高考数学一轮复习第十一章第四节随机事件的概率课件理(3).ppt
- 格式:ppt
- 大小:1.46 MB
- 文档页数:52
第十一章 计数原理、概率、随机变量及其分布第四节 随机事件的概率A 级·基础过关 |固根基|1.如果事件A 与B 是互斥事件,且事件A∪B 发生的概率是0.64,事件B 发生的概率是事件A 发生的概率的3倍,则事件A 发生的概率为( )A .0.64B .0.36C .0.16D .0.84解析:选C 设P(A)=x ,则P(B)=3x ,所以P(A∪B)=P(A)+P(B)=x +3x =0.64,解得x =0.16,故选C .2.(2019届西安五校模拟)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,如果事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡解析:选A “2张全是移动卡”的对立事件是“2张不全是移动卡”,即至多有一张移动卡. 3.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13 B .12 C .23D .34解析:选C 从4张卡片中抽取2张的方法有6种,和为奇数的情况有4种,∴P=23.4.从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .310B .15C .12D .35解析:选A 从1,2,3,4,5这5个数中任取3个数,共有10种情况,其中三个数可作为三角形边长的有(2,3,4),(2,4,5),(3,4,5)3种情况,故所求概率P =310.故选A .5.(2019届湖南长沙模拟)同时掷3枚硬币,至少有1枚正面向上的概率是( ) A .78 B .58 C .38D .18解析:选A 由题意知本题是一个等可能事件的概率,试验发生包含的事件是将1枚硬币连续抛掷三次,共有8种结果,满足条件的事件的对立事件是3枚硬币都是背面向上,有1种结果,所以至少一枚正面向上的概率是1-18=78.故选A .6.(2019年全国卷Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16 B .14 C .13D .12解析:选D 将两位男同学分别记为A 1,A 2,两位女同学分别记为B 1,B 2,则四位同学排成一列,情况有A 1A 2B 1B 2,A 1A 2B 2B 1,A 2A 1B 1B 2,A 2A 1B 2B 1,A 1B 1A 2B 2,A 1B 2A 2B 1,A 2B 1A 1B 2,A 2B 2A 1B 1,B 1A 1A 2B 2,B 1A 2A 1B 2,B 2A 1A 2B 1,B 2A 2A 1B 1,A 1B 1B 2A 2,A 1B 2B 1A 2,A 2B 1B 2A 1,A 2B 2B 1A 1,B 1B 2A 1A 2,B 1B 2A 2A 1,B 2B 1A 1A 2,B 2B 1A 2A 1,B 1A 1B 2A 2,B 1A 2B 2A 1,B 2A 1B 1A 2,B 2A 2B 1A 1,共有24种,其中两位女同学相邻的有12种,所以所求概率P =12.故选D .7.(2019年全国卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A .23B .35C .25D .15解析:选B 设3只测量过某项指标的兔子为A ,B ,C ,另2只兔子为a ,b ,从这5只兔子中随机取出3只,则基本事件共有10种,分别为(A ,B ,C),(A ,B ,a),(A ,B ,b),(A ,C ,a),(A ,C ,b),(A ,a ,b),(B ,C ,a),(B ,C ,b),(B ,a ,b),(C ,a ,b),其中“恰有2只测量过该指标”的取法有6种,分别为(A ,B ,a),(A ,B ,b),(A ,C ,a),(A ,C ,b),(B ,C ,a),(B ,C ,b),因此所求的概率为610=35,故选B . 8.(2019届云南质检)在2,0,1,8这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )A .34B .58C .12D .14解析:选C 分析题意可知,共有(0,1,2),(0,2,8),(1,2,8),(0,1,8)4种取法,符合题意的取法有2种,故所求概率P =12.9.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是( )A .16B .13C .12D .38解析:选 C 将两张卡片排在一起组成两位数,所组成的两位数有12,13,20,21,30,31,共6个,两位数为奇数的有13,21,31,共3个,故所组成的两位数为奇数的概率为36=12.10.(2019届银川模拟)已知甲、乙两人下棋,和棋的概率为12,乙胜的概率为13,则甲胜的概率和甲不输的概率分别为( )A .16,16 B .12,23 C .16,23D .23,12解析:选C 因为“甲胜”是“和棋或乙胜”的对立事件,所以甲胜的概率为1-12-13=16.