Minitabl lab notes section 2
- 格式:doc
- 大小:55.00 KB
- 文档页数:5
Minitab手册
1. 简介
Minitab是一款功能强大的统计分析软件,广泛用于数据分析、质量控制和实验设计等领域。
本手册旨在为用户提供关于Minitab软件的详细介绍和使用指南。
2. 安装与配置
2.1 安装Minitab
在开始使用Minitab之前,您需要先下载并安装Minitab软件。
您可以从Minitab官方网站上下载适用于您的操作系统的安装包。
安装过程相对简单,只需要按照提示一步步进行即可。
2.2 配置Minitab
在安装完Minitab之后,您可能需要进行一些配置来适应您的工作环境。
例如,您可以自定义界面的语言、字体大小和颜色等。
此外,您还可以配置默认的图形输出格式和分析设置等。
3. 数据导入与导出
Minitab支持多种数据导入和导出格式。
您可以将数据从Excel、CSV、文本文件等格式导入到Minitab中进行分析。
同时,Minitab也支持将分析结果导出为多种格式,方便与他人共享和使用。
3.1 导入数据
要导入数据到Minitab中,您可以使用菜单栏上的。
MINITAB使用说明MINITAB提供了多种统计分析方法,可以分析和解释数据。
其中,最常用的统计分析方法包括描述性统计、方差分析、回归分析、t检验、非参数统计等。
用户只需选择适当的方法,然后将数据输入MINITAB进行分析。
MINITAB会自动生成相应的统计结果和图表,帮助用户更好地理解数据。
MINITAB的图表功能丰富多样,可以帮助用户直观地展示数据。
MINITAB支持各种常用的图表类型,如直方图、散点图、箱线图、线图和饼图等。
用户可以根据需要选择合适的图表类型,并可以自定义图表的样式和属性。
MINITAB还支持多图表的组合展示,用户可以将多个图表放在同一个工作表上进行对比和分析。
除了统计分析和图表展示,MINITAB还提供了一些附加功能。
例如,MINITAB可以进行假设检验和置信区间估计,帮助用户评估数据的统计显著性。
此外,MINITAB还可以进行质量控制和实验设计。
用户可以利用MINITAB分析工程和制造业中的质量问题,并优化工艺过程。
值得一提的是,MINITAB还提供了一系列的教程和培训资源,帮助用户学习和掌握软件的使用。
用户可以通过在线教程、视频演示和实例学习MINITAB的基本操作和高级功能。
此外,MINITAB还提供了一个强大的社区论坛,用户可以在论坛上交流和分享使用心得。
总而言之,MINITAB是一款功能强大的统计分析和数据可视化软件。
它提供了丰富的分析方法和图表类型,可以帮助用户更好地理解和解释数据。
无论是从事学术研究、质量控制还是商业分析,MINITAB都是一个理想的工具。
通过学习和掌握MINITAB的使用方法,用户可以更加高效地进行数据分析和决策。
Minitab学习笔记Minitab使用说明,即各功能简单说明:1、Calc Menu 计算按钮1.1Calculator:进行算数计算包括数学符号、对照符号和逻辑符号。
1.2Column Statistics:进行选定列的简单数学统计。
1.3Row Statistics:进行选定列的行的简单数学统计。
1.4Standardize:对选定的列进行标准化处理。
1.5Make Patterned Data:在一列中按设定规则生成数字或时间的。
1.6Make Mesh Data:在一列中按设定规则生成坐标(x,y)1.7Make Indicator Variables:将一列中的各种类型的数据进行指标处理,即按1,0进行处理。
1.8Set Base1.9Random Data:生成一组随机数据可以从列里,也可以从一个已知的分布里。
1.10Probability Distributions:针对连续性函数或离散性函数进行概率密度、概率的计算。
1.11Matrices:对矩阵进行操作。
2、Data Menu 数据菜单2.1Subset Worksheet:拷贝特定的行从活动的页面到一个新的页面。
2.2Split Worksheet:按照一个或者多个变量把一个活动的页面拆分成一个或者更多的页面。
2.3MergeWorksheets:合并两个页面到一个页面。
2.4Sort:区分一个或者多个数据列。
2.5Rank:对一列数据进行排序并且赋值表示这种排序。
2.6Delete Rows:删除一个页面的特定行。
2.7Erase Variables:清除任何列、常数、矩阵的组合,可以清除不需要的所有变量。
2.8Copy:从一个页面拷贝到另外一个页面,可以拷贝整个选择的范围。
2.9Stack:把多列累积到一列,组成一个长列。
2.10Unstack:把一列拆分成多短列。
2.11Transpose Columns:对页面进行转置,把列转换为行。
Statistics-10030 MINITAB – Lab2Small Sample Tests of Hypothesis About a Population Mean1.When dealing with large samples we can use the Central Limit Theorem to testhypotheses about a population mean. What do we do when we are dealing with small samples (i.e. n < 30), and therefore the normality of the sampling distribution of the mean does not follow from the Central Limit Theorem?In such cases we may still proceed providing that the underlying distribution from which the sample is drawn is normal .However, even when the population from which the sample is drawn may benormal, using the sample standard deviation, s, as an estimate for σ, the population standard deviation is problematic. To correct for this we conduct our hypothesis test as before except a distribution called the t distribution (you may see this called the student t distribution in certain texts) is used in place of the normal distribution for choosing a rejection region.The test statistic is:ns x t μ-=and a rejection region is chosen at the desired α level from the t distribution with n-1 degrees of freedom.How to interpret the Rejection Region:A major car manufacturer wants to test a new engine to determine whether it meetsair-pollution standards. The mean emission μ of all engines of this type must be less than 20 parts per million of carbon. Ten engines are tested to establish that the population of engines will be in line with the standards. The results are:15.6, 16.2, 22.5, 20.5, 16.4, 19.4, 16.6, 17.9, 12.7, 13.9 .The manufacturer is making the assumption that the relative frequency histogramof the emission levels for the population of engines of this type is approximately normal. Enter this data into MINITAB labelling the variable appropriately and answer the following question using α = .01.Do the data supply sufficient evidence to allow the manufacturer to conclude that this type of engine meets the pollution standards ?Here are the familiar steps in hypothesis testing - amended to reflect small samples.Step 1. Choose the population characteristic of interest . μ - the population mean Step 2. Choose the significance level . α = .01 (or 1% level). Step 3. State null hypothesis . Ho: μ = 20 ppm Step 4. State alternative hypothesis . Ha: μ < 20 ppmStep 5. Choose a test statistic . In this case the test statistic chosen isns x t μ-=Step 6. Choose a rejection regionSince the alternative hypothesis includes all means of less than 20 ppm, this is a one-tailed test. The rejection region will be in the lower tail of the t, df=9 distribution. First get the t quantile (critical value) such that 1% of the t distribution with n-1 degrees of freedom is to the right and therefore 99% is to the left with the following command and then take the negative of the answer since this is a lower tailed test,MTB > INVCDF .99; SUBC> t 9.W hat is the answer ? _____________So the null hypothesis will be rejected if:Step 7. Calculate the test statisticFill in the following equation.