共有的字母,各相同字母的指数取其次数最低的。
公因式可以是单项式也可以是多项式,有时要进行适当变形才能出现公因式。
题型展示:1、将下列各式分解因式: (1)y)2b(x -y)3a(x ++;(2)32)(18)(12n m n m -+-;(3)3)2(6)2(3x y y x ---;(4)22222)(83)(41p q ab q p b a ---; 2、下列分解因式结果正确的是( )A.)6)(2()2()2(6x x x x x +-=-+-B.)2(2223x x x x x x +=++C.)()()(2b a a b a ab b a a -=-+- D.)2(3632+=+x xn xn n x提高练习1、如果b -a =-6,ab =7,那么22ab b a -的值是( )A.42B.-42C.13D.-132、若4x 3-6x 2=2x 2(2x +k ),则k =________.3、2(a -b )3-4(b -a )2=2(a -b )2(________).4、36×29-12×33=________.5、分解因式(1)2)())((y x y x y x +--+(2))(4)(82x y b y x a ---6.计算与求值29×20.03+72×20.03+13×20.03-14×20.03.7、.先化简,再求值a (8-a )+b (a -8)-c (8-a ),其中a =1,b =21,c =21.8、已知812=-y x ,2=xy ,求43342y x y x -的值.方法二·公式法【知识精读】把乘法公式反过来,就可以得到因式分解的公式。
因式分解常用12种方法及应用【因式分解的12种方法】把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1.提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1.分解因式x3-2x2-x(2003淮安市中考题)x3-2x2-x=x(x2-2x-1)2.应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
@初中生家长例2.分解因式a2+4ab+4b2(2003南通市中考题)解:a2+4ab+4b2=(a+2b)23.分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3.分解因式m2+5n-mn-5m解:m2+5n-mn-5m=m2-5m-mn+5n@初中生家长=(m2-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4.十字相乘法对于mx2+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4.分解因式7x2-19x-6分析:1×7=7,2×(-3)=-61×2+7×(-3)=-19解:7x2-19x-6=(7x+2)(x-3)5.配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
@初中生家长例5.分解因式x2+6x-40解x2+6x-40=x2+6x+(9)-(9)-40=(x+3)2-(7)2=[(x+3)+7][(x+3)–7]=(x+10)(x-4)6.拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
本文发表于《中学数学杂志》2003年第3期《因式分解》图解教学设计215006 苏州市第一中学 刘祖希图解教学法是一种由来已久的教学形式,可以誉为数学结构化思想的缩影.图解通常呈现表格式、树图式、流程图式、统计图式、示意图式等.图解法较多地出现在单元复习和本章小结,也零星出现在教科书正文部分,如实数分类、三角形四边形分类等,其主要目的是将零散的知识进行疏理、精简、概括、形式化、结构化,以助理解记忆.是否可以突破目前图解对象仅仅限于数学基础知识的状况,将图解对象扩大为整个数学过程,包括认知规律、思想方法、学习技巧、操作要点,这是有待进一步探索的问题.因式分解是数学教学的难点之一,技巧性极强,因此愈发凸现方法的重要性.研究者们创造了多种教学方法,如变元思想串联法、仿造想象法、类比法[1][2]等等.