设“甲不输”为事件A ,则A 可看作是“甲胜”与“和棋”这两个互斥事件的和事件,所以P(A)=16+12=23(或设“甲不输”为事件A ,则A ⎭⎪⎫可看作是“乙胜”的对立事件,所以P (A )=1-13=23. 11.(2019届吉林模拟)从分别写有0,1,2,3,4的五张卡片中取出一张卡片.记下数字后放回,再从中取出一张卡片,则两次取出的卡片上的数字之和恰好等于4的概率是________.解析:从0,1,2,3,4五张卡片中取出两张卡片的结果有25种,数字之和恰好等于4的结果有(0,4),(1,3),(2,2),(3,1),(4,0),共5种,所以数字之和恰好等于4的概率是P =15.答案:1512.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解:(1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔 4 000元”,由已知,得样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.13.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A ,B 两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A ,B 两种支付方式都不使用的有5人,样本中仅使用A 和仅使用B 的学生的支付金额分布情况如下:(2)从样本仅使用B 的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率; (3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B 的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B 的学生中本月支付金额大于2 000元的人数有变化?说明理由.解:(1)由题知,样本中仅使用A 的学生有27+3=30(人),仅使用B 的学生有24+1=25(人),A ,B 两种支付方式都不使用的学生有5人,故样本中A ,B 两种支付方式都使用的学生有100-30-25-5=40(人).估计该校学生中上个月A ,B 两种支付方式都使用的人数为40100×1 000=400.(2)记事件C 为“从样本仅使用B 的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”, 则P(C)=125=0.04.(3)记事件E 为“从样本仅使用B 的学生中随机抽查1人,该学生本月的支付金额大于2 000元”. 由(2)知,P(E)=0.04.可以认为有变化.理由如下:因为P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化,所以可以认为有变化.B 级·素养提升 |练能力|14.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石解析:选B 这批米内夹谷为28254×1 534≈169(石),故选B .15.把一颗骰子投掷两次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,向量m =(a ,b),n =(1,2),则向量m 与向量n 不共线的概率是( )A .16B .1112C .112D .118解析:选B 若m 与n 共线,则2a -b =0,即2a =b.(a ,b)的可能情况有36种,符合2a =b 的有(1,2),(2,4),(3,6),共3种,故共线的概率是336=112,从而不共线的概率是1-112=1112.16.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P(A)=2-a ,P(B)=3a -4,则实数a 的取值范围为( )A .⎝ ⎛⎦⎥⎤43,32B .⎝ ⎛⎦⎥⎤1,32C .⎝ ⎛⎭⎪⎫43,32 D .⎝ ⎛⎭⎪⎫12,43 解析:选A 由题意,知⎩⎪⎨⎪⎧0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,即⎩⎪⎨⎪⎧0<2-a<1,0<3a -4<1,2a -2≤1,解得43<a ≤32,所以实数a 的取值范围为⎝ ⎛⎦⎥⎤43,32.故选A .17.(2019届合肥模拟)某城市有连接8个小区A ,B ,C ,D ,E ,F ,G ,H 和市中心O 的整齐方格形道路网,每个小方格均为正方形,如图所示.某人从道路网中随机地选择一条最短路径,由小区A 前往小区H ,则他经过市中心O 的概率为( )A .13B .23C .14D .34解析:选B 由题意知,此人从小区A 前往小区H 的所有最短路径为:A→B→C→E→H,A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,A→D→F→G→H,共6条.记“此人经过市中心O”为事件M ,则M 包含的基本事件为:A→B→O→E→H,A→B→O→G→H,A→D→O→E→H,A→D→O→G→H,共4个,所以P(M)=46=23,即他经过市中心O 的概率为23.。