=-=-=-=ns x s x t xμμ ___________Step 8. State Conclusion in the context of the questionReject / Fail To Reject the Ho: at α = _______, that____________________________________________________________________________________________________2. MINITAB has a built in function for small sample hypothesis testing about a populationmean Repeat the above test using this function. Go to the STAT - BASIC STATISTICS -1 Sample t. Specify the Null hypothesis mean in the 'test mean' box and click options.Choose the correct confidence level and alternative hypothesis and click ok twice.MINITAB will now print the result of the test in the session window. You will see N - the number in the sample, Mean - the sample mean, Stdev - the standard deviation of the sample, SE Mean - the standard error of the mean, 100(1-α)% CI or upper or lower bound (i.e. a two sided or one sided confidence interval depending on the Ha:), t - the test statistic, P - the actual probability that the sample mean came from the population specified by the H o.What is the P value for this hypothesis test ? ____________.Reject / Fail To Reject the Ho: at α = _______, that____________________________________________________________________________________________________Change the Ha: to a 2-sided test and redo the test. What is the two sided 99%confidence interval for the mean ? __________________________________.Has the P value changed form last time, what is it now ? ________If so explain why.Assignment: Due 2 weeks, Monday 27th FebruaryQ1Open the worksheet called Lab 2, which is on the Minitab class page. Read the information below regarding each sample and then using this weeks and last week’s lab sheets, perform appropriate hypothesis tests for each one.[ Hint: Generate the summary statistics for each sample first to familiarise yourself withthe data.]Sample 1:The average cost of a loaf of bread is € 0.89. Loaves of bread were bought in ten shopsin Dublin to find evidence against this claim. Sample 1 contains these costs.[Perform this test at 99% confidence level]Answer:a. State the H o and H a hypothesis.b. State the α and number of subjects in this experimentc. Should a Z test or a t test be performed here?d. What is the (i) test Statistic, (ii) Critical value and (iii) p-value for this experiment.e. State your results and conclusions in relation to the question.Q2Sample 2:Students at a particular secondary school were complaining about the time it took themto travel to school on public transport and want the school to organise a private schoolbus. The board of management insisted that the journey on public transport only took anaverage of 20 minutes. The students conducted a survey of 50 students who travel bypublic transport in an effort to prove the journey takes longer. Sample 2 contains thetime in minutes it took each one to travel.[Perform this test at 95% confidence level]Answer:a. State the H o and H a hypothesis.b. State the α and number of subjects in this experiment.c. Should a Z test or a t test be performed here?d. What is the (i) test Statistic, (ii) Critical value and (iii) p-value for this experiment.e. State your results and conclusions in relation to the question.Q3Sample 3:An experiment was conducted to examine the weight of a batch of flower bulbs in agardening shop. If the average weight is less than 3 grams then the whole batch will bethrown out. A sample from the batch were taken at random and weighed and recorded in Sample 3.[Perform this test at 95% confidence level]Answer:a. State the H o and H a hypothesis.b. State the α and number of subjects in this experiment.c. Should a Z test or a t test be performed here?d. What is the (i) test Statistic, (ii) Critical value and (iii) p-value for this experiment.e. State your results and conclusions in relation to the question.Q4Answer these questions:a. When a set of data has a t-distribution with 12 df what is the area to the left of the point0.47?b. When a set of data has a t-distribution with 6 df what is the area to the right of the point1.25?c. When a set of data has a t-distribution with 6 df what is the area to the right of the point1.25?d. When a set of data has a t-distribution with 16 df what is the t-value with an area of 0.45to the left of this point?e. When a set of data has a t-distribution with 5 df what is the t-value with an area of 0.89to the left of this point?f. When a set of data has a t-distribution with 7df what is the t-value with an area of 0.79 tothe right of this point?REVISION SUMMARYAfter this lab you should be able to:-Understand the 8 steps of a hypothesis test-Look up t-critical values (with appropriate degrees of freedom) in theCambridge tables and Minitab-Perform a 1-sample t hypothesis test using Minitab’s inbuilt function-Interpret a hypothesis test from comparing the test statistic and the critical value-Interpret a hypothesis test from comparing the p-value and α level-Tell when you should perform a z-test and a t-testEND。