本文运用传统图解法使因式分解教学条理化、系统化,达到分散难点、最终突破难点的目的,其主体是因式分解的知识系统图.1 《因式分解》在教材中的地位、联系分式的运算因式分解整式的乘除整式的加减→⎪⎭⎪⎬⎫→ 2 一级知识系统图便于行文,将《因式分解》知识系统图分解为一级、二级两个层次.⎪⎪⎩⎪⎪⎨⎧主要用途一般步骤基本方法基本概念因式分解 3 二级知识系统图3.1因式分解的基本概念⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧≥≥⎩⎨⎧≤⨯⨯⨯→分解,要求分解彻底加深理解,可类比因数)分解(与其他因式无关各因式内部化简、继续项数次数部整理后继续)分解:各因式内哪些多项式可能进行(原来的次数数次数分散:各因式的次逆乘积,与整式的乘法互整式代数和变为整式的因式分解后的变化:律因式分解的依据:分配整式整式整式式因式分解的定义:多项基本概念因式分解323.2因式分解的一般步骤⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→−−−−→−⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧−−→−⎪⎩⎪⎨⎧−−→−−−−−→−−−−→−−−−→−必要化简继续分解继续分解必要化简四项以上式三项式二项式一般步骤:多项式因式分解在各因式内部分组分组完全平方公式平方差公式提公因式 3.3因式分解的主要用途⎪⎪⎩⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧.底分解情况,采取局部、不彻灵活应用:可根据实际分式的约分、化简因式分解法解方程简便计算主要用途因式分解 3.4因式分解的基本方法⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++++=+++=-++=+=--=--=-+-=------⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++++++⎩⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧-⎩⎨⎧)()12()2(133)(4)44(432)(4)1(4)12(32))((32332221222313222232322442242222下略拆项法:如下略添项法:如,下略,可令换元法:如下略配方法:如,展开比较系数,下略分解为待定系数法:如设)十字相乘法:(不举例特殊技巧学精神察能力、思维品质、科分组可以锻炼学生的观””或“六项式:分成“””或“五项式:分成“””或“四项式:分成“分组的技巧结合前两种基本方法分组是一种策略,紧密分组分解法述,口到、心到、手到熟记三个公式的文字叙项”是关键识别多项式中的“平方运用公式法程贯穿于因式分解的全过准确、彻底提公因式的要求、互为相反数:型如、:型如相差倍数、:型如完全一样公因式的类型大公约数系数:找各项系数的最低次字母:找相同字母的最找公因式的方法提公因式法一般方法基本方法因式分解a a a a a a a a a a a a y x x x x x x x x n x m x x x A A kA A A A 4 教学注意事项以上图解基本涵盖了教学全过程,但要实效性突破难点,还必须对几个教学要点进行强化.此处文字较多暂不采用图解法.4.1 加强逆向思维训练为什么“乘法公式”在《整式乘法》中的应用要比在《因式分解》中的应用自然流畅得多?说明我们的学生习惯运算、不习惯思维,长于聚合思维、弱于发散思维,教师应该有意识加强逆向思维、发散思维训练,不仅是在《因式分解》一章中,还必须在整个数学教学中.4.2把握各种方法的关键学习因式分解,要抓住关键,要让学生知道,方法有限,经过有限探索一定可以解决.“提公因式法”的关键是准确、彻底、及时,随时随地;“运用公式法”的关键是善于识别“平方项”;“分组分解法”的关键是勇于探索、迎难而上、永不气馁的意志品质.4.3足量训练、注重总结因式分解是每一代人学习的难点,会出现每一代人都要犯的错误,比如分解不彻底.这些错误完全可以通过足量训练,做到训练有素、熟能生巧.总结经验,比如“轮换对称形式的多项式的分解结果也具有轮换对称性”这一不争事实,就可以帮助我们快速分解因式.4.3紧贴课本、打好基础充分使用课本习题,循序渐进,打好基础,防止任意拔高难度.尤其是接受较慢的学生可以要求他们对三个公式、三种方法的文字叙述做到“三个到”:口到、心到、手到,背得熟、想得到、写得出.4.4设计题组、层层领悟可以精心编选题组,使学生点滴进步、正反思考、逐步参悟.如:提公因式法: (1)=+2221ab b a ; (2))2(21212b N ab M b a +=+,则=M ,=N . 运用公式法:(1)=++122x x ; (2)=++412x x ; (3)=++21222x x . 分组分解法:(略.可以按多项式的项数由四项到六项进行安排,也可以按分组时第一项和第二项、或第一项和第三项、或第一项和第四项搭配分别进行设计.)因式分解及其方法的简单运用:(1)若0)2()1(22=-++y x ,则=+y x ;(2)若052422=++-+b a b a ,则b a += ;(3)请你仿造(1) (2)自己编一个类似题目: .(4)若,5=-y x 则=-y x 66 ;(5)若,6,5==-xy y x 则=-22xy y x ;(6)若,6,5==-xy y x 则=+33xy y x .(本题有意考察学生碰到阻碍怎么办)参考文献:[1] 沈文选.中学数学思想方法.湖南师范大学出版社,1999、5[2] 朱成杰.数学思想方法教学研究导论.文汇出版社,2001、6。
初中数学知识归纳代数式化简与因式分解初中数学知识归纳:代数式化简与因式分解数学是一门既重要又有趣的学科,而在初中数学课程中,代数式的化简与因式分解是我们必须掌握的基础知识。
通过对代数式的化简与因式分解,我们可以加深对数学概念和运算规则的理解,为后续学习打下坚实基础。
本文将从化简和因式分解两个方面对初中数学中的代数式化简与因式分解进行归纳总结。
一、代数式的化简代数式化简是指将一个复杂的代数表达式简化为最简形式的过程。
在化简代数式时,我们应该遵循以下几个基本原则:合并同类项、因式提取和展开式子。
下面通过几个例子来说明这些原则。
1. 合并同类项合并同类项是将具有相同字母部分的项进行合并的操作。
例如,对于代数式3x + 5y - 2x + 4y,我们可以将相同字母部分的项合并得到:3x - 2x + 5y + 4y = x + 9y。
2. 因式提取因式提取是将一个式子中共有的因子提取出来,使得代数式看起来更简洁。
例如,对于代数式2x + 4xy,我们可以将公共因子2x提取出来,得到2x(1 + 2y)。
3. 展开式子当代数式中存在括号时,我们需要将其展开,即将括号内的项按照分配律进行相乘。
例如,对于代数式2(x + y),我们可以将括号内的项分别与2相乘得到2x + 2y。
二、代数式的因式分解因式分解是将一个代数表达式分解为若干个较为简单的因式相乘的形式。
因式分解在解方程、求解问题等数学运算中具有重要作用。
下面通过几个例子来说明因式分解的原则和方法。
1. 提取公因式当一个代数式中存在公因子时,我们可以将其提取出来,以达到因式分解的目的。
例如,对于代数式12x + 6y,我们可以将公共因子6提取出来,得到6(2x + y)。
2. 分解差平方差平方的公式是数学中常见的一种因式分解形式,即a^2 - b^2 = (a - b)(a + b)。
通过运用差平方公式,我们可以将一些特殊的代数式进行因式分解。
例如,对于代数式x^2 - 4,我们可以利用差平方公式得到(x - 2)(x + 2)。
因式分解是将一个多项式表达为几个多项式的乘积的过程。
对于初中生来说,通常需要掌握以下几种基本的因式分解方法:
1. 提公因式法:如果多项式的各项中都有公共的因子,可以提取出来,使得原多项式变为公因子与剩余部分的乘积。
例如:ax + ay = a(x + y)
2. 分组分解法:将多项式的各项分成几组,每组提出公因子,再将提取公因子后的表达式进行合并。
例如:ax + ay + bx + by = a(x + y) + b(x + y) = (a + b)(x + y)
3. 完全平方公式法:利用完全平方公式(a + b)^2 = a^2 + 2ab + b^2和(a - b)^2 = a^2 - 2ab + b^2进行因式分解。
例如:x^2 + 6x + 9 = (x + 3)^2
4. 差平方公式法:利用差平方公式a^2 - b^2 = (a + b)(a - b)进行因式分解。
例如:x^2 - 9 = (x + 3)(x - 3)
5. 十字相乘法:适用于形如ax^2 + bx + c的三项式的因式分解,其中a、b、c是常数。
例如:x^2 + 5x + 6 = (x + 2)(x + 3)
6. 配方法:通过添加和减去同一个数,将二次项和一次项的部分转换为完全平方的形式。
例如:x^2 + 4x = x^2 + 4x + 4 - 4 = (x + 2)^2 - 4
7. 其他特殊公式:如立方和公式、立方差公式等,用于特定形式的多项式因式分解。
因式分解是初中数学中的一个重要知识点,它不仅能够帮助简化多项式的表达,还是解决方程、不等式等问题的重要工具。
因式分解讲解一、辅导内容提取公因式法、公式法、分组分解法、十字相乘法四种基本方法的掌握。
二、学习指导因式分解是代数的重要内容,它是整式乘法的逆变形,在通分、约分、解方程以及三角函数式恒等变形中有直接应用。
重点是掌握提取公因式法、公式法、分组分解法、十字相乘法四种基本方法。
难点是根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。
三、考点阐述考点1 提公因式法和公式法 常用公式:(1)))((22b a b a b a +-=- (2)222)(2b a b ab a ±=+± (3)))((2233b ab a b a b a +-+=+ (4)))((2233b ab a b a b a ++-=- 补充公式:(1)2222)(222c b a ca bc ab c b a ++=+++++(2)))((3222333ca bc ab c b a c b a abc c b a ---++++=-++例1 (1)33xy y x -; (2)x x x 2718323+-(3)()112---x x (4)()()3224x y y x ---分析:①因式分解时,无论有几项,首先考虑提取公因式。
提公因式时,不仅注意数,也要注意字母,字母可能是单项式也可能是多项式,一次提尽。
②当某项完全提出后,该项应为“1”③注意()()n na b b a 22-=-,()()1212++--=-n n a b b a④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4)分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。
答案:(1)()()y x y x xy -+; (2)()233-x x ;(3)()()21--x x ; (4)()()y x y x -+-222考点2 十字相乘法例2 (1) 893+-x x (2)32231222xy y x y x -+;(3)()222164x x -+ (4)22103y xy x --分析:对于二次三项齐次式,将其中一个字母看作“末知数”,另一个字母视为“常数”。
初中数学-代数中的因式分解详解我选择的知识点是初中数学中的代数中的因式分解。
一、什么是因式分解?因式分解是将一个式子分解成由若干个不可再分的乘积(因子)之积的形式。
二、为什么要进行因式分解?1. 对运算和化简有重要影响。
2. 减少式子的存储空间,便于运算和处理。
3. 在复杂运算中,将式子进行因式分解,使得式子的结构更为清晰,更容易进行化简。
4. 对于一些具有特殊形式的式子,进行因式分解可以使得问题的求解更为简单。
三、因式分解的方法1. 公因式法将多项式中的某个公共因数提取出来作为一个因式,再将剩下的部分分解因式。
例题:将12a^2b+18ab^2进行因式分解。
解答:12a^2b+18ab^2=6ab(2a+3b)。
2. 提公因式法若多项式的各项可以表示成相同的公因式和其他部分的乘积,则先提取公因式,再对其它部分进行分解。
例题:将4x^2-8xy+3y^2进行因式分解。
解答:4x^2-8xy+3y^2=4(x^2-2xy+\frac{3}{4}y^2)=4(x-\frac{3}{2}y)(x-\frac{1}{2}y)。
3. 公式法运用公式将式子分解为特定形式的乘积。
常见的公式有:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2a^2-b^2=(a-b)(a+b)a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b)(a^2+ab+b^2)例题:将3x^2+8xy+5y^2进行因式分解。
解答:3x^2+8xy+5y^2=(3x+y)(x+5y)4. 分组法将多项式中的各项分为两部分,每部分各自有公因式,然后再提取公因式进行因式分解。
例题:将6x^2+11xy-10y^2进行因式分解。
解答:6x^2+11xy-10y^2=(2x-5y)(3x+2y)5. 辗转相除法将多项式进行除法计算,不断缩小式子,直至无法再进行除法操作。
例题:将3x^3-2x^2-11x+6进行因式分解。
因式分解小结【知识精读】因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。
1. 因式分解的对象是多项式;2. 因式分解的结果一定是整式乘积的形式;3. 分解因式,必须进行到每一个因式都不能再分解为止;4. 公式中的字母可以表示单项式,也可以表示多项式;5. 结果如有相同因式,应写成幂的形式;6. 题目中没有指定数的范围,一般指在有理数范围内分解;7. 因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。
即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;下面我们一起来回顾本章所学的内容。
【分类解析】1. 通过基本思路达到分解多项式的目的 例1. 分解因式x x x x x 54321-+-+-分析:这是一个六项式,很显然要先进行分组,此题可把x x x x x 54321-+-+-和分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;也可把x x 54-,x x 32-,x -1分别看成一组,此时的六项式变成三项式,提取公因式后再进行分解。
解一:原式=-+--+()()x x x x x 54321=-+--+=--+=--+++x x x x x x x x x x x x x 32232221111111()()()()()()()解二:原式=()()()x x x x x 54321-+-+-=-+-+-=-++=-++-=--+++2x x x x x x x x x x x x x x x x x 4244222211111121111()()()()()()[()]()()()2. 通过变形达到分解的目的 例1. 分解因式x x 3234+- 解一:将32x 拆成222x x +,则有原式=++-=+++-=++-=-+x x x x x x x x x x x x 322222242222212()()()()()()()()解二:将常数-4拆成--13,则有22223)2)(1()44)(1()33)(1()1)(1()33(1原式+-=++-=+-+++-=-+-=x x x x x x x x x x x x3. 在证明题中的应用例:求证:多项式()()x x x 2241021100--++的值一定是非负数分析:现阶段我们学习了两个非负数,它们是完全平方数、绝对值。
本文发表于《中学数学杂志》2003年第3期
《因式分解》图解教学设计
215006 苏州市第一中学 刘祖希
图解教学法是一种由来已久的教学形式,可以誉为数学结构化思想的缩影.图解通常呈现表格式、树图式、流程图式、统计图式、示意图式等.图解法较多地出现在单元复习和本章小结,也零星出现在教科书正文部分,如实数分类、三角形四边形分类等,其主要目的是将零散的知识进行疏理、精简、概括、形式化、结构化,以助理解记忆.
是否可以突破目前图解对象仅仅限于数学基础知识的状况,将图解对象扩大为整个数学过程,包括认知规律、思想方法、学习技巧、操作要点,这是有待进一步探索的问题.
因式分解是数学教学的难点之一,技巧性极强,因此愈发凸现方法的重要性.研究者们创造了多种教学方法,如变元思想串联法、仿造想象法、类比法[1][2]等等.本文运用传统图解法使因式分解教学条理化、系统化,达到分散难点、最终突破难点的目的,其主体是因式分解的知识系统图. 1 《因式分解》在教材中的地位、联系
分式的运算
因式分解整式的乘除整式的加减→⎪⎭
⎪⎬⎫→ 2 一级知识系统图
便于行文,将《因式分解》知识系统图分解为一级、二级两个层次.
⎪⎪⎩
⎪⎪⎨⎧主要用途一般步骤
基本方法基本概念因式分解 3 二级知识系统图
3.1因式分解的基本概念
⎪⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧≥≥⎩⎨⎧≤⨯⨯⨯→分解,要求分解彻底加深理解,可类比因数)分解(与其他因式无关各因式内部化简、继续项数次数部整理后继续)分解:各因式内哪些多项式可能进行(原来的次数数次数分散:各因式的次逆乘积,与整式的乘法互整式代数和变为整式的因式分解后的变化:律因式分解的依据:分配
整式整式整式式因式分解的定义:多项基本概念因式分解32
3.2因式分解的一般步骤
⎪⎪⎩
⎪⎪⎨⎧⎪⎩⎪⎨⎧→→−−−−→−⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧−−→−⎪⎩⎪⎨⎧−−→−−−−−→−−−−→−−−−→−必要化简继续分解继续分解必要化简四项以上式三项式二项式一般步骤:多项式因式分解在各因式内部分组分组完全平方公式平方差公式提公因式 3.3因式分解的主要用途
⎪⎪⎩
⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧.底分解情况,采取局部、不彻灵活应用:可根据实际分式的约分、化简因式分解法解方程简便计算主要用途因式分解 3.4因式分解的基本方法
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++++=+++=-++=+=--=--=-+-=------⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++++++++⎩⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧-⎩⎨⎧)()12()2(133)(4)44(432)(4)1(4)12(32))((32332221222313222232322442242222下略拆项法:如下略添项法:如,下略,可令换元法:如下略配方法:如,展开比较系数,下略分解为待定系数法:如设)十字相乘法:(不举例特殊技巧学精神察能力、思维品质、科分组可以锻炼学生的观””或“六项式:分成“””或“五项式:分成“””或“四项式:分成“分组的技巧结合前两种基本方法分组是一种策略,紧密分组分解法述,口到、心到、手到熟记三个公式的文字叙项”是关键识别多项式中的“平方运用公式法程贯穿于因式分解的全过准确、彻底提公因式的要求、互为相反数:型如、:型如相差倍数、:型如完全一样公因式的类型大公约数系数:找各项系数的最低次字母:找相同字母的最找公因式的方法提公因式法一般方法基本方法因式分解a a a a a a a a a a a a y x x x x x x x x n x m x x x A A kA A A A 4 教学注意事项
以上图解基本涵盖了教学全过程,但要实效性突破难点,还必须对几个教学要点进行强化.此处文字较多暂不采用图解法.
4.1 加强逆向思维训练
为什么“乘法公式”在《整式乘法》中的应用要比在《因式分解》中的应用自然流畅得多?说明我们的学生习惯运算、不习惯思维,长于聚合思维、弱于发散思维,教师应该有意识加强逆向思维、发散思维训练,不仅是在《因式分解》一章中,还必须在整个数学教学中.
4.2把握各种方法的关键
学习因式分解,要抓住关键,要让学生知道,方法有限,经过有限探索一定可以解决.
“提公因式法”的关键是准确、彻底、及时,随时随地;
“运用公式法”的关键是善于识别“平方项”;
“分组分解法”的关键是勇于探索、迎难而上、永不气馁的意志品质.
4.3足量训练、注重总结
因式分解是每一代人学习的难点,会出现每一代人都要犯的错误,比如分解不彻底.这些错误完全可以通过足量训练,做到训练有素、熟能生巧.
总结经验,比如“轮换对称形式的多项式的分解结果也具有轮换对称性”这一不争事实,就可以帮助我们快速分解因式.
4.3紧贴课本、打好基础
充分使用课本习题,循序渐进,打好基础,防止任意拔高难度.尤其是接受较慢的学生可以要求他们对三个公式、三种方法的文字叙述做到“三个到”:口到、心到、手到,背得熟、想得到、写得出.
4.4设计题组、层层领悟
可以精心编选题组,使学生点滴进步、正反思考、逐步参悟.如:
提公因式法: (1)=+222
1ab b a ; (2))2(2
1212b N ab M b a +=+,则=M ,=N . 运用公式法:
(1)=++122x x ; (2)=+
+4
12x x ; (3)=++21222x x . 分组分解法:(略.可以按多项式的项数由四项到六项进行安排,也可以按分组时第一项和第二项、或第一项和第三项、或第一项和第四项搭配分别进行设计.)
因式分解及其方法的简单运用:
(1)若0)2()1(22=-++y x ,则=+y x ;
(2)若052422=++-+b a b a ,则b a += ;
(3)请你仿造(1) (2)自己编一个类似题目: .
(4)若,5=-y x 则=-y x 66 ;
(5)若,6,5==-xy y x 则=-22xy y x ;
(6)若,6,5==-xy y x 则=+33xy y x .(本题有意考察学生碰到阻碍怎么办)
参考文献:
[1] 沈文选.中学数学思想方法.湖南师范大学出版社,1999、5
[2] 朱成杰.数学思想方法教学研究导论.文汇出版社,2001